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Abstract—Cross-source query serves as a proxy for scene
understanding to support many web applications such as rec-
ommendation systems, e-commerce, and e-learning applications.
In this paper, we propose SVQA that semantically combines the
knowledge from available images and graphs to answer the complex
question. To this end, we design a graph-based method to unify
various data sources into one representation. We then develop
a complex question parse method that utilizes the structure of
languages to transform the query into a query graph. A graph
query engine that performs the query graph over the unified
data source while optimizing the query process. To evaluate the
proposed system, we build a vanilla dataset called MVQA and
show that the state-of-the-art (SOTA) VQA models fail to perform
our task. The comprehensive evaluations show that the proposed
SVQA is able to reason implicit relationships over multiple
images and external knowledge to correctly answer a complex
query. We hope that our first attempt provides researchers with
a fresh taste of multimodal data analysis.

I. INTRODUCTION

Cross-source question answering is becoming essential in
modern online services, which require extracting valuable in-
formation from multiple data sources [1]. This paper considers
a query 𝑄 that operates on a set of images I and a graph 𝐺
to realize complex analytics. This kind of analytics becomes
essential. For example, a data lake application often requires
correlating and integrating the data from different sources that
have various formats [2]. However, correlating and interacting
data in images and graphs is challenging. The images are
represented as a collection of pixels and the graph is composed
of vertices 𝑉 and edges 𝐸 . How to semantically link the images
and graphs is an uncovered problem in the data management
community.

Example 1. Consider an online analytics service provider that
has various data sources, as shown in Figure 1. For example, it
contains images I of movies, and a graph 𝐺 that describes the
relationship between characters in movies. Then, we consider
answering the following query.

Example query 𝑄. What kind of clothes are worn by the
wizard who is most frequently hanging out with Harry Potter’s
girlfriend?

Intuitively, to answer 𝑄 with SVQA framework requires
the following steps: 1) 𝑄 is decoupled into three sub-queries,
namely { 𝑞1, 𝑞2, 𝑞3 }, for the following reasons: 𝑞1 is the

Q: What kind of clothes are worn by the wizard who is most frequently
hanging out with Harry Potter's girlfriend?
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Fig. 1: An example of complex question answering.

main clause in 𝑄 that requires querying types of clothes.
𝑞2, 𝑞3 are two conditions of 𝑄, where 𝑞2 is the reference of
𝑞1 and 𝑞3 is the constraint of 𝑞2. 2) Apart from the query
decomposition, we need to interact with the I and 𝐺 to find
the correct answer. For example, the information about Harry
Potter’s girlfriends (i.e., Ginny Weasley and Cho Chang) is
available on 𝐺. Moreover, 3) the information that the wizard
appearing with Ginny Weasley and Cho Chang needs to be
discovered from I, and from these traversed images we can
count the cloth that the wizard is wearing most frequently.

Most VQA research [3], [4], [5], [6] focus on improving
the ability to understand questions and images through deep
learning technologies such as RNN [7] or Transformer [8].
These methods do not consider incorporating the content of
𝐼 ∈ I and 𝐺. More recent research [9], [10] has started to
look at using graph 𝐺 to answer the questions to overcome
the issue that the contents of an image are not sufficient to
answer. Large models, such as ChatGPT [11], Claude [12],
are parametric knowledge systems that function as a black
box [13], with a primary focus on enhancing the processing
of text, images, and multi-modal conversations. SAM [14] and
OVSeg [15] excel in their image understanding capabilities,
enabling them to recognize and label all instances within an
image. SEEM [16] is designed to process multi-modal data,
such as texts and images, but the model is still focused on
classical computer vision tasks i.e., object segmentation and
recognition. Although the large models have impressive text
and visual comprehension and producing abilities, they lack
the ability to reason the implicit information across images or
texts and images. In future work, to achieve better knowledge



(entities) extracting from both images and texts we can interact
SVQA with the large models.

Our contributions. In this paper, we go one step forward and
propose a new query-answering framework SVQA to tackle
the challenge as shown in example 1. Answering this type of
question requires complementing the implicit relations among
images and further performing cross-image reasoning, while
interacting with a merged graph. To address the challenge, we
make the following contributions to this paper.

(1) Question answering framework (§II). SVQA converts
𝐼 ∈ I to a scene graph 𝐺𝑠𝑔 (𝐼) to obtain the entities of 𝐼, and
then combine 𝐺𝑠𝑔 with graphs 𝐺 as a merged graph 𝐺𝑚𝑔.
Next, a complex query 𝑄 is decomposed into a query graph 𝐺𝑞

that is a set of simple and ordered sub-queries 𝑄𝑠𝑢𝑏. Finally,
the 𝐺𝑞 is optimized and can be executed over 𝐺𝑚𝑔.

(2) Data aggregator (§III). To improve the efficiency of
acquiring 𝐺𝑚𝑔, we develop a sub-graph caching mechanism
that caches the most frequently sub-graphs while linking
entities between the 𝐺𝑠𝑔 (𝐼) and 𝐺.

(3) Query graph generator (§IV). We develop a simple and
efficient query decomposition algorithm based on computa-
tional linguistics for decomposing complex query 𝑄 into a
hierarchical query graph 𝐺𝑞 . Unlike the deep learning model-
based method (e.g., Large language model), our algorithm
does not require the use of labeled data for model tuning.

(4) Query executor(§V). Based on the generated query graph,
we design an iterative strategy for searching the database and
aggregating the returned results of each node from the query
graph. We show that the time complexity of our algorithm is
𝑂 (𝑁 ( |𝑉/2| · |𝑉/2|)). We parallelize our algorithm to further
improve its performance of the algorithm.

(5) A new VQA task and dataset MVQA (§VI). We
constructed a new dataset called MQVA to assist the task
understanding and solution proposal. The whole image dataset
contains 4,233 images selected from COCO, and we manually
create 100 complex ⟨𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛, 𝑎𝑛𝑠𝑤𝑒𝑟⟩ pairs to evaluate the
proposed solution.

II. PROBLEM DEFINITION AND SVQA FRAMWORK

Multimodal data. In this paper we consider performing a
complex query over a set of heterogeneous data sources, such
as graphs and multimedia data (e.g., videos, images).
Graph. A directed labeled graph is defined by 𝐺 = (𝑉, 𝐸, 𝐿),
where 𝑉 is a set vertices, and 𝐸 is a set of edges linking the
vertices. 𝐿 (𝑣) and 𝐿 (𝑒) represent the label of 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸 .
Images. An image 𝐼 captures the scene that might include
various elements such as objects, people, landscapes, or other
details that contribute to the overall understanding or interpre-
tation of the image. The video data is the collection of 𝐼, i.e.,⋃𝑛

𝑖=1 𝐼𝑖 .

Complex Query. A complex query is composed of multiple
clauses, denoted by 𝑄 = {𝑐1, ..., 𝑐𝑛}. Each 𝑐𝑖 corresponds to
a SPOC. The SPOC is a quadruple abstract structure whose
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Fig. 2: SVQA framework

subject, predict, object, and constraint are denoted by 𝑣𝑠 , 𝑣𝑝 ,
𝑣𝑜, and 𝑣𝑐 corresponding to 𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜, and 𝑐𝑐, respectively.
Problem. Given a complex query 𝑄 described in natural
language, a set of related images I, and graph 𝐺, the objective
of this paper is to propose a framework that can integrate
semantic information from both I and 𝐺 to return the correct
answer to 𝑄.
Our SVQA framework is based on the following assumptions.

Assumption 1. The images I and the graph 𝐺 are query-
independent.

This differs from previous VQA approaches [17], [18], [19]
(i.e., query-dependent scenarios) in which an image 𝑖 and
question 𝑞 are paired and fed into a deep learning model.
For example, given an 𝑖 that shows a man wearing a hat and
the 𝑞 is “What’s the color of the hat that the man is wearing?”
Our proposed framework can achieve the same performance
as the representative work [20] if the scene graph generation
model obtains sufficient semantic information from 𝐼. Also,
we can use a small set of questions 𝑄 to fine-tune the scene
graph generation model 𝑀 to generate a more specific scene
graph for given images 𝐼, if the pre-trained 𝑀 can’t obtain the
semantic information from 𝐼 to answer the questions 𝑄.

Assumption 2. The contents contained within the images I,
as well as the graph 𝐺, possess the necessary knowledge to
answer the given questions.

Framework. Figure 2 shows SVQA framework to tackle the
above-mentioned problem. First, in order to more efficiently
query (or analyze) multimodal data (e.g., images and graphs),
we propose a data aggregation method (Data Aggregator §III)
to unify data of different modalities into a merged graph.
Next, to answer a complex query, we decompose the query
into an ordered query graph consisting of multiple sub-queries.
Executing the sub-queries sequentially over the merged graph,
we can reason the implicit information and obtain the correct
answer (Query Graph Generator §IV). Finally, to execute the
generated query graph over BIG merged graph, we develop a
sub-graph search method and its optimization mechanism to
improve the query efficiency (Query Executor §V).

III. DATA AGGREGATOR

We first present how to construct a merged graph 𝐺𝑚𝑔 via
connecting images I and graphs 𝐺. Given an image 𝐼 ∈ I, we
first convert it into a structured scene graph 𝐺𝑠𝑔, representing
all detected objects and their relationship linkages. We then
construct a merged graph 𝐺𝑚𝑔 by integrating all generated
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Fig. 3: Example of Scene Graph Generation in SVQA

scene graphs {𝐺𝑠𝑔 (𝐼) |∀𝐼 ∈ I} to the graph 𝐺, where 𝑉 and 𝐸
represents the nodes and links of 𝐺, respectively.

A. Scene Graph Generation

A scene graph 𝐺𝑠𝑔 (𝐼) consists of a set of objects 𝑉𝑠𝑔 (𝐼) and
a relational matrix 𝐸𝑠𝑔 (𝐼), denoted by 𝐺𝑠𝑔 = (𝑉𝑠𝑔, 𝐸𝑠𝑔) [21],
where 𝑉𝑠𝑔 represents all detected objects in 𝐼, and 𝐸𝑠𝑔

represents relationship linkages between all pairs of 𝑉𝑠𝑔.
Each object 𝑣𝑖 ∈ 𝑉𝑠𝑔 (𝐼) is composed of a bounding box

𝑏𝑖 ∈ R4, a feature map 𝑚𝑖 and a class label 𝑙𝑖 ∈ R, denoted
by 𝑣𝑖 = (𝑏𝑖 , 𝑚𝑖 , 𝑙𝑖). The links between 𝑣𝑖 and 𝑣 𝑗 is written as
𝑟𝑖 𝑗 ∈ 𝐸𝑠𝑔 (𝐼).
Object Detection. To extract objects from an image 𝐼,
we present an object detection method based on Mask R-
CNN [22]. Let 𝑁𝐼 be a set of objects obtained from 𝐼. The
objects {𝑣𝑖 |∀𝑖 ∈ 𝑁𝐼 } for 𝐼 are extracted in the following
two steps: 1) generating bounding boxes from the images. 2)
classifying objects within the bounding boxes.

(1) Bounding Boxes and Feature Maps. Let 𝐵 = {𝑏𝑖 |∀𝑖 ∈
𝑁𝐼 } and 𝑀 = {𝑚𝑖 |∀𝑖 ∈ 𝑁𝐼 } be candidate bounding boxes and
feature maps generated by Mask R-CNN. Each bounding box
𝑏𝑖 is a tuple (𝑥𝑖 , 𝑦𝑖 , 𝑤𝑖 , ℎ𝑖), where (𝑥𝑖 , 𝑦𝑖) are the coordinates
of the top-left corner of the bounding box, (𝑤𝑖 , ℎ𝑖) are the
width and height of the bounding box. Region proposal net-
work (RPN) is a module within the Mask R-CNN to generate
feature maps 𝑚𝑖 for each 𝑏𝑖 .

(2) Object labels. 𝐿 are the predicted class labels for the
bounding boxes and 𝑙𝑖 is the label for each 𝑏𝑖 .

Linkage Generation. Linkages are represented by a relational
matrix that indicates the relationship 𝑟𝑖 𝑗 ∈ 𝐸𝑠𝑔 between two
detected objects 𝑣𝑖 and 𝑣 𝑗 , denoted as 𝐸𝑠𝑔 (𝐼) = (𝑟𝑖 𝑗 )1≤𝑖, 𝑗≤𝑁𝐼

.
Due to the training bias, which may lead to inaccurate rela-
tionship expressions for two objects, we develop our linkage
generation into two steps: 1) generating initial links. 2) remov-
ing bias from links.

(1) Generating Initial Links. The methodology for generat-
ing links between objects 𝑣𝑖 and 𝑣 𝑗 can be expressed as:

{(𝑏𝑖 , 𝑚𝑖 , 𝑙𝑖), (𝑏 𝑗 , 𝑚 𝑗 , 𝑙 𝑗 )} → {𝑝𝑟𝑖 𝑗 } (1)

The input consists of the bounding boxes 𝐵 = {𝑏𝑖 , 𝑏 𝑗 |𝑖 ≠ 𝑗},
feature maps 𝑀 = {𝑚𝑖 , 𝑚 𝑗 }, and their object labels 𝐿 =

{𝑙𝑖 , 𝑙 𝑗 }. 𝑝𝑟𝑖 𝑗 represents the probability that the relationship
between 𝑣𝑖 and 𝑣 𝑗 belongs to class 𝐸𝑠𝑔. We utilize an RNN-
based MOTIFNET model [23] for extracting 𝑝𝑟𝑖 𝑗 .

(2) Removing Bias from Links. When inferring 𝑟𝑖 𝑗 from 𝑣𝑖
and 𝑣 𝑗 , the explicit relationship between the objects may be
obscured by the ubiquitous relationships that exist within the
𝑙𝑖 and 𝑙 𝑗 . Such a training bias thus needs to be deducted
from 𝑝𝑟𝑖 𝑗 . We infer such bias with the previously trained
MOFITNET as follows:

{(𝑏𝑖 , 𝑀𝑎𝑠𝑘 (𝑚𝑖), 𝑙𝑖), (𝑏 𝑗 , 𝑀𝑎𝑠𝑘 (𝑚 𝑗 ), 𝑙 𝑗 )} → {𝑝′𝑟𝑖 𝑗 } (2)

We mask the feature maps 𝑚𝑖 and 𝑚 𝑗 and set them as zero
vectors. Then we follow the same procedure as in Equation 1
to predict the relationship probability 𝑝′𝑟𝑖 𝑗 between bounding
boxes 𝑏𝑖 and 𝑏 𝑗 .

Finally, we get the unbiased relationships between 𝑣𝑖 and
𝑣 𝑗 with the following equation:

𝑟𝑖 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑟𝑖 𝑗 − 𝑝′𝑟𝑖 𝑗 ) (3)
Specifically, after 𝑝′𝑟𝑖 𝑗 from 𝑝𝑟𝑖 𝑗 , the relationship 𝑟𝑖 𝑗 with the
highest probability is the most accurate relationship between
𝑣𝑖 and 𝑣 𝑗 . Incorporating such Total Direct Effect (TDE) [24]
mechanism helps to mitigate bias and improve the accuracy
of our generated scene graphs.
Example 2 An example of scene graph generation is shown
in Figure 3, where the raw image in Figure 3(b) shows a
dog jumping over the grass to catch a frisbee, while a man
watching from behind. The initial links generated between
objects are shown in Figure 3(a) where we see many obscure
predicates like on and near in Figure 3(a), i.e., {Dog, near,
Man}. However, with TDE-based linkage generation, the im-
plicit relationship between bounding boxes is deduced and we
see in Figure 3(c), explicit relationship descriptions between
objects, i.e., {Dog, in front of, Man}; {Man, behind, Dog}.

B. Graph Merging

To obtain 𝐺𝑚𝑔, we link the generated {𝐺𝑠𝑔 (𝐼) with the
given graph 𝐺, by connecting the vertices 𝑉𝑠𝑔 (𝐼) with their
corresponding vertices in 𝑉 . The aggregation requires expen-
sive time and memory overhead. Therefore, we have developed
a caching mechanism to speed up graph merging. Before intro-
ducing the mechanism, we first provide the formal definitions.
Definition 1: K-th order neighbours of a vertex 𝑡 are defined
as the vertices that can be reached from the vertex 𝑡 in K hops.
Definition 2: Let 𝑆(𝑡, 𝑘) be the vertices of k-th order neighbors
of a vertex 𝑡, 𝐺 [𝑆(𝑡, 𝑘)] represents the induced subgraph of
𝑆(𝑡, 𝑘) extracted from 𝐺.
Example 3 Consider the graph depicted as 𝐺 in Figure 3(a), a
vertex “Fence” is the target 𝑡 node, and its K-th (e.g., 𝐾=1) or-
der neighbors is “man”. Then, a set 𝑆(“𝐹𝑒𝑛𝑐𝑒”, 1) indicates
the 1-th order neighbors of “Fence”, which consists of the
vertices “Fence” and “Man”. Therefore, 𝑆(“𝐹𝑒𝑛𝑐𝑒”, 1) can
construe a subgraph 𝐺 [𝑆(“𝐹𝑒𝑛𝑐𝑒”, 1)] including two directed
edges (“Fence” → “Man”) and (“Man” → “Fence”).

Key idea. The key idea of the graph merging algorithm is
to cache a frequently visited subgraph to reduce the com-
plexity of linking the entities between 𝐺𝑠𝑔 and 𝐺. To this
end, we first analyze the 𝐺𝑠𝑔 to obtain a set of categories,
denoted as 𝑡 ∈ 𝑇 , that frequently appear. We then construct
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Algorithm 1: Graph Attachment Method for Aligning
Scene Graphs and Graph

Input : Scene graphs
{𝐺𝑠𝑔 (𝐼) = (𝑉𝑠𝑔 (𝐼), 𝐸𝑠𝑔 (𝐼)) |∀𝐼 ∈ I}, graph
𝐺 = (𝑉, 𝐸), frequency threshold 𝑐′, subgraph
generation threshold 𝑘 ,

Output: merged graph 𝐺𝑚𝑔

1 Initialize 𝑇 ← [], 𝐺N ← [] /* Initial Stage

*/
2 𝑇 ← 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠({𝐺𝑠𝑔 (𝐼) |∀𝐼 ∈ I}) // Count image

category
3 for (count 𝑐, category 𝑡𝑠𝑔) in 𝑇 do

// Generate subgraphs4 if 𝑐 > 𝑐′ then
5 vertex 𝑡 ← 𝑓 𝑖𝑛𝑑 (𝑡𝑠𝑔, 𝑉)
6 𝐺 [𝑆(𝑡, 𝑘)] ← 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑡, 𝑘, 𝐺)
7 𝐺N ← 𝐺 [𝑆(𝑡, 𝑘)]

/* Attach Stage */8 for 𝑣 in {𝑉𝑠𝑔 |∀𝐼 ∈ I} do
9 for 𝑣′ in 𝐺 [𝑆(𝑡, 𝑘)] ∈ 𝐺N do

10 if 𝑣 == 𝑣′ then
11 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (𝑣, 𝑣′) // Link the

vertices

12 else
13 𝑣 = 𝑄𝑢𝑒𝑟𝑦(𝑣, 𝐺);
14 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (𝑣, 𝑣)

15 𝐺𝑚𝑔 = 𝐺

16 return 𝐺𝑚𝑔

subgraphs of the category 𝐺 [𝑆(𝑡, 𝑘)] from 𝐺. Subsequently,
the 𝐺 [𝑆(𝑡, 𝑘)] performs as the cache while linking the 𝐺𝑠𝑔

with 𝐺. Algorithm 1 summarizes the workflow of the graph
merging algorithm.

(1) Initial Stage (line 1-7). 𝐺 [𝑆(𝑡, 𝑘)] is extracted for ver-
tex 𝑡 that may frequently be used during the alignment. For
all {𝑉𝑠𝑔 (𝐼) |∀𝐼 ∈ I}, we count the occurrence frequency of
types of 𝑉𝑠𝑔 (𝐼) and sort them in descending order, denoted
by 𝑇 (line 2). Then, for all categories 𝑡𝑠𝑔 ∈ 𝑇 in order, we
generate 𝐺 [𝑆(𝑡, 𝑘)] by 1) searching for corresponding vertices
𝑡 in 𝑉 by the category 𝑡𝑠𝑔 (line 5), 2) starting from 𝑡 ∈ 𝑉 ,
traversing through the whole 𝐺 and extracting all vertices and
links that are within 𝐾 hops away from 𝑡 (line 6). All acquired
𝐺 [𝑆(𝑡, 𝑘)] = (𝑉 [𝑆(𝑡, 𝑘)], 𝐸 [𝑆(𝑡, 𝑘)]) are appended to a cache
list 𝐺N in descending order as well (line 7).

(2) Attach Stage (line 8-16). With {𝐺 [𝑆(𝑡, 𝑘)] |∀𝑡 ∈ 𝑇}, we
now proceed to the scene graph aggregation process. Recall
in Section III-A, we have generated multiple scene graphs
{𝐺𝑠𝑔 (𝐼) = (𝑉𝑠𝑔 (𝐼), 𝐸𝑠𝑔 (𝐼)) |∀𝐼 ∈ I}. For each vertex {𝑣 ∈
𝑉𝑠𝑔 (𝐼) |∀𝐼 ∈ I}, we perform a traversal through 𝐺𝑔 [𝑆(𝑡, 𝑘)] =
(𝑉𝑔 [𝑆(𝑡, 𝑘)], 𝐸𝑔 [𝑆(𝑡, 𝑘)]) and link 𝑣 with the corresponding
vertex 𝑣′ in 𝑉𝑔 [𝑆(𝑡, 𝑘)] (lines 10-11). In the case of rare
vertices 𝑣 in 𝑉𝑠𝑔, where we cannot find a corresponding
𝑣′ in 𝑉𝑔 [𝑆(𝑡, 𝑘)], we directly query 𝐺 from storage to find
corresponding vertices in 𝑉𝑔 and link them (lines 13-14).

Based on our observations in MVQA, detailed in §V, we

Algorithm 2: Complex Query to Query Graph
Input : Complex query 𝑄
Output: Query Graph 𝐺𝑞 = (𝑉𝑞 , 𝐸𝑞)

1 Initialize𝐺𝑞 = (𝑉𝑞 , 𝐸𝑞) ← 0, 𝐶 ← 0, 𝑄𝑢𝑒 ← []
2 𝑃𝑂𝑆 ← getPOS(𝑄) /* Initial Stage */
3 𝐷𝑇 ← getDependencyTree(𝑄)

/* Parse Stage */4 if 𝐷𝑇 ≠ 𝑁𝑈𝐿𝐿 then
5 𝐶 ← getClauses (𝐷𝑇 ,𝑃𝑂𝑆)
6 𝑉𝑞 ← 𝐶

7 for 𝑐 in 𝐶 do
8 [𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜, 𝑐𝑐] ← getSPOC(𝑐)
9 ENQUEUE(𝑄𝑢𝑒,[𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜, 𝑐𝑐])

/* Connect Stage */10 if 𝑄𝑢𝑒 ≠ 𝑁𝑈𝐿𝐿 then
11 𝑢 ←DEQUEUE(𝑄𝑢𝑒)
12 for element 𝑣 in 𝑉𝑞 do
13 if SOOverlap (𝑣,𝑢) then // Compare

overlapping part of vertex
14

15 𝑒𝑔 ←SOMatching (𝑣,𝑢)
// record the overlap part

16 ENQUEUE(𝑄𝑢𝑒,𝑣)

17 𝐸𝑔 ← 𝑒𝑔
18 return 𝐺𝑔

set 𝑘 = 2, generate subgraphs {𝐺 [𝑆(𝑡, 𝑘 = 2) |∀𝑡 ∈ 𝑇]} for
all vertices 𝑇 that occur more than 5 times. Note that our
extraction method for 𝐺 [𝑆(𝑡, 𝑘)] does not store a part of 𝐺
independently; instead, it adds an index to 𝐺 to distinguish
𝐺 [𝑆(𝑡, 𝑘)]. In MVQA, approximately 58% of vertex types
occur more than 5 times, and nearly 82% of vertices are
covered in finally generated subgraphs.

IV. QUERY GRAPH GENERATOR

In this section, we develop a language parse method that
utilizes the language structure, e.g., non-normal grammar [25],
to transform the complex query 𝑄 into a query graph 𝐺𝑞 .

The ABCD [26] was designed to transform a complex
sentence into simpler sentences, each containing only one
clause. However, this approach does not align with our specific
requirements. In our framework, the query 𝑄 needs to be
decomposed into a set of SPOC elements, which are then
linked together to construct a 𝐺𝑞 .
Definition 3: Query Graph. A query graph is a directed graph
𝐺𝑞 = (𝑉𝑞 , 𝐸𝑞), where each 𝑣 ∈ 𝑉𝑞 is a SPOC of the clause 𝑐 ∈
𝐶 in 𝑄 and a directed edge 𝑒 ∈ 𝐸𝑞 represents the dependencies
between two vertices in 𝐺𝑞 .

A. Method Overview

Algorithm 2 summarizes three main stages of the query
graph generation method.

(1) Initial Stage(line 1-3) The method consumes user’s
query 𝑄, and then parse it into part-of-speech (POS) and a
dependency tree(DT) [27], [28] via Stanford POS Tagger [29]
and Stanford Parser [28]. The Stanford POS Tagger can be
formulated as:
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Fig. 4: Example of parsing complex query.

𝑃𝑂𝑆(𝑥) = arg max(exp

(∑︁
𝑖

𝜆𝑖 𝑓𝑖 (𝑥, 𝑦)
)
/𝑍 (𝑥)) (4)

where 𝜆𝑖 is a weight parameter for feature 𝑖, 𝑓𝑖 (𝑥, 𝑦) is
the value of feature 𝑖 for word 𝑥 and tag 𝑦, and 𝑍 (𝑥) is
a normalization factor. As for the Stanford Parser can be
expressed as follows:

𝐴1:𝑛 = arg max
𝐴

𝑛+1∑︁
𝑖=1

𝑤( 𝑓 (𝑆𝑖 , 𝐴𝑖)) + 𝑔(𝑆𝑖−1, 𝐴𝑖) (5)

Here, 𝑆𝑖 represents the 𝑖-th state, and 𝐴𝑖 represents the
action taken at the 𝑆𝑖 . The feature vector 𝑓 (𝑆𝑖 , 𝐴𝑖) represents
the feature values associated with performing 𝐴𝑖 in 𝑆𝑖 . The
weight 𝑤(𝐴𝑖) is a value calculated for each possible 𝐴𝑖 , which
measures the significance of the 𝑓 (𝑆𝑖 , 𝐴𝑖). 𝑔(𝑆𝑖−1, 𝐴𝑖) is a
transfer function to calculate the cost from the 𝑆𝑖−1 to the 𝑆𝑖 .

(2) Parse Stage(line 4-9) Based on the POS and its DT, we
generate the clause set 𝐶 (line 5) which deconstructs from
𝑄 and the vertices 𝑉𝑞 of the 𝐺𝑞 . Next, we develop a state
machine to extract [𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜, 𝑐𝑐] quadruple from the clause
𝑐 detailed in §IV-B (line 8), where 𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜 are key elements
to construct the query graph.

(3) Connect Stage(line 10-16) Afterward, a set of vertices
𝑉𝑞 is arranged to create a hierarchical graph denoted as 𝐺𝑞 =

(𝑉𝑞 , 𝐸𝑞). Each vertex 𝑣 ∈ 𝑉𝑞 is an extracted SPOC quadruple
and we denote it as 𝑣 = [𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜, 𝑐𝑐]. The directed edges
between the vertices 𝑉𝑞 are based on the phrase structure rules
for sentences. As a result, 𝐺𝑞 is ordered based on the structure
of languages to determine the sequence in which each clause
𝑐 is executed, as explained in more detail in §IV-C.

B. Extracting SPOCs from the Complex Query

Extracting SPOCs from 𝑄 involves two steps: 1) Pruning
the redundancy information for each 𝑐; and 2) Transforming
the previously obtained information into a structured SPOC.

According to the outputs of the initial stage, we have the
following observation: (1) There are 45 tags produced by

Stanford POS Tagger which is redundant for segmentation
clauses {𝑐1, ..., 𝑐𝑛} from 𝑄. (2) The 𝑐𝑝 in modern English can
be identified in two cases, namely subject-link verb-predicative
(SLVP) structure (i.e. be verb such as is, are, etc.) and verb
fixed collocation [30].

Thus, we adopt the following strategies to obtain the SPOCs
from 𝑄. (1) We only use 4 tags (i.e., “nouns”, “verbs”,
“adjectives” and “adverbs”) out of 45 to split a 𝑄 into a set
of 𝐶 by following [31], [32], [33]. (2) To extract the clauses
from 𝑄, we first find all the verbs in the sentence and then
obtain the words that have the edges with the verbs in the
DT. Hence, a predicate 𝑐𝑝 is a verb along with its connected
words. Upon identifying 𝑐𝑝 , we traverse all connected words
in DT to locate the nouns that represent the subject (𝑐𝑠) and
object (𝑐𝑜) of the clause 𝑐. The determination of 𝑐𝑠 and 𝑐𝑜 is
depended on the voice of the clause, whether passive or active.

Additionally, we may require cross-sentence references to
replenish the hidden elements. In DT, the acl means the noun
is modified by another 𝑐 [33], [32]. For example, the acl edge
connects from hanging to wizard, and the hanging is belonging
to the second clause. According to this relation, the pronoun
(i.e., ”who”) in the second clause can be replaced by the noun
(i.e., ”wizard”) in the first clause.
Example 4 Figure 4(a) shows the generated POS (Part of
Speech) and DT (Dependency Tree) of a given question 𝑄

via Stanford POS Tagger and Stanford Parser. Next, there are
two 𝑐𝑝 (i.e., are worn, is hanging out), which are used to
obtain corresponding clause 𝑐, while removing the pronoun
(i.e., who) as shown in Figure 4(b). We use the first clause
𝑐 in Figure 4(b) as an example to illustrate how we extract
the SPOC from the clause 𝑐. Starting with the predicate of
the first clause’s 𝑐𝑝 (are worn), we use the nsubj:pass and
obl edge to find the first clause’s 𝑐𝑠 (kind) and 𝑐𝑜 (wizard).
Through nmod and case edges, we obtain the complete 𝑐𝑠
(kind of clothes). Finally, we change the passive voice (are
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worn) to simple present(wear). The SPOC of the first clause
is shown in Figure 4(c).

C. Construct a Query Graph

As we discussed above, 𝐺𝑞 is a directed graph that
indicates the order of executing sub-queries. To establish
the directed edge between clauses, we define the following
five types of dependencies, i.e., subject-subject(𝑆2𝑆), subject-
object(𝑆2𝑂), object-subject(𝑂2𝑆), object-object(𝑂2𝑂), and no
dependency(𝑁𝑈𝐿𝐿). Based on the defined dependencies, we
traverse the 𝑉𝑞 and create the edges 𝑒𝑖 𝑗 ∈ 𝐸𝑞 for any 𝑣𝑖
and 𝑣 𝑗 that exhibit the specified dependencies. This process
enables us to build a structured query graph that reflects the
relationships between sub-queries. It’s important to note that
the 𝑆2𝑆 dependency indicates that the subject labels 𝐿 (𝑐𝑠) of
vertex 𝑣𝑖 ∈ 𝑉𝑞 and 𝐿 (𝑐𝑠) of vertex 𝑣 𝑗 ∈ 𝑉𝑞 share the same
semantics, which is a key consideration in determining this
type of dependency. For example, as depicted in Figure 4(steps
(c) and (d)), two vertices share the same subject (𝑣𝑠), which is
“wizard”. In such cases, we can create an 𝑆2𝑆 edge between
the two vertices.

We can represent the logical organization of complex
queries 𝑄 by constructing a graph 𝐺𝑞 using the approach
described above. It’s worth noting that 𝐺𝑞 captures both the
hierarchical relationships and dependencies between queries,
which play a crucial role in guiding the execution order of 𝐺𝑞

within the context of 𝐺𝑚𝑔 in the next section.

V. EXECUTING QUERY GRAPH OVER MERGED GRAPH

Given one query graph 𝐺𝑞 , we obtain the answer by
querying the merged graph 𝐺𝑚𝑔 with 𝐺𝑞 . We have three types
of questions: counting, reasoning, and judgment questions
following [34], corresponding to answers in the form of
a number, an entity, and a judgment word (i.e., Yes/No),
respectively. Performing the 𝐺𝑞 over 𝐺𝑚𝑔 is not trivial and
time-consuming, especially when we query a large number
of 𝐺𝑞 simultaneously from the 𝐺𝑚𝑔. Thus in this section,
we introduce a sub-graph matching method for single query
execution in §V-A and the optimization mechanism to deal
with multiple-query execution in §V-B.

A. Query Graph Executor

The inputs of the Algorithm 3 are the query graph 𝐺𝑞 ,
merged graph 𝐺𝑚𝑔, and a set of predefined words [35] for
relation matching, and the output is the generated answers.
The QueryGraphExecutor processes all the vertices in 𝐺𝑞

according to the specified dependency relationships, querying
relevant features for each vertex and supporting the query of
the next vertex until reaching the end of the graph 𝐺𝑞 .

We first initialize an empty Queue for storing all temporary
results during the execution process (line 1). we also obtain
labels of all edges 𝑇 in 𝐺𝑚𝑔 (line 2), which will be used for
relation matching later. Upon analyzing vertices in 𝐺𝑞 , we
obtain all the vertices 𝑣 with 0 in-degree and regard them as
the starting vertices, pushing them into the 𝑄𝑢𝑒𝑢𝑒, waiting to
be processed. (line 3-4)

Algorithm 3: QueryGraphExecutor
Input : query graph 𝐺𝑞 = (𝑉𝑞 , 𝐸𝑞), merged graph

𝐺𝑚𝑔 = (𝑉𝑚𝑔, 𝐸𝑚𝑔), predefined word set S
Output: Answer 𝑎𝑛𝑠

1 𝑄𝑢𝑒𝑢𝑒 ← []
2 𝑇 ← getLabels(𝐸𝑚𝑔)
// label statistics in 𝐸𝑚𝑔

3 𝑣 ← getStartVertices(𝐺𝑞)
4 𝑄𝑢𝑒𝑢𝑒.put(𝑣)
5 while 𝑄𝑢𝑒𝑢𝑒 ≠ [] do
6 𝑢 = [𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜, 𝑐𝑐] ← 𝑄𝑢𝑒𝑢𝑒.pop()

/* Query Stage */
7 𝑅𝑃← getRelationpairs(𝑢, 𝐺𝑚𝑔)

// all relation pairs connecting 𝑢

in 𝐺𝑚𝑔

8 𝑃← maxScore(𝐿(𝑐𝑝), 𝑇)
// most similar label of 𝑐𝑝 in 𝐸𝑚𝑔

9 𝐶𝑜𝑛← maxScore(𝐿(𝑐𝑐), S)
// 𝑐𝑐’s most similar keywords in

predefined word set S
10 𝐴𝑃← filter(𝑅𝑃, 𝑃, 𝐶𝑜𝑛)

// filter in 𝑅𝑃 with 𝑃 and 𝐶𝑜𝑛

/* Update Stage */
11 𝑆(𝑢, 1) ← getNeighbors(𝑢, 𝐺𝑞)

// 1-hop neighbors of 𝑢 in 𝐺𝑞

12 forall vertex 𝑣′ ∈ 𝑆(𝑢, 1) do
13 𝑒 ← getEdge(𝑣′, 𝑢)
14 If 𝐿 (𝑒) == 𝑂2𝑂 then Replace(𝑣′.𝑐𝑜, 𝐴𝑃.𝑂𝑏 𝑗)
15 elif 𝐿 (𝑒) == 𝑂2𝑆 then Replace(𝑣′.𝑐𝑜, 𝐴𝑃.𝑆𝑢𝑏)
16 elif 𝐿 (𝑒) == 𝑆2𝑂 then Replace(𝑣′.𝑐𝑠 , 𝐴𝑃.𝑂𝑏 𝑗)
17 elif 𝐿 (𝑒) == 𝑆2𝑆 then Replace(𝑣′.𝑐𝑠 , 𝐴𝑃.𝑆𝑢𝑏)

// replace 𝑆𝑢𝑏 or 𝑂𝑏 𝑗 of 𝐴𝑃 with 𝑐𝑠
or 𝑐𝑜 of 𝑣′

18 𝑄𝑢𝑒𝑢𝑒.put(𝑣′)

19 𝑎𝑛𝑠← getFinalanswer(𝑢, 𝑅𝑃)
20 return 𝑎𝑛𝑠

21 getRelationpairs (𝑢, 𝐺𝑚𝑔) :
22 [𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜, 𝑐𝑐] = 𝑢

23 𝑆𝑢𝑏 ← matchVertex(𝐿(𝑐𝑠), 𝐺𝑚𝑔)
// find vertices with 𝑐𝑠 in 𝐺𝑚𝑔

24 𝑂𝑏 𝑗 ← matchVertex(𝐿(𝑐𝑜), 𝐺𝑚𝑔)
25 𝐸𝑠𝑜 ← getRelations (𝑆𝑢𝑏, 𝑂𝑏 𝑗)

// get relationships between 𝑆𝑢𝑏

and 𝑂𝑏 𝑗

26 return 𝑅𝑃← (𝑆𝑢𝑏 − 𝐸𝑠𝑜 −𝑂𝑏 𝑗)

Query Stage: While 𝑄𝑢𝑒𝑢𝑒 is not empty, we pop a vertex 𝑢
from the 𝑄𝑢𝑒𝑢𝑒, and query from 𝐺𝑚𝑔 for all relevant relation
pairs, via getRelationpairs function (line 6-7). The obtained
𝑅𝑃 contains potential answer sets (𝑆𝑢𝑏 − 𝐸𝑠𝑜 −𝑂𝑏 𝑗) for the
current vertex 𝑢. Note any 𝑢 is represented by [𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜,
𝑐𝑐], containing information for filtering the answer from 𝑅𝑃.
In order to do so, we first use the maxScore, which allows us
to obtain the label 𝑃 ∈ 𝑇 that bears the closest resemblance
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to 𝑐𝑝 (line 8). maxScore works by converting the inputs to
embeddings [36] and filtering out the most similar type based
on cosine similarity. We also locate the most similar keyword
𝐶𝑜𝑛 ∈ S of the constraint 𝑐𝑐 via maxScore. (line 9). When
we have obtained the relation pair 𝑅𝑃, the label 𝑃, and the
constraint 𝐶𝑜𝑛, we use filter to extract the relation subset 𝐴𝑃
from 𝑅𝑃 by applying conditions 𝑃 and 𝐶𝑜𝑛 (line 10).
Update Stage: In this stage, we update the answers queried
for vertex 𝑢 to all its neighboring vertices 𝑆(𝑢, 1) in the query
graph 𝐺𝑞 . For each neighboring vertex 𝑣′ ∈ 𝑆(𝑢, 1), we get the
edges 𝑒 between the 𝑢 and 𝑣′ (line 13). Then we replace either
𝑐𝑠 or 𝑐𝑜 of the 𝑣′ with the 𝑎𝑛𝑠, depending on the properties
indicated by 𝑒 (line 14-17). We then push the updated 𝑣′ to
the 𝑄𝑢𝑒𝑢𝑒 to wait for the querying process (line 18). The
algorithm terminates when the last vertex in 𝐺 is processed,
and the final answer of 𝐺 is obtained via getFinalanswer
function (line 19). The getFinalanswer function utilizes 𝑢 to
determine the query type: counting, reasoning, or judgment
query. The corresponding answer is generated as well.

The getRelationpairs function finds the vertices in 𝐺𝑚𝑔

with the same subject 𝑐𝑠 and object 𝑐𝑜 as 𝑢 through the
matchVertex function and returns as the 𝑆𝑢𝑏 and 𝑂𝑏 𝑗 (line 21-
22). With the 𝑆𝑢𝑏 and 𝑂𝑏 𝑗 , we can obtain the corresponding
edges 𝑅𝑃 between them (line 18). The matchVertex function
uses the Levenshtein Distance (LD) [37] to find 𝑣 ∈ 𝑉𝑚𝑔

whose distance is less than the empirical threshold. As for the
input of the matchVertex function: subject 𝑐𝑠 or object 𝑐𝑜, we
check if they are simple nouns. If not, the function obtains its
main noun as the input of the LD. For non-simple nouns, the
function continues to obtain other parts except the main noun,
uses cosine similarity [38] to calculate the similarity between
them and the labels of the edges in 𝑇 , and selects the most
similar label. Then, starting from the main noun, the function
follows the edge whose label is specified above to obtain the
corresponding set 𝑉𝑚𝑔 and returns it as the 𝑆𝑢𝑏 and 𝑂𝑏 𝑗 .
Example 5 We show an example in Figure 5 for executing
the generated query graph for the question in Figure 4, which
contains two vertices 1 and 2 and relation 𝑆2𝑆. For simplicity,
we use the letters s, p, o, and c to represent the 𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜, and
𝑐𝑐 of the vertex The QueryGraphExecutor begins by starting
from vertex 1 to generate a set of relation pairs that correspond
to the SPOC semantics in the merged graph. It then matches
the corresponding vertices 𝑆𝑢𝑏 and 𝑂𝑏 𝑗 in 𝐺𝑚𝑔 of the labels
of 𝑐𝑠 and 𝑐𝑜 from vertex 1 in the matchVertex. Once 𝑆𝑢𝑏 and
𝑂𝑏 𝑗 are obtained, the relation pairs 𝑅𝑃 of them are generated

and filtered with 𝑐𝑝 and 𝑐𝑐 to obtain the subset pairs 𝐴𝑃 in
the getRelationpairs. Subsequently, we update 𝑐𝑠 of vertex 2
(colored in pink) with the 𝐴𝑃.𝑆𝑢𝑏 provided by vertex 1 (also
colored in pink), as well as the attribute 𝑆2𝑆 of the edge 𝑒12.
We then proceed to query vertex 2 to obtain the final answer
for the entire 𝐺𝑞 .
Complexity Analysis: In the worst-case scenario, answering
a complex query 𝑄 using Algorithm 3 may take cubic time.
Specifically, answering a vertex 𝑣 ∈ 𝑉𝑞 takes 𝑂 ( |𝑉 |) time
to find 𝑣𝑠 and 𝑣𝑜, and 𝑂 ( |𝑉/2| · |𝑉/2|) time to select corre-
sponding relationships in the merged graph 𝐺𝑚𝑔. Moreover, a
complex query 𝑄 can be logically divided into multiple clauses
𝑐𝑖 ∈ 𝐶, where 𝑣𝑖 ∈ 𝑉𝑞 (𝑖 ∈ [1...𝑁]). Therefore, it can take
up to 𝑂 (𝑁 ( |𝑉/2| · |𝑉/2|)) = 𝑂 (𝑁 ( |𝑉 |2/4)) time to answer the
complex query 𝑄.

B. Executor Optimization with Multiple Queries

When receiving a set of 𝑁 questions, a simple approach is to
process them in the order they were received, by putting them
in a queue 𝐿, where 𝐿 < 𝑁 . The straightforward approach
described above may result in duplicate queries of the same
question, which can lead to unnecessary resource usage and
waste. Therefore, it is necessary to schedule the processing of
the 𝑁 questions to prevent resource waste and speed up the
response time. We propose a Key-Centric Caching mechanism
and an Optimized Queries Scheduling mechanism to speed up
the whole query process.
Key-Centric Caching Mechanism: Considering the time-
consuming nature of both matchVertex and getRelations opera-
tions, we develop a caching mechanism in the getRelationpairs
function. Specifically, matchVertex requires to compare with
all the labels of 𝑉𝑚𝑔 to obtain the corresponding vertex set 𝑆𝑢𝑏
and 𝑂𝑏 𝑗 , and we named it as “scope”. The getRelationpairs
needs to traverse all neighbors for the input vertices 𝑣 and 𝑣′,
and further to determine whether the input vertices are relation
endpoints, so that all relation pairs 𝑅𝑃 are returned, and we
named it as “path”.

We further optimize our caching strategy by employing
the Least Frequently Used [39] (written by LFU) algorithm.
This algorithm dynamically shuffles the least referenced item
from the cache, simultaneously storing the frequency of the
remaining items. By introducing LFU algorithm, our caching
mechanism significantly improves the response speed of the
matching process.
Optimized Queries Scheduling: Before executing 𝑁 query
graphs on 𝐺𝑚𝑔, we conduct a pre-analysis for each vertex 𝑣
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Fig. 6: Optimized query scheduler with key-centric cache.

in 𝐺𝑞 for potential reuse of each [𝑐𝑠 , 𝑐𝑝 , 𝑐𝑜, 𝑐𝑐] in the vertex
𝑣. Specifically, a verification is performed to determine for
each 𝑣 if there exists a similar 𝑐𝑠 and 𝑐𝑜 pair in path. If there
is no cache available for the pair, we check whether there is
a cache in scope for finding the vertices in 𝐺𝑚𝑔 of 𝐿 (𝑐𝑠) and
𝐿 (𝑐𝑜), and utilize it if available. If no cache is found in both,
the new vertex information is added to both path and scope.

Once we have pre-analyzed the 𝑁 query graphs, we con-
struct a dictionary to record the unique vertices and their
frequency of appearance. We also attach a frequency ratio to
each vertex based on its frequency of appearance. For each
query graph 𝐺𝑞 , we calculate the sum of the frequency ratios
of each vertex within it to obtain a score for 𝐺𝑞 . This score is
used to sort all the query graphs in descending order. Sorting
the query graphs in descending order ensures that the query
graphs containing more frequently used vertices are processed
first, which helps to reduce the overall processing latency.
This approach is particularly effective when there is limited
memory available for query execution. By following these
steps, we can efficiently handle multiple complex queries, and
reduce the overall response time of SVQA, and we validated
within the Exp-2 VII.
Example 6 Figure 6 shows an example of executing 𝑁 query
graphs. We first analyze all the 𝑁 query graphs to get the
frequency ratio of each and sort them in order. We see that 𝐺1
contains the most frequent vertices and contains more vertices
than 𝐺2, thus is processed first. Then during querying for 𝐺1,
we cache all vertices in path and scope, with vertex 2, 4, and 5
being re-used by 𝐺2 during the process. Thus when querying
answers for 𝐺2, most information could be directly retrieved
from the cache, saving a huge amount of time.

VI. MVQA DATASET

In this section, we analyze the limitations of current VQA
datasets, and build MVQA to evaluate our framework.

A. Limitation of existing VQA dataset

Most VQA [19], [42], [17] tasks focus on improving the
performance of answering queries from one image, which
mostly contain questions such as “What sort of vehicle uses
this item?”. In line with such research, many datasets have
been proposed, i.e., DAQUAR [40] for indoor images of hu-
man question-answer pairs; Visual7W [41] created questions
more closely aligned with natural language; The VQAv2 [18]
extends VQAv1 [17] with complementary images and creates
more balanced question-answer pairs.

The aforementioned datasets are relatively simple and do not
consider the external information of the entities contained in

the image. KB-VQA [42] first attempts to understand the im-
age with given external knowledge. Expanding the KB-VQA,
FVQA [19] supports answers with <image, question, answer>.
Subsequently, OK-VQA [34] is based on open knowledge
instead of a given knowledge. Extra external knowledge is
required to correctly answer the questions in these tasks.
Table I summarizes representative datasets for VQA tasks,
ranging from knowledge-based to non-knowledge-based tasks.
However, none of the existing datasets consider answering
questions that require cross-image query, i.e., answers that
require information from both multiple images while exter-
nal knowledge complementing the implicit relations among
images. Thus, we build MVQA to fill this gap, assisting the
evaluation of complex question answering in SVQA.

B. MVQA Building Process

Image Selection. The images are mainly extracted from the
COCO datasets, which are widely used in VQA. To efficiently
support our SVQA, we need to ensure that the images in
MVQA have relevance. To do this, we first set the types of im-
ages as humans, animals, vehicles, and buildings, which have
the highest proportion and crossover rate in COCO. We next
manually filter out images that contain only a single object,
so that the images in our dataset have potential relationships
with others. In this way, 4,233 images are extracted from the
COCO image pool (13,808 images). Compared with the other
datasets in Table I, MVQA is suitable for labeling cross-image
questions due to the visual complexity of images.
Generating Question-Answer Pairs. With all collected im-
ages from the COCO dataset, we manually generate questions
and answers based on the image captions to reflect the implicit
relationship among them. First of all, we need to define a
complex question: a question that contains multi-clauses and
semantic complexity. (1) multi-clauses: A complex question
in the proposed VQA task is composed of multiple clauses.
(2) semantic complexity refers to the complexity of a question
that may require reasoning and understanding from multiple
related images and external knowledge.

The questions in MVQA are generated in three steps. (1)
First, we manually create many questions with each containing
multiple objects from the entire image set. (2) Then, we filtered
out questions that could be answered by a single image as
associated objects may be contained in the same image. (3)
Finally, we labeled the question-answer pairs along with the
correct relevant images generated by three different annotators.
To further increase the semantic complexity, we also modified
the clause of the questions so that they would require external
knowledge for reasoning.

The finally generated complex questions consist of three
types: 1) the judgment question, 2) the counting question,
and 3) the reasoning question. The first two types aim to
judge or accumulate the interested relationships or objects
in the images, but without the direct presents of objects
or relationships. To answer such a question requires outside
knowledge or other images’ contents to reason the interested
entities or relationships in the questions.
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Number
of images

Knowledge
based?

Cross images
query? Image source Goal Avg. Query

length

DAQUR[40] 1,449 % % NYU-V2 visual: counts, colors, objects 11.5
Visual 7W[41] 47,300 % % COCO visual: object-grounded queries 6.9
VQA(2.0)[18] 200K % % COCO visual understanding with commonsense 6.1

KB-VQA[42] 700 ! % COCO visual reasoning with given knowledge 6.8
FVQA[19] 2,190 ! % COCO/ImageNet visual reasoning with given knowledge 9.5

OK-VQA[34] 14,031 ! % COCO visual reasoning with open knowledge 8.1

MVQA (ours) 4,223 ! ! COCO visual reasoning across images 16.9

TABLE I: Comparison of various VQA datasets.

A dog is carrying a  
bird in its mouth.

A dog is looking out of  
a window from a car.

Fig. 7: The example of collected images and their corresponding
question in MVQA have been shown. The text in the green box is a
description of the image above, while the orange box is the complex
query and corresponding answer.

Questions Clauses SPOs Average Images

Judgement 40 94 58 1593

Counting 16 35 28 2182

Reasoning 44 90 70 1201

TABLE II: The information of the MVQA

Example 7. Figure 7 shows an example of MVQA with gen-
erated question-answer pairs as well as two relevant pictures.
The question “What kind of animals is carried by the pets that
were situated in the car?” contains two clauses: (1) “What
kind of animals is carried by the pets?” and (2) “What pets
were situated in the car?”. These two simple questions can be
answered by the two images (1) “A dog is carrying a bird in
its mouth.” and (2) “A dog is looking out of a window from a
car.” respectively. With proper reasoning, the middle answer
for the clause “the pets were situated in the car.” is “Dog”,
and the final answer for the complex question is “Dog”.

C. MVQA in Detail

In our MVQA, the questions include an average of 2.2
clauses. Among them, there are 40 questions with constraints.
In total, 100 questions with 219 clauses, in which there are a
total of 136 unique subject-predicate-object (SPO).

The table II clearly demonstrates the differences within the
dataset among three categories: 1) Judgement, 2) Counting,
and 3) Reasoning. There are 40 instances of Judgement, 16
instances of Counting, and 44 instances of Reasoning. These
complex questions correspond to 94, 35, and 90 clauses,

respectively. Among these clauses, there are 58, 28, and 70
unique SPO triples for each category. It should be noted that
the “unique” here refers to internal uniqueness within each cat-
egory, and there may be some overlaps among the SPOs across
different categories. However, the whole dataset contains 136
unique SPOs. It should be noted that some of these images
require multiple visits to obtain the correct answer. On average,
each complex question in the Judgement category requires at
least 1593 images in the dataset to obtain the correct answer,
while for the Counting category, the average number of images
needed is 2182, and for the Reasoning category, it is 1201.
Discussion. Although our MVQA is a vanilla version dataset
for the cross-images question answering, it is complicated
enough for evaluating SVQA. Since answering each question
requires reasoning multiple images out of the whole image
base, which is a combinatorial explosion problem, making
our handcrafted dataset (4233 images, 100 questions) hard
enough for evaluation. Table I shows that our dataset has
the longest question length where no existing method can
be directly applied for answering. Also, the image selection
process and question-answer generation process of MVQA
ensure the diversity, generation, and complexity of the built
dataset. In the future, we will apply the criteria to expand the
dataset in various real-world cases.

VII. EVALUATION
With the MVQA and modified VQAv2 [18], we experi-

mentally evaluated the SVQA for its (1) accuracy on MVQA,
(2)accuracy on modified VQAv2, (3) the impact of scene graph
generation (SGG) on the accuracy, (4) the effectiveness of
query parse, (5) the effectiveness of the caching mechanism.
Experimental Setting. We start with the settings.
Datasets We conduct our experiments on two datasets: MVQA
and modified VQAv2. MVQA is only applicable for SVQA
and the baseline methods fail to perform on this dataset.
Therefore, we make the following modification for VQAv2
which is much simpler than MVQA but still requires to reason
multiple images – 1) applying count questions to multiple
images and asking the accumulated results of these questions;
2) combining two related simple questions into a complex
question. As for the determination of the answer, we choose
the top-1 response as the selected answer. When evaluating
accuracy, judgment questions require a yes/no response, while
counting questions necessitate a numerical answer. Regard-
ing the reasoning questions, we employ cosine similarity to
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Method Latency(Sec.) Accuracy
Judgment Counting Reasoning

SVQA 10.38 90.0% 80.0% 87.5%

TABLE III: Experimental results of answering complex queries on
the MVQA.
evaluate the answer by comparing semantic similarities. For
instance, if the correct answer is “dog” and the provided
answer is “puppy”, we consider them to be consistent.
Hardware configuration We conduct our experiments on a
Ubuntu 16.04 Linux server equipped with 8 Nvidia Tesla V100
GPU, 64 Intel Gold 5218 CPUs, and 512GB memory.
Baselines Most State-of-the-art baselines are constrained in
the ability to answer complex questions, as they are limited
by the fact that the input is a single image and the questions
are based solely on that image. This makes them ill-suited
for addressing more complex questions based on multiple
images. To ensure a fair comparison, we modified the VQAv2
dataset as illustrated below to support the baseline methods to
perform cross-image queries. To this end, we first utilize the
SVQA’ query graph generation module to generate a set of
ordered simple questions. Then, the baseline methods perform
the queries over the regrouped dataset with the decomposed
questions and aggregate the obtained results.

We choose three prominent VQA models that cover the
three main tasks: (a) dual-stream (separate processing of
visual and textual information): VisualBert [43] utilizes both
visual embedding and BERT to adapt linguistic and visual
input, using a dual-stream approach, single-stream (combined
processing of visual and textual information): Vilt [6] is a
single-stream approach, using a transformer to learn all visual
and textual information, and unified large-scale models for
handling all multimedia tasks: OFA [20] is a comprehen-
sive unified sequence-to-sequence learning framework that
addresses a wide range of multimedia tasks.
Exp-1: The Effectiveness of Answering Complex Query.
We measure the performance of SVQA on performing vari-
ous types of complex queries, including judgment questions,
counting questions, and reasoning questions (detailed in §VI).

Table III shows that the response time (latency) and the
average accuracy are 10.38 seconds and 85.83%, respectively.
Also, we observe that our system achieves the best accuracy
on judgment questions and counting questions.

These differences are caused by the following steps: State-
ment Parsing, Object Detection, and Relationship Generation.
Figure 8 shows examples of the causes of accuracy drops.
Figure 8(a) demonstrates the query error caused by misun-
derstanding the question. Where the word “canis” marked
with red box is parsed as a foreign word (FW), and SVQA
fails to obtain a correct POS. The second reason that causes
the query error is the erroneous recognition of an object.
Figure 8(b) shows that a toy bear is recognized as a bear,
resulting in an error in SGG. Lastly, the incorrect relationships
between objects can also cause an error in SGG. Figure 8(c),
for example, the bear should appear on the TV instead of
appearing in front of the TV.

(a) The error of statement parsing

(b) The error of object detection

(c) The error of relationship generation

Fig. 8: Error analysis of SVQA

Method Latency(Sec.) Accuracy
Judgment Counting Reasoning

Visual-
Bert[43] 3375.56 72.0% 60.0% 68.5%

Vilt[6] 4216.34 76.5% 77.4% 67.0%
OFA[20] 866.36 95.5% 87.0% 79.0%

SVQA 10.38 93.0% 83.8% 83.2%

TABLE IV: Comparison of VQA on the modified VQAv2[18]
.Exp-2: Performance Comparison Over Modified VQAv2.

Table IV shows that SVQA outperforms baseline models
in response time (i.e., latency). Understandably, SVQA only
needs to traverse the generated graph to obtain the required
information for answering the questions. Unlike other base-
lines, which need to process each image and thus aggregate the
related information to answer the questions. Also, the results
show that OFA has better accuracy than that of SVQA in
answering judgment questions and counting questions.

This is affected by the SGG model that is trained to describe
a scene and the questions are not trained with the SGG
model. The input for training the baseline models includes
both questions and images, guided by a specified level of
supervision in terms of visual information. Additionally, the
OFA model is a large-scale model trained with plenty of data,
and may be able to offer more fine-grained object recognition.
Exp-3: The Impact of Scene Graph Generation Method.
This experiment aims to investigate the impact of different
methods for SGG on SVQA. Three frameworks, namely
Neural Motifs, VCTree, and VTransE, are utilized for the
generation of scene graphs. Additionally, the study examines
the influence of bias in SGG. A comparison is made between
the original models and modified models that employ causal
inference, referred to as TDE (explained in §III-A).

Table 5 presents the accuracy of various models using
different inference methods and their performance on complex
queries within the SVQA system. The evaluation metric used
for SGG is Mean Recall@K (mR@K). The results indicate a
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Model Method SGG Accuracy of
SVQA (%)mR@20/50/100

VTransE[44] Original 3.7 / 5.1 / 6.1 72.2
TDE[24] 5.8 / 8.1 / 9.9 84.1

VCTree[45] Original 4.2 / 5.8 / 6.9 74.1
TDE 6.3 / 8.6 / 10.5 86.3

Nerual-
Motifs[23]

Original 4.2 / 5.3 / 6.9 75.4
TDE 6.9 / 9.5 / 11.3 87.2

TABLE V: Comparison of relation predication of the SGG.
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Fig. 9: For (a), we compare our methods with other deep learning-
based sentence split methods. Figure 9(b) indicates the latency of
different types of questions. A represents the average latency of all
types of questions; B, C and D represent the questions containing a
clause, 2 clauses, and 3 clauses.

positive correlation between model accuracy and overall sys-
tem accuracy. Neural Motifs and VCTree outperform VTransE,
with mR@K 20/50/100 averages exceeding 0.5/0.45/0.8. Con-
sequently, the SVQA accuracy is expected to be, on average,
4.6% higher. Furthermore, when the TDE module is employed,
the SVQA system achieves an average accuracy increase of
7.96% compared to the original method.
Exp-4: The Effectiveness of Query Parse.
We compare our method with three baselines: ABCD-
MLP [26], ABCD-bilinear [26] and DisSim [46]. Note that the
baseline methods aim to split complex sentences and rephrase
them into a set of clauses, which is step one of query graph
generation (see §IV-B). Comparing the accuracy between them
is not an apples-to-apples comparison. Thus, we compare the
execution time of each method to demonstrate the efficiency
of the query graph generation method.

Figure 9(a) shows that our method outperforms other deep
learning-based solutions when the number of questions is
small. But this advantage is less significant with the increase in
the number of questions. This is because deep learning-based
solutions require loading the trained models before processing
the questions, which takes a considerable amount of time.
Without considering the latency of model loading, our method
has higher computational complexity. However, our method
features high parallelization to further reduce the latency.

Figure 9(b) shows the latency of generating query graphs
from different types of questions. The latency of generating
a query graph increases with the complexity of the question,
and the average latency is only 0.63s.
Exp-5: The Effectiveness of Caching Mechanism.
Lastly, we evaluate the efficiency of our caching mechanism.
We measure the query latency with two different cache strate-
gies and cache pool sizes. We measure the size of the cache
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Fig. 10: Effect of different cache policies on response time.
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Fig. 11: Impact of cache pool size on latency.
pool by computing the number of items (i.e., scope items and
path items), which is detailed in §V-B. In MVQA, the size of
the scope item and path item is 6KB and 96KB respectively.

Figure 10(a) shows that our caching mechanism averagely
reduces 48.89% latency, compared to the original SVQA
without a caching module. With the increase in the number
of questions, we see more improvements, where the latency
is reduced to 49.67% that of the original one. Figure 10(b)
exhibits the contributions of each component for reducing the
latency. The figure illustrates that caching query scope and
the path between the scope can reduce 13.46% and 27.61%
latency, respectively, and the combined solution can reduce
38.72% latency, compared to the original solution.

Understandably, catching more information can achieve
better performance, but consume more memory. The following
discusses the impact of the size of the cache pool. Figure 11
illustrates the impact of cache size for latency while varying
the number of questions. With 20 questions, after the size of
the cache pool is greater than 50, increasing the size of the
cache pool will not further reduce the latency. This is because
all required information is cached, and the extra cache is not
used. Additionally, the LFU [39] strategy achieves slightly
better performance than that of LRU [47] in most cases. This
is due to the distribution of questions that some 𝑆𝑃𝑂𝐶 has
very high reuse rates but apart from different questions.
Summary. We find the following. (1) The SVQA excels
at complex question reasoning, requiring multiple steps and
interpretations to produce precise answers. It boasts a remark-
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able average accuracy of 85.83% on the MVQA. In terms
of efficiency, the execution time of SVQA is significantly
lower compared to VisualBert, Vilt, and OFA. Specifically,
SVQA, only takes 10.38s, accounting for 0.307%, 0.246%,
and 1.197% of the respective execution times of VisualBert,
Vilt, and OFA. Additionally, on the regroup VQAv2 dataset,
SVQA outperforms VisualBert, Vilt, and OFA by 14.7%,
16.2%, and 4.2% respectively, as demonstrated in Exp-1 and
Exp-2. (2) The impact of SGG on the overall SVQA has
been validated through multiple experiments. SVQA exhibits
a high level of modularity, allowing for individual modules
to be updated independently. Enhancements made to the
image extraction module have the potential to significantly
improve the accuracy of the entire system. In Exp-3, although
the mR@K shows a modest increase of 3.8%, the overall
accuracy of the system experiences a significant improvement
of 7.9%. (3) The language parse method significantly reduces
the time of query graph generation. The experimental results
in Exp-4 show our proposed method is approximately 10x
faster than the baseline solutions. Additionally, reusing query
elements can significantly reduce unnecessary overhead. By
employing caching techniques, system latency can be reduced
by approximately 150s for the same set of 100 queries, with
each query being answered in about 1.2s, as shown in Exp-5.

VIII. RELATED WORK

Entity Resolution. Entity resolution has been widely studied
by the communities of computer science for relational data
that is specified by a pattern [48]. The mainstream entity
resolution systems employ the machine learning system to
transfer to new tasks or exploit embedding of graph [49], [50]
or JSON [51] for ER systems. Different from previous works,
we study entity resolution across unstructured data images and
structure data relations beyond relational data.

Entity resolution has also been studied for multi-models that
jointly analyzing multi-modal descriptions [52], such as textual
or image-based descriptions of the same entities. However, no
previous methods work well across images I and relations 𝐺.
They rely on the schema of the entities and consider only the
edit distance and vertex description.
Visual Question Answering. It has seen significant advance-
ments with various methods proposed for understanding both
questions and images. These methods [3], [4], [5], [6] intro-
duce joint embedding techniques that combine a Convolutional
Neural Network or Vi-Transformer for image understand-
ing, and a Recurrent Neural Network or Transformer (e.g.,
BERT) for question understanding. These have demonstrated
promising performance, although the effectiveness may vary
depending on the quality of the dataset. As part of our baseline
for normal VQA, we include the Vilt method [6]. Now many
pre-trained models or paradigms are proposed [43], [20], [53],
trying to achieve the unity of multi-modalities with a modal-
independent framework. These do achieve good accuracy, but
the downstream task is limited by fine-tuning. As it achieves
great performance on VQA, we include OFA and VisualBert
among our baselines. Our SVQA system adopts an idea

similar to the composition model, and divides VQA into
Visual and Question Answering. For visual, we abstract it
as Scene Graph. And for Question Answering, analyzing and
understanding the query and abstracting it into query graphs.
Because of the cross-image query, the question is necessarily
complicated.

Regarding Question Answering, Natural Language Process-
ing researchers have proposed various techniques for query
understanding [27], [28], [54], [55] and conversion to query
graphs [56], [26]. These techniques have proven effective in
enhancing queries and query graphs. However, early studies
primarily focused on questions with constraints and multi-
hop relationship paths. More complex questions consisting of
multiple clauses and constraints have not been well studied.
These methods rely on training datasets and struggle to handle
complex queries, which results in low-precision query graphs.
Large Models. In recent times, there have been numerous ad-
vancements in large language models, such as ChatGPT [11],
Claude [12], and large vision models like SAM [14] and
OVSeg [15]. Additionally, the emergence of large multi-modal
models like SEEM [16] has further expanded the capabilities
in processing both text and images. However, these models
have limitations in terms of input constraints, such as process-
ing only text, limited images, or specific multi-modal pairs.

To address the challenge of performing question-and-answer
tasks while avoiding forgetting effects [57], our next step
involves combining a formalized knowledge base, specifically
a Knowledge Graph, with a parameterized knowledge base
represented by a Large Language Model. Enabling us to
overcome these limitations and leverage the powerful language
understanding and image comprehension capabilities of these
models. By incorporating both formalized knowledge and
learned knowledge, we aim to achieve a deeper understanding
and enhance our system’s overall performance.

IX. CONCLUSION

In this paper, we propose SVQA, a novel framework for
complex query answering. In order to assist the evaluation,
we have constructed a new dataset called MVQA, which com-
prises many new types of complex <question, answer> pairs.
As the questions may require extra information than provided
to be correctly answered, we build a complete knowledge base
with the help of a knowledge graph and complete the missing
relationship between the images. We have also implemented
an efficient pipeline for decomposing complex queries and
performing queries in the knowledge base. Our evaluation
results show that SVQA achieves 85.83% accuracy on the
cross-image query answering.
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