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Abstract. Trajectories have been massively collected in a wide range
of domains and play a critical role in data-driven task support. However,
trajectories are often highly sparse and incomplete, which has become a
key bottleneck that limits the applicability of trajectory analysis tech-
niques. While many existing sequential models are seemingly applicable
to the trajectory completion problem, they often suffer severely from data
sparsity and irregularity and yield poor performance in practice. We pro-
pose an effective method, named TrAJCoOM, for completing sparse and
irregular trajectories. To address data sparsity, TRAJCOM leverages rich
context information to filter a set of reference trajectories that correlate
strongly with the target incomplete trajectory. Then, TRAJCOM learns
time-aware encodings of these trajectories by a newly proposed time-
aware recurrent unit. Moreover, a popularity-weighted attention mech-
anism is proposed to complete the missing locations. Extensive exper-
iments on four datasets show that TRAJCOM outperforms competitive
baselines with up to 25% relative improvements.

1 Introduction

Trajectories, defined as timestamped sequences of locations, arise in a wide spec-
trum of domains and enable data-driven task support therein. To name a few,
trajectory data analytics has shown to be critical to applications ranging from
smart transportation [18] and urban planning [1], to robotics design [16] and
self-driving cars [19]

Despite the flourish of trajectory data, one key but often overlooked bot-
tleneck that limits the applicability of existing trajectory analysis techniques is
the incompleteness of trajectory data. Instead of being sampled at a regular and
high rate, raw trajectory data are often sparse and incomplete. For example, taxi
trajectories in ride-sharing services can easily suffer from unstable GPS signals
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Fig. 1. Given a target trajectory of user u and a specified time point t*, the trajectory
completion problem aims at estimating the location that u is most likely to visit at t*.
To remedy the data sparsity and irregularity, TRAJCOM is proposed. As shown, the
the dotted lines are the reference trajectories. (Best viewed in color).

and hardware malfunction, resulting in many missing records in the trajectory
database; social network users mostly share their locations at an extremely low
frequency, leading to highly sparse trajectories where the time gap varies from
hours to days. Trajectory completion, which aims at estimating the “missing”
locations at specific time points in a target trajectory, has become a critical step
prior to trajectory analysis. Figure 1 shows an example of trajectory comple-
tion. Suppose we have a target trajectory T, of user u where his/her locations
between consecutive records are missing. Given a time point t*, trajectory com-
pletion aims at estimating the location of the user at ¢* (the red point in the
right part).

However, completing missing trajectories is non-trivial due to the following
two challenges:

— Sparsity of trajectories. Finding proper candidate locations that the user
may visit at t* is key to estimate the missing location accurately. This is
challenging when the target trajectory is sparse. Sparse trajectory leads to the
large time gaps between consecutive records and decreases the effectiveness of
spatio-temporal constrain in inferring missing points. For example, if the time
gap between ry and 73 is several hours in Figure 1, the candidate locations
will cover a broad range of space, which makes it hard to estimate the correct
location.

— Irregularity of time gaps. To complete trajectories effectively, we should
be able to learn user mobility model in continuous time from user trajectories
which have irregular time gaps between consecutive records. It is challenging
because the influence between consecutive records are not identical. For ex-
ample, in the left part of Figure 1, the time gap between r; and 7o and that
between 79 and r3 is different and thus the influence of 71 on 75 is different
from that of 7 on r3. It is expected that a trajectory completion method is
able to capture the difference. In addition, we should also consider the gaps of
t* from the previous point and subsequent point when estimating locations.

Although a number of existing sequential models [2,21,31,28,4,15,17] can
be potentially applied to the trajectory completion problem, but they cannot
address the aforementioned challenges. These models fall into two categories:
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single-sequence models and multi-sequence models. Single-sequence models|2,
21, 17] operate on one single timestamped sequence and estimate missing val-
ues by capturing the regularity in that sequence. Example models include lin-
ear interpolation and autoregressive models. It seems possible to directly apply
single-sequence models on the target trajectory. But these methods are designed
for dense trajectories on road network and are not suitable for other types of
trajectories. Their performance will be poor when the target trajectory is sparse
and short. The case is even worse when the time gaps vary. This is because
the target trajectory alone does not provide sufficient information for learning
reliable single-sequence models. Multi-sequence methods [31,28,4,15,11,9, 22)
learn sequential models (e.g., hidden Markov model, recurrent neural network)
from a collection of sequences. Most of these methods are originally designed to
make predictions or recommendations on the target sequence and can be easily
adapted to trajectory completion task. However, these methods often assume all
the records are sampled uniformly without considering the time gap irregularity
between consecutive records. Furthermore, they use all the sequences but ignore
the fact that many sequences are irrelevant to the target trajectory. Another
issue of adapting these methods for trajectory completion is that they use only
the preceding sub-trajectory of the target point t* for prediction, but not the
sub-trajectory after t*. As a result, these models fail to emphasize local patterns
around the query point and often yield suboptimal completion accuracy.

Motivated by the lack of effective techniques for completing sparse and ir-
regular trajectories, we propose a new neural trajectory completion method.
Our method, named TRAJCOM, employs a filtering-and-encoding pipeline. In
the first step, it features a context-guided neural filtering module to select
a set of reference trajectories. Instead of relying on the target trajectory alone
or feeding in all trajectories indiscriminately, TRAJCOM filters a set of reference
trajectories that highly correlate with the target trajectory. Then, TRAJCOM
performs context-aware record encoding of records in both the target tra-
jectory and reference trajectories. To learn contextual transition regularities, we
design a time-aware recurrent unit, which explicitly models time gap information
to learn time-aware transitions for estimating missing locations. To estimate the
missing location, a popularity-weighted attention mechanism is proposed. It can
not only attend to the most important contexts, but also provide interpretable
explanations that rationalize its completions.

We summarize the contributions of this paper as follows:

— We propose a context-guided neural filtering mechanism for trajectory com-
pletion. Different from existing works, the neural filtering module selects a set
of reference trajectories to alleviate data sparsity.

— We propose a time-aware gated recurrent unit (tGRU) to explicitly model
time gap information to handle data irregularity. Moreover, we also design a
popularity-weighted attention mechanism for inferring missing locations.

— We conduct extensive experiments on four real-world datasets, which con-
tain both check-in trajectories and human movement trajectories. The exper-
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imental results show that TRAJCOM outperforms state-of-the-art trajectory
completion methods with up to 25% improvements.

2 Related Work

We provide an overview of existing studies related to TRAJCOM. These works
can be classified into three orthogonal aspects: trajectory completion, location
prediction and POI recommendation, and methods for modeling varied time gap.

Trajectory Completion. Various techniques have been proposed to com-
plete trajectory data. They can be broadly categorized into two groups: single-
sequence models and multi-sequence models. Methods in the first group are
interpolation /regression-based methods [2,21,17] which complete the missing
location by capturing the regularity in target trajectory itself. This kind of meth-
ods are poorly preformed in our task because the target trajectory alone can lack
evidence for estimating reliable location in such sparse and irregular data. The
other group of methods is multi-sequence models. Methods in this group can be
further divided in two lines. The first line is road-based methods which relies on
external road information to complete trajectory. [13] [13] exploit the structural
regularity in large GPS trace data to infer the missing locations without informa-
tion about the underlying road network. [24] [24] propose a method to calibrate
trajectory data based on the geometric characters and road map. [10] [10] and
[8] [8] present efficient models to map the trace into road maps and complete the
missing locations. However, these methods can only complete dense GPS traces
in road networks, and are not suitable for sparse trajectories. Another line is
clustering based method which completes the trajectory based on the clustering
result. To our knowledge, there is only one work falling in this line. [23] [23]
first cluster trajectories into several clusters and complete the target trajectory
with trajectories in the same cluster. Unfortunately, this work is designed for
dense trajectories and the performance will be poor when the target trajectory
is sparse.

Location Prediction & POI Recommendation. The methods for lo-
cation prediction and POI recommendation are not proposed for completing
trajectory but can be adapted to this task. These methods can be roughly cate-
gorized into two groups: location prediction methods and POI recommendation
methods. For the first group, [29] [29] and [30] [30] propose to predict the next
location by mining the frequent sequencial patterns of locations. In recent years,
[15] [15], [28] [28] and [14] [14] design several RNN structures to capture the
sequential influence and predict the future locations of users. Many different
methods are proposed for POI recommendation, such as metric embedding][5],
collaborative retrieval[32], matrix factorization[6], factorization machine[12], and
neural network[27][33]. However, these methods are incapable of capturing the
uneven time gaps between consecutive records and all these methods fail to uti-
lize the subsequent information of the target time to complete a location for the
target time.
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Fig. 2. llustration of the workflow for our proposed TRAJCOM.

3 Methodology

In this section, we first formulate the problem of trajectory completion in Section
3.1. Then, three key modules of TRAJCOM are elaborated in Section 3.2 - 3.4
respectively.

3.1 Problem Formalization

We consider a set of M users % = {uy,...,up} and a set of N locations
¥ ={li,...,In}. Each user u has a chronologically ordered sequence of records
Sy = [r1,...,r], wherein each record r; = (I;,t;) is a tuple containing a location

l; € & and the time stamp value ¢;. Based on a location sequence, we define
trajectories as follows:

Definition 1 (Trajectory): Given a sequence of records S, of user u and a
time gap threshold 5 > 0, we consider a valid trajectory to be any sub-sequence
Ty = [riyTit1,---,Titk] in Sy which satisfies the following constraints: (1)
Vi, 1l < j <k:tj—tj—1 < 6; and (2) there exists no longer sub-sequence
in Sy which contains T,, and satisfies (1).

Based on Definition 1, each user record sequence can be partitioned to con-
struct a trajectory set ., = {T},T2,...}. We combine the trajectory sets from
all M users to form a global trajectory set 7. The goal of trajectory completion
is to estimate the location [ for a user u based on a target trajectory T)¢ € 7,
and a specified time point t* € (t;, t;1x), where ¢; and ;1 are the first and last

time stamp of trajectory T)?, respectively. Formally, [ = argmax P(l | T2, t*, 7).
le

3.2 Context-guided neural filtering

To address the issue of data sparsity when completing 7%, we propose a context-
guided neural filtering technique which retrieves a pool of candidate locations
and a set of reference trajectories from the historical data, that are relevant to
the given target trajectory and time point. It contains two steps: (1) filtering
candidate locations , and (2) retrieving reference trajectories.
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Filtering Candidate Locations. We leverage two types of context informa-
tion, i.e. spatio-temporal constraints and user preference, to filter a pool of
candidates from all possible locations for completing.

Spatio-temporal constraint. We note that any user’s movement is constrained
by the spatio-temporal contexts, which means a user’s current location is bounded
by the time elapsed since he/she has left the last location. For example, we ob-
serve that a user w is currently at location A. Within the next 10 minutes, it
would be unlikely for u to move too far away from A. From our data analysis, we
find that the relationship between the distance of two consecutive records in a
trajectory and its time gap can be modeled by a logarithmic function, if the time
gap is not too large (see Figure 3(a)). As such, we model the spatio-temporal
constraint as follows: f(x) = «-log(8 -z + 1) where the input z is the time gap
value, and the function value f(z) is the maximum distance between any pair
of records with such a time gap value. The parameters, o and [ highly dataset
dependent, and thus we learn them on the training data.

To obtain the parameters of f(-), we first calculate the time gap and distance
between each consecutive pair of records in the given trajectory dataset. Next,
we compute the 95% quantiles of distances for different time gap orders and
use them to fit f(-). For example, we plot the quantiles and the spatio-temporal
constraint function f(z) using a Foursquare (US) dataset in Figure 3(a).

10

Distance (km)

—— Spatial-temporal f(tgap)
Training Data

0 5 10 15 20 25 30 35
Time gap (103s)

(a) (b)

Fig. 3. Illustration of initial candidate locations. (a) Distance Statistics. (b) Initial
Candidate Locations.

Given T and t*, we first construct an anchor record 14 = (,t*), where [ is
a pseudo location. By complimenting 7)% with r 4, we get the anchor trajectory
Ay =[ri,...,r5, Ta, Tj,...,TK].

As shown in Figure 3(b), we first utilize the spatio-temporal constraint func-
tion f(-) to obtain the initial candidate locations as follows:

Definition 2 (Candidate Locations): Given the preceding record r; = (1;,1;),
the succeeding record rj = (1;,t;), and a specific spatio-temporal constraint func-
tion f(-),7w6 consider the initial candidate locations to be a subset of P lo-

cations L& = {ly,...,lp} C &, st. VI, € La: dis(l;,1,) < f(t* —t;) and
dis(lj,1,) < f(t; —t*), where dis(-, -) is calculated using the Haversine formula.

User Preference. We note that generating the set of candidate locations based
on Definition 2 could potentially result in a vast number of locations, especially
when the time gap between ¢; and ¢; is sufficiently large, and this may become
a computational bottleneck. As such, we propose using Neural Collaborative
Filtering (NCF) [7] for incorporating the user preference in order to obtain
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a user-specific subset of P candidate locations L2 from LZ. In other words,
we filter away those locations that user u is unlikely to visit. Specifically, we
construct a binary user-location matrix B € RM*¥ | whereby the entry b, €
{0,1} indicates whether user u has visited location {. NCF decomposes B into
a user latent matrix ENNCF € RMxdncr and a location latent matrix ENCF €
RN *dNeCF yig the collaborative filtering approach. Specifically, the output of NCF
is calculated by a multilayer perceptron(MLP) with a logistic function: b, ; =
logistic(MLP(eNCF eNCF)) The parameters in NCF can be learned using back-
propagation with the cross-entropy loss, and we can easily obtain a probability
distribution Pt over the P initial candidate locations. The set of user-specific
candidate locations L is generated by ranking and selecting the top-P locations
based on Py

Retrieving Reference Trajectories. For a given target trajectory and a
specified time point, we can obtain the initial set of reference trajectories as
follows:

Definition 3 (Reference Trajectories): Reference trajectories is a subset of
Q trajectories T¢ C 7, whereby each trajectory in T¢ passes through at least
one location in L.

However, T¢ can be dominated by the popular locations in L which tend
to have many trajectories passing through them. Instead of simply taking all
trajectories passing through as the reference trajectories, we propose to select
at most v trajectories to form the reference set. By doing so, for all P locations,
we obtain a smaller and balanced subset of () reference trajectories T4.

3.3 Context-aware record encoding

To learn the representation of records within each trajectory, we use a multi-
factor embedding layer and a bi-directional RNN layer with time-aware GRU
(tGRU), for solving the irregularity.

Multi-factor Embedding Layer. For an arbitrary trajectory T,, = [r1, ..., TK]
for some user u € %, we designed a multi-factor embedding layer to capture
the information for each record rp = (Ix,tx). The user u and location I are
represented using one-hot encodings. Similarly, the temporal information ¢ is
represented using a one-hot encoding with 48 possible values. We can obtain the
multi-factor embedding for record r; as follows:

. I _ . t .
e}; = u-Eu, e, = lk-El, €, = tk-Et,

er = [e}; e}; e}]

where [-;-] is the concatenation operator, and E, € RM*d E; ¢ RIN+Dxd
E, € R*®Xd are the embedding matrices for the user, spatial and temporal

m;respectively.
We consider 24 hourly intervals for both weekdays and weekends.

There is an additional entry for E;, due to the placeholder location I used in the
construction of the anchor record r4.
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Fig. 4. Architecture of tGRU. E.g. if t]*” = 2.47, the time gap embedding is the linear
combination of ez, and es,, with the weight wy = 0.4.

Time-aware GRU (¢GRU). Unlike other forms of sequential data such as
video or stock, time gap between consecutive records in trajectory data can vary
from minutes to hours. Traditional RNNs cannot model this unique character-
istic in trajectory data and fail to perform well due to the varying time gap
information in trajectory completion. In order to modulate the influence of a
record towards its preceding or succeeding records within a trajectory w.r.t. the
time gap between each consecutive pair of records, we propose a novel time-aware
GRU (tGRU).

Time Gap Encoding. Recall that in Definition 1, we specified a constraint
such that the temporal difference between any consecutive pair of records in a
trajectory is no larger than a predefined threshold §. As such, to encode time
gaps, we segment the time period [0, §] into G equal-length periods with duration
T =40/G, and obtain G + 1 segment points. The time gap value for a record ry
is defined as t]*” = tj, — tx_1, i.e. the temporal difference between record 7, and
its preceding record. To encode t{*”, we perform the following steps:

= gyl i =
wy =77 )T — i},

gap _ P s s
e/ =(1—wg) i} Egop + wi -1} - Egap

where i¥ and i are the indexes for its preceding and succeeding segment points
in [0,6]. i} and i} are one-hot encodings of i} and i}. Egqp € R(GTDXdsar jg
the embedding matrix for the G + 1 segment points. An arbitrary time gap ¢7*"
should lie in between two segment points, and thus we use a weighted sum of
the embeddings of its preceding and succeeding segment points to compute the
encoding of tJ*”. Figure 4 illustrates the idea of time gap encoding in tGRU.
Operations in tGRU. To effectively fuse the multi-factor embedding e; and
the time gap encoding e"”, we rely on our proposed tGRU. At each time step k,
w.r.t. the k-th record ry, in a trajectory, tGRU performs the following operations

The time gap value for the first record in any trajectory is always zero, i.e. t{*? = 0.
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to generate the corresponding hidden state hy:

(I’k7 Zk)T = U(W['ek+U['hk_1 +b) ( )
Cr tanh (Wg - e + Ug -1 - hy_q) (2)
h;C = Zj ~Ck+(1*Zk) ~hy_q (3)
by = b, + e ()

where Wi, U;, W, Ug and b are the learnable parameters of tGRU, while
o(-) and tanh(:) are the sigmoid and hyperbolic tangent activation functions.
The key difference to GRU lies in Equation 4, which modulates the influence of
preceding records in a trajectory based on the encoded time gap information.
The final learned representation for a record ry, i.e. vi, can be obtained by
applying two RNNs in a bi-directional setting as follows:

by = RNN(ey, 10); B, = RNN(ey., 127) (5)
Vi = [}TIZ; 1<1—k] (6)

where m and m\l are theﬂ\TNs equipped with tGRU in the forward and
backward directions; t,gCW and t{* are the time gap values in forward and back-
ward sequences. Assuming that the hidden state size of tGRU is h, the learned
representation vy, for a record rj will be a 2h-dimensional vector which contains

all related information from the reference trajectory.

3.4 Location Estimation and Optimization

Location Estimation To complement the context-guided neural filtering mod-
ule, we propose a popularity-weighted attention network which takes the
record embeddings as input and estimates the probability over candidate loca-
tions. Inspired by [25], we find that employing multi-head attention can enhance
the completion accuracy due to its capability to attend to information from
different embedding subspaces.

Specifically, after applying the bi-directional RNN to encode all trajectories
in T¢ and A,,, we can obtain the learned representations of records within them.
For estimating Z, we are interested in records whose locations are in the pool
of P candidate locations L$. We refer to all such records as reference records,
and correspondingly, the collection of Z reference record embeddings as VI =
[v1, ..., vz]. For each record embedding v, € V2 we denote its corresponding
location as [,. As for the anchor record r4 for which we would like to estimate
the location i, we denote its learned representation as v 4.

When estimating the location [, we adjust the attention weights for records
belonging to each location [ € L{ w.r.t. its popularity. The popularity-based
weight for any location [ can be derived as follows:

ol) = {1’ ™Y (7)

mzn{nl/Va 3}7 n; > Y
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Fig. 5. Popularity-weighted Attention. We reuse the candidate locations shown in Fig-
ure 2 to illustrate the operations for this module.

where n; is the number of trajectories passing through location [, and +y is the
maximum number of reference trajectories sampled for each location in L.
These popularity-based location weights are taken into consideration when esti-
mating l.

We design a popularity-weighted attention with multi-head mechanism to es-
timate [. Taking v4 € R2" as the query and V& € R?*2" a5 the values, it first
performs a multi-head operation. Assuming that we have F' different ‘heads’, the
model performs F' different linear projections for each record representation. In
other words, v 4 gets projected to f4 € REX1X2h/F) and similarly, the Z record
embeddings V¢ now becomes F& € RF*Zx(21/F) To obtain a final probability
distribution over the P candidate locations, we first compute the popularity-
weighted attention score by s, = g(l,) - (f4 ® F%[z]) and perform multi-head
attention by the following steps:

s = [s1, ..., Sz] (8)
Pr = ¢([s1, ..., sz]) 9)
Pr = mean by heads(PRr) (10)
P = sum_over locations(Pg) (11)

where F@[z] is the F heads tensor of the z-th record embedding, g(l.) is the pop-
ularity weight of I, ® is the batch matrix multiplication operation, Pg € RZ*¥
are F' probability distributions of heads; P} € RZ is the overall probability over
the Z records; and Py, € RY is the visiting probability over L2. Figure 5 provides
a simple illustration of our proposed popularity-weighted multi-head attention,
and our model selects the location with the highest probability in Py, as the final
estimated location [.

Model Optimization Given a training sample (7.2, t*) — [*, the loss function
of TRAJCOM contains two parts: (1) location filtering loss J, which encourages
I* to be selected by NCF; (2) location estimation loss J,,, which ensures {* has
the highest probability in Py,. We use the cross-entropy loss to optimize these
two parts. Formally, Js; and J,, are defined as follows:
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. A
Jo=—log®p[]) ~ > log(1l-Pg )+ llOr|”
leLa\ I
A
T = —log(Py, [I"]) — | e%;\l* log(1 ~ Py [I]) + 5[0

Py is the probability distribution of L% generated by NCF model. Py, is the
probability distribution over L¢ from Equation 11; A\; and Ay are parameters
that used for controlling the regularization terms. We use @ and O to denote
all trainable parameters in the NCF and the RNN encoder, respectively.

In order to train all parameters of TRAJCOM in an end-to-end manner, we
propose a parameter learning algorithm. For each training sample, we first check
whether the ground truth location [* is in the top-P locations of the NCF. If [*
is in L%, we only minimize J,,,. Otherwise, we minimize J; and update @, up to
the point whereby either [* € L% has been satisfied or the maximum number of
iterations 7 has been reached (lines 4-8). For optimization, we use two RMSProp
optimizers for these two losses. Back Propagation Through Time[26] algorithm
is employed to learn the parameters in Op.

4 Experiments

Firstly, in Section 4.1, we introduce the datasets used in our experiments. Next,
we describe the experimental settings in Section 4.2, which include the data
setup, baseline methods, and evaluation metrics. The performance comparison
and model ablation studies are detailed in Sections 4.3 and 4.4, respectively.

4.1 Datasets

We evaluate our proposed TRAJCOM against several baseline methods using four
publicly available real-world trajectory datasets, which can be categorized into
two groups. The first group consists of three check-in datasets from location-
based social networks: (1) Foursquare in Tokyo (TKY), (2) Foursquare in
United States (US) [3], and (3) GeoTweets, a geotagged tweet dataset in Los
Angeles [28]. For the second group, we use Geolife [34], which is a human move-
ment trajectory dataset in Beijing. Geolife contains human movement-based tra-
jectories with different transportation modes, and we use the top-3 transporta-
tion modes, namely Walking, Biking, and traveling by Car. The trajectories in
these modes are 4k, 3k and 1.5k, respectively.

Table 1. Statistical information of datasets

Dataset Hrecord | Fuser | Floc |Htraj
Foursquare (TKY)| 573,703 | 1,083 | 38,333 | 10k
Foursquare (US) |3,564,144|50,813|501,900| 126k
GeoTweets (LA) |1,188,405| 3,401 | 67,210 | 13k
Geolife (BJ) 5,431,867| 69 | 40,000 | 8.5k
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4.2 Experiment Settings

Data Setup To generate incomplete trajectories for our experiments, we ran-
domly removed records from the original trajectories. Specifically, for each trajec-
tory with length L, we randomly remove | L/2] records, and treat the timestamp
in these records as the target time point for location estimation. Consequently,
we have | L/2| data samples for each input trajectory. In each dataset, we ran-
domly choose 70% of the trajectories for each user to construct the training set,
and utilize the remaining 5% and 25% for validation and testing, respectively.

Compared Methods As TrRAJCOM does not rely on any external informa-
tion(such as road network), we restrict our comparison to baseline methods
which are not dependent on such information. Under this setting, we compare
TrAJCOM with a total of seven baseline methods, which can be grouped into
four categories:1 Naive Methods. Nearest Locations (NL) chooses the nearest
neighbors based on the midpoint of the users previous locations. Most Fre-
quent Location (MFL) selects the most frequently visited locations for user
u. (2)Cluster [23] uses K-means on locations and performs context mapping
between cluster centroids and trajectories. (3) Location Prediction Methods. ST-
RNN ([15] is an RNN-based method to predict the next location. SERM [28]
utilizes embedding techniques to jointly model the influence of different factors.
(4) POI Recommendation Methods: BPR [20] is a MF-based recommendation
method for implicit feedback datasets. RankGeoFM [12] is a method for POI

recommendation.

Evaluation Metrics We choose two commonly-used metrics to evaluate the
performance. The first one is Hit Ratio @k (HR@k), which examines whether
the predicted location [* appears in the top-k estimated locations. The second
metric is distance error €, based on the minimum geographical distance between
[* and the top-5 estimated locations calculated using the Haversine formula.

Table 2. Hyperparameter values in context-guided neural filtering module.

Dataset « B8 v P |Acc. of NCF
Foursquare (TKY)|1.97  5.68 12200 0.673
Foursquare (US) [1.39 33.09 10 200 0.684
GeoTweets (LA) [1.34 2245 60 50 0.932
Distance (km) v P |Acc. of NCF

Geolife(BJ)-Walk 1.814 25 — 0.907
Geolife(BJ)-Bike 2489 23 —| 0932
Geolife(BJ)-Car 4.227 51 — 0.948

Hyperparameter Settings For the hyperparameters in context-guided neural
filtering, we fit @ and 8 based on the approach described in Section 3.2. The
settings are shown in Table 2. In the encoding module, we use the same number
of factors for all the embedding matrices, i.e. d, = d; = d; = dncr = 50. For
the time gap information, we partition the time gap [0, §] into G = 20 segments,
and we use dyqp = 128 to encode each segment point. We set h = 128 for tGRU,
and the number of ‘heads’ in the attention network is set as F' = 8. Lastly, we
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set the maximum update threshold as n = 20, and both the learning rates lr,
and [r,, as 0.01.

4.3 Performance Comparison

Tables 3 and 4 show the performance comparison of TRAJCOM against the
baseline methods. TRAJCOM outperforms the baselines significantly on most of
the datasets. Next, we explain the results and analyze the reasons on the two
groups of datasets i.e. check-in and human movement, separately.

Table 3. Performance comparison for different methods on check-in datasets (Best
result is indicated in bold).

Foursquare (TKY) Foursquare (US) GeoTweets (LA)
Method HR@1 HR@10 HR@20| HR@1 HR@10 HR@20| HR@1 HR@10 HR@20 € (km)
NL 0.0094 0.0242 0.0692 | 0.0097 0.0180 0.0637 | 0.3270 0.4368 0.4539 4.132
MFL 0.0231 0.0732 0.1421 | 0.0220 0.0736 0.1401 |0.3480 0.4582 0.4772 3.721
Cluster 0.0161 0.0330 0.0760 | 0.0140 0.0308 0.0723 | 0.3482 0.4690 0.4921 3.980
ST-RNN 0.0676 0.1400 0.2668 | 0.0641 0.1358 0.2528 | 0.4328 0.6096 0.6502 2.498
SERM 0.0716 0.1653 0.2962 | 0.0688 0.1593 0.2873 | 0.4591 0.6267 0.6930 2.292
BPR 0.0537 0.1280 0.2657 | 0.0542 0.1234 0.2607 | 0.3719 0.5117 0.6893 2.599
RankGeoFM| 0.0680 0.1409 0.2730 | 0.0618 0.1354 0.2702 | 0.3950 0.5506 0.7122 2.512
TrasCoMm |0.0984 0.2231 0.3219|0.0880 0.2131 0.3169|0.5670 0.7161 0.8614 2.130

Table 4. Performance comparison for different methods on Geolife dataset (Best result
is indicated in bold).

Geolife(BJ)-Walk Geolife(BJ)-Bike Geolife(BJ)-Car
Method HR@1 HR@10 HR@20 ¢ (km)| HR@1 HR@10 HR@20 € (km)| HR@1 HR@10 HR@20 € (km)
NL 0.7054 0.8541 0.8894 0.687|0.6297 0.7802 0.8597 0.708 | 0.4231 0.6211 0.7200 1.364
MFL 0.1910 0.2539 0.3321 2.936 | 0.2020 0.2736 0.3012 2.960 |0.1839 0.2317 0.2875 2.985
Cluster 0.7376 0.8600 0.8981 0.645| 0.6941 0.8308 0.8582 0.671|0.6236 0.7731 0.8129 0.937
ST-RNN 0.6176 0.7300 0.8268 1.780|0.6423 0.7382 0.8518 1.703|0.5928 0.6423 0.7129 1.916
SERM 0.5716 0.6653 0.7962 1.845|0.5608 0.6529 0.7896 1.803 |0.5133 0.5942 0.6537 2.035
BPR 0.2571 0.3879 0.5630 2.763|0.2542 0.3960 0.5873 2.937|0.2197 0.3518 0.5140 2.649
RankGeoFM| 0.2761 0.4279 0.5930 2.459|0.3189 0.4747 0.6239 2.402|0.2732 0.4180 0.6074 2.304
TrAICOM 0.6372 0.8169 0.8543 0.680 |0.7140 0.8553 0.8961 0.648|0.6705 0.7931 0.8511 0.893

Check-in Datasets. As shown in Table 3, TRAJCOM significantly out-
performs all baseline methods on check-in datasets, i.e. Foursquare (TKY),
Foursquare (US), and GeoTweets. For example, in the Foursquare (US) dataset,
TrRAJCOM achieves over 25% improvement on HR@Q1 compared with the best
baseline method. We note that Naive methods (NL and MFL) perform worst
in general, as user check-ins are extremely sparse and the nearest first principle
cannot capture the complex surrounding information. Cluster performs slightly
better than NL, but still fails to generate meaningful results for completion due
to the sparsity of check-in data. Location prediction methods (ST-RNN and
SERM) outperform POI recommendation methods (BPR and RankGeoFM)
as they consider the sequential information. However, location prediction meth-
ods do not consider the subsequent records within the trajectory, and pales by
comparison to TRAJCOM. Additionally, TRAJCOM outperforms existing RNN-
based methods (ST-RNN and SERM) due to its ability to model the crucial
time gap information using tGRU.
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For TrRAJCOM and all baseline methods, the performance is better on GeoTweets
compared to the other two Foursquare datasets. This can be attributed to the
fact that the locations in Foursquare are POIs, which are rather sparse and un-
evenly distributed within the geographical space, in contrast with the grid-based
approach used in GeoTweets.

Geolife Dataset. We show the comparison results for the Geolife dataset in
Table 4. As an example, we consider the transportation mode of traveling by car,
i.e. Geolife-Car. Unsurprisingly, the strongest baseline for this particular dataset
is the clustering-based method Cluster, as Geolife trajectories are rather dense
and the human movement are constrained by the road network. This can be
captured via the clustering of historical trajectories.

Notably, TRAJCOM outperforms all baselines, due to its ability to jointly
model multiple influence factors.

In terms of different transportation modes, we find that TRAJCoOM fails to
outperform the naive Nearest Locations (NL) method for Geolife-Walk. As we
subsample trajectories in Geolife for this task, the time gap between each pair
of records may be insufficient for most users to move to a different cell with a
reasonable walking speed. Due to such an unintended constraint, NL performs
surprisingly well for this transportation mode.

4.4 Ablation Studies

We study the impact of our proposed tGRU and the multi-head attention mecha-
nism. TRAJCOM-vanilla uses a vanilla attention network and the standard GRU.
TrAJCOM-pwAtten improves TRAJCOM-vanilla with a popularity-weighted at-
tention network, and TRAJCOM-tGRU improves TRAJCOM-vanilla by replacing
standard GRU with ¢tGRU. Due to the space limit, we only present the results
of Foursquare (US) in Table 5.

Table 5. Results of ablations on Foursquare dataset.

Method HR@1 HR@10 HR@20
TraJCOM-vanilla |0.0710 0.1601 0.2321
TrAJCOM-pwAtten|0.0751 0.1621 0.2539
TraJCoM-tGRU |0.0813 0.1869 0.2980
TrAJCOM 0.0880 0.2131 0.3169

We observe that both tGRU and popularity-weighted attention contribute
significantly to the overall model performance. By including ¢GRU which mod-
els the vital time gap information for trajectory completion, TRAJCOM-tGRU
improves HRQ1 of TrRAJCOM-vanilla form 0.0710 to 0.0813. By adopting the
popularity-weighted multi-head attention, TRAJCOM improves HR@1 of TRAJ-
CoM-tGRU form 0.0813 to 0.0870, as it is capable of attending to information
from different embedding subspaces. By integrating both components, TRAJ-
CowM further boosts the performance by 24% in terms of HRQ1 compared to
TRrRAJCOM-vanilla. Similar results can be observed in the other datasets.
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Conclusions

We proposed a neural filtering-and-encoding method TRAJCOM for completing
sparse and irregular trajectories. The novelty of TRAJCOM lies in two aspects:
(1) A context-guided neural filtering module that identifies a set of reference
trajectories which are strongly correlated with the target trajectory.

(2) a time-aware neural encoding module which learns recurrent representa-

tions for records in reference trajectories and the target trajectory for inferring
the missing location. Our experiments on four real-world datasets have demon-
strated the efficacy of TRAJCOM compared with state-of-the-art baselines.
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