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ABSTRACT

Mode decomposition methods are the current workhorse for
the analysis of non-stationary signals. However, current at-
tempts at these methods mainly focus on improving accuracy,
leaving computational efficiency untouched. To this end, we
leverage the neural mode decomposition technique and pro-
pose an open-source Neural Mode Estimation (NME) to de-
liver a large speedup (at least 50×) while maintaining the ac-
curacy. Specifically, we transform the mode decomposition
problem into an extremum problem of a functional in the co-
sine transform domain, and train a neural network to approx-
imate the solution. We demonstrate in extensive empirical
results that NME can provide an improved trade-off between
speed and accuracy, enabling fast, high-quality, stable mode
decomposition of non-stationary signals.

Index Terms— Signal Processing, Machine Learning,
Mode Decomposition

1. INTRODUCTION
The non-stationary signals are omnipresent in society, such
as speech signals and multitone sinewave of varied frequency
[1]. Characterizing the Time-Frequency (TF) information is
the main task in non-stationary signal processing. Various
methods [2, 3] were proposed to jointly analyze the time and
frequency of a non-stationary signal. However, these meth-
ods are inflexible in practice, which requires to pre-set some
parameters for processing different signals.

The mode decomposition methods have been proposed
to overcome the drawback mentioned above. These methods
aim to adaptively extract Amplitude-Modulated-Frequency-
Modulated (AM-FM) signals (i.e., narrow-band signals) from
a non-stationary signal. Huang et al. [4] first propose the
Empirical Mode Decomposition (EMD), which decomposes
an input signal into a set of narrow-band components via an
iterative sifting process.
Given that EMD is still falling short of steadily deployment
in practice [5] due to the lacking of theoretical foundation,
end effects, sifting stop criterion, extremum interpolation,
mode mixing, etc. Several followup methods [6] have been
proposed to tackle these challenges. For example, EEMD [7]
proposes a noise-assisted data analysis method to improve
EMD in terms of mode mixing, which adds white noise to the

signal to provide a uniform reference frame in the TF space.
BS-EMD [8] is introduced as a mathematically amenable
method, in which the knots of the B-splines are taken as the
local extremum points of the signal and the envelope mean
in the original EMD is replaced with the moving average of
B-splines. More recently, Dragomiretskiy and Zosso pro-
pose a theoretically sound Variational Mode Decomposition
(VMD) [9] that formulates a problem of seeking an ensemble
of modes and their respective center frequencies as a convex
optimization problem and the goal of the problem is to min-
imize the collective bandwidth of the signal’s components
subject to the total reconstruction constraint.

Despite the effectiveness of aforementioned EMD meth-
ods, these iterative algorithms require to decompose a signal
into modes through a set of iterative processes, resulting
in high computational complexity [10]. To this end, we
propose a data-driven mode decomposition method, called
NME, which performs mode decomposition for a signal in
one step by neural networks instead of iterative algorithm
(e.g., the Lagrange multiplier used in VMD). Specifically, we
theoretically justify the feasibility of transforming mode de-
composition to a problem of finding extremum conditions for
a functional [11], in which the solution to this problem can
be estimated approximately with parametric models. As our
solution, we introduce the Quotient Estimation and Recursive
Inference to approximate these models by using neural net-
works. In inference stage, the trained NME performs mode
decomposition 251-740× faster than VMD while maintaining
the same decomposition accuracy.

2. METHODOLOGY

Mode decomposition problem aims to extract K narrow-band
signals (i.e., modes) from a signal, in which k-th mode is for-
mulated as:

uk(t) = Ak(t) · cos[ϕk(t)] (1)
Moreover, these modes are concentrated around their respec-
tive center frequencies. In order to learn a mode decomposi-
tion model, we transfer this problem to a problem of solving
a functional (see Section 2.1 and Section 2.2). Then, we train
a deep learning model to approximately solve this problem
(Section 2.3).



2.1. Single-mode Decomposition
This subsection describes a method to solve the single-mode
decomposition problem (i.e., K = 1) under the cosine trans-
form domain. Assuming that an observed signal f which is
consisted of a narrow-band signal u†

1 with a center frequency
0 and a separate Gaussian noise η, i.e., f = u†

1+ η. To obtain
u†
1, we use classical Tikhonov Regularization [12] to formal-

ize a well-posed problem as:

u†
1 = argmin

u1∈R
{∥f − u1∥22 + α ∥∂tu1∥22} (2)

α denotes the regularization coefficient parameter, and ∂tu
represents the varying of u with respect to t.
Transforming Eq 2 to cosine transform domain. [13] has
illustrated that both sine and cosine transforms are orthogonal
transforms, which can be formalized as Eq 3.

∥g(t)∥22 = ∥S[g(t)]∥22 = ∥C[g(t)]∥22 (3)

where g(t) represents a certain funtion and S denotes the sine
transform. Therefore, when we replace g(t) with f(t)−u1(t)
in Eq. 3, we have:

∥f(t)− u1(t)∥22 =
∥∥∥f̂(ω)− û1(ω)

∥∥∥2
2

(4)

where the hat symbol (̂·) indicates the cosine transform (e.g.,
the f̂ denotes the cosine transformation for f , and can be
equivalently expressed as f̂ = C(f)). Then, according to time
domain differential properties of sine transform [13], when
we replace g(t) with ∂tu1(t) in Eq. 3, we can obtain:

α ∥∂tu1(t)∥22 = α ∥S(∂tu1(t))∥22 = α ∥−ω · û1(ω)∥22 (5)

At last, we add Eq. 4 and Eq. 5, and then we get:

û†
1 = argmin

û1∈R
{
∥∥∥f̂ − û1

∥∥∥2
2
+ α ∥−ω · û1∥22} (6)

Next, the L2 norm in Eq. 6 can be transformed to integral,
then we have:

û†
1 = argmin

û1∈R
{
∫ ∞

−∞
(f̂ − û1)

2
+ α · (ω · û1)

2
dω} (7)

Additionally, when the frequency center of the mode u†
1 in the

cosine transform domain shifts to ω1 from 0, we can perform
a change of variable ω ← ω−ω1 for Eq. 7 to obtain that û†

1 =
argmin
û1∈R

{J(û1)}, in which the functional J(û1) is formulated

as:

J(û1) =

∫ ∞

−∞
(f̂ − û1)

2
+ α · [(ω − ω1) · û1]

2
dω (8)

To sum up, the single-mode decomposition comes down to
finding the condition for the minimum of Eq. 8. Next subsec-
tion, we extend the single-mode decomposition to multi-mode
decomposition.

The advantage of using cosine transform. In previous stud-
ies [9, 14], it is common to use the Fourier transform [15] to
avoid differential function calculation (e.g., ∂t(·) in Eq. 2).
In this paper, however, we use the cosine transform to replace
the Fourier transform to speedup the operation. Moreover, we
show two advantages of using the cosine transform, compar-
ing to the Fourier transform: 1) The computational load of
cosine transform is lower than that of Fourier transform [16].
2) A function can remain in the real domain R after cosine
transform [17]. This property offers the possibility to utilize
the neural network to process a signal after cosine transform,
since the neural network is usually used to process data in the
real domain. In section 2.3, we will provide the details.

2.2. Multi-mode Decomposition
Assume that the signal f consists of K modes with different
central frequencies and a residual r as:

f =
∑K

k
u†

k
+ r (9)

In this paper, we aim to decouple the modes {û†
k} from a

signal f , where {û†
k} := {û

†
1, ..., û

†
K}. According to the dis-

cussion in Section 2.1, these modes can be obtained by seek-
ing the condition for the minimum of a specific functional
J({ûk}) as shown in Eq. 10.

{û†
k} = argmin

ûk∈R
{J({ûk})} (10)

where {ûk} := {û1, ..., ûK}. Moreover, according to the def-
inition of modes in Eq. 1, each mode uk has a corresponding
center frequency ωk in the cosine transform domain. There-
fore, the functional J({ûk}) can be regarded as a combination
of multiple Eq. 8 under different center frequencies, which is
formulated as:

J({ûk}) =
∫ ∞

−∞
(f̂ −

∑K

k
ûk)

2

+α
∑K

k
[(ω − ωk) · ûk]

2
dω

(11)

in which the center frequency ωk is an unknown variable to be
solved. Therefore, we use classical variational method [11] to
solve it. Specifically, when Eq. 11 obtains an extreme value,
the partial derivative of functional Eq. 11 with respect to all
variables is 0. We use this condition to obtain an expression
for ωk with respect to ûk:

δJ

δωk
=

∫ ∞

−∞
α · 2(ω − ωk) · (ûk)

2
dω = 0 (12)

then we further transform Eq. 12 to have:

ωk =

∫∞
−∞ ω · (ûk)

2
dω∫∞

−∞ (ûk)
2
dω

(13)

Finally, we use Eq. 13 to replace the ωk in functional Eq. 11
to obtain a functional J({ûk}) as:



J({ûk}) =
∫ ∞

−∞
(f̂ −

∑K

k
ûk)

2

+α
∑K

k

[
(ω −

∫∞
−∞ ω · (ûk)

2
dω∫∞

−∞ (ûk)
2
dω

) · ûk

]2

dω

(14)

To sum up, the mode decomposition comes down to a prob-
lem that seeking the condition for the minimum of Eq. 14.
Unfortunately, this problem has no analytic solution.

2.3. Neural Estimation of Functional
NME aims to estimate the solution to the problem men-
tioned above and thus decompose the a input signal f into K
modes. Specifically, NME maps from a input Banach space
F to K ouput Banach spaces U1, ...,UK [11] in real domain
R. Then, we construct K corresponding parametric models
Gθ1 : F → U1, ..., GθK : F → UK . We aim at finding the
optimal parameters θ†

1
, ..., θ†

K
from some finite-dimensional

parameter space Θ, so that {Gθ†
k
(f)} = {û†

k} for any in-
put signal f , where {Gθ†

k
(f)} := {Gθ†

1
(f), ..., Gθ†

K
(f)}.

Consequently, according to Eq. 10, we obtain:

min
{ûk}
{J({ûk})} = J({û†

k}) = J({Gθ†
k
(f)}) (15)

Moreover, for any θ1, ..., θK ∈ Θ, the following inequality
should always hold:

J({Gθ†
k
(f)}) = min

{ûk}
{J({ûk})} ≤ J({Gθk(f)}) (16)

where {Gθk(f)} := {Gθ1(f), ..., GθK (f)}. Suppose we
have observations {fi}Ni=1 (i.e., training set), where f ∼ µ is
an i.i.d. sequence from the probability measure µ supported
on F . Consequently, according to Eq. 16, we obtain:

Ef∼µ{J({Gθ†
k
(f)})} ≤ Ef∼µ{J({Gθk(f)})} (17)

Therefore, we design a loss function L according to Eq. 17,
and make the parameters θ1, ..., θK approach the optimal pa-
rameters θ†

1
, ..., θ†

K
by minimizing this loss function:

min
θk∈Θ
{L} = min

θk∈Θ
Ef∼µ{J({Gθk(f)})} (18)

In the following, we describes how to construct K parametric
models {Gθk(f)} by neural networks Tθ1 , ..., TθK . A plain
idea is that use K neural networks as these models directly
(i.e., let Gθk(f) = Tθk(f) for each k). However, we find a
problem that such models can not accurately perform mode
decomposition. This problem comes from two aspects: 1)
These models estimate the modes independently without sup-
porting each other. 2) The solution is too complex to estimate
directly. To tackle these issues, we exploit recursive inference
to let a certain model refer to the modes decomposed by other
models when performing mode estimation, and then develop
a quotient estimation to simplify the estimation.

1) Recursive Inference. According to Eq. 3, we have the
following transformation.

f =
∑K

k
u†

k
+ r ⇒ f̂ =

∑K

k
û†

k
+ r̂ (19)

Therefore, it inspires us to utilize recursive inference to per-
form mode estimation. According to Eq. 19, when we get û†

1
,

we can use f̂ − û†
1
=

∑K
k=2 û

†
k
+ r̂ as input to estimate û†

2

and continue to use f̂ −
∑2

k=1 û
†
k
=

∑K
k=3 û

†
k
+ r̂ as input

to estimate û†
3
. This estimation can be repeated until the last

mode.
2) Quotient Estimation. We use a neural network Tθk

to estimate the quotient between input and output (i.e., let
Tθk(Input) = Output/Input), which is equivalent to
amplitude-frequency gain in the signal community. This
technique is widely used in some classical signal processing
methods (e.g., the Butterworth filter [18]).

As a result, the k-th mode ũk = Gθk(f) can be formu-
lated as:

Gθk(f) =

{
Tθk(f̂) · (f̂), k = 1

Tθk(f̂ −
∑k−1

i=1 ũi) · (f̂ −
∑k−1

i=1 ũi), k ≥ 2

(20)
At last, we use Eq. 20 to replace Gθk in Eq. 18 to obtain the
final loss function L. We utilize the widely used MLP [19] as
the neural network in NME. Then, we train NME by minimiz-
ing this loss function through a certain stochastic optimization
method such as Adam [20].

3. EVALUATION
To evaluate the effectiveness of NME, we compare the per-
formance of NME with that of two baseline algorithms (i.e.,
EMD and VMD), and the experiments are conducted on three
public real-world datasets.

Metrics. Our evaluations are based on two metrics: latency of
mode decomposition(section 3.1) and the accuracy of mode
decomposition(section 3.2). The accuracy is measured by or-
thogonality, which demonstrates the non-repetitiveness of the
decomposed modes.

Datasets. Our experiments are conducted on the following
3 datasets, which are widely used in 3 fields (i.e., medicine,
industry and engineering), respectively. EEG-4097 [21] is
divided into five subsets: Z, O, N, F, S. Each subset contains
100 temporal series with a sampling frequency of 173.6 Hz
and a duration of 23.6 seconds. Vibration-4000 [22] is a
bearing data set under time-varying rotational speed, which
consists of signals collected in three health conditions under
four manners of speed varying. Radio-1024 [23] is an over-
the-air radio signal which provides 24 types of digital and
analog modulations.

Additionally, the test set and training set are randomly di-
vided in a ratio of 3/7. All experiments are conducted in a
desktop PC with Windows OS, 10 cores and 16GB RAM.



Bearing-5000
Method Ratio Std Avg(seconds)
VMD 1× 4.0193E-01 6.3785E-01
EMD 1× 7.6288E-01 6.3652E-01
NME 251× 0 2.5880E-03

Radio-1024
VMD 1× 7.8845E-02 2.4970E-01
EMD 15× 3.5192E-02 1.6264E-02
NME 740× 0 3.3763E-04

EEG-4097
VMD 1× 2.9639E-01 7.8693E-01
EMD 3× 5.1681E-01 2.6165E-01
NME 373× 0 2.1106E-03

Table 1: We calculate the average latency (Avg in table) and
the standard deviation (Std in table) of the latency of perform-
ing mode decomposition by VMD, EMD and NME over three
datasets. Moreover, we further calculate the ratio of these
methods against VMD (i.e., the relative speed to VMD).

3.1. Latency Comparison
Table 1 demonstrates that NME is much faster than two base-
lines. In Radio-1024 dataset, NME is 740 times faster than
VMD and 50 times faster than EMD. Also, NME’s latency
is very stable and the stand deviation of latency over multi-
ple experiments equals 0. This stability comes from the fact
that the time cost of NME is only related to the length of the
input signal. In contrast, the time cost of VMD and EMD is
affected by many factors, e.g., the length, content, and noise
of the input signal.

3.2. Orthogonality
Orthogonality is an important criterion used to evaluate the
effectiveness of various decomposition algorithms [4]. Ac-
cording to the definition of a mode in Eq. 1, each decomposed
mode from a signal should be unique and non-repetitive.

In the following, we first define the metric of orthogonal-
ity. Then, we analyze the experimental results and verify that
the orthogonality of NME is sufficient.

We utilize the overall index of orthogonality proposed in
[4] to evaluate the orthogonality of the modes:

IO =

∣∣∣∣∣
∫ ∑K

j

∑K
k u(t)ku(t)j∑K

k u(t)2k + 2
∑K

j

∑K
k u(t)ku(t)j

dt

∣∣∣∣∣ (21)

where u(t)k/u(t)j denotes the k-th/j-th decomposed mode
from a signal. It should be noted that orthogonality is suffi-
cient when the IO value is low (e.g., the modes are absolutely
orthogonal when IO = 0). Note that the orthogonality is to
compare the non-repetitiveness of the decomposed modes.
For a given signal, EMD can not decouple it into a fixed
number of modes. The number of decomposed modes by
using EMD is influenced by some characteristics of the input
signal (e.g., the noise in the signal). Therefore, it is not fair to
compare orthogonality with EMD, as the number of modes
can affect the IO value.

Bearing-5000 Radio-1024 EEG-4097
VMD 1.44E-1 7.46E-2 3.31E-1
NME 1.28E-1 7.36E-2 3.18E-1

Table 2: We calculate the average IO value of the modes
decomposed by VMD and NME on three datasets.

Signal-1
Method Mode-1 Mode-2 Rec-sig
VMD 2.30E-3 9.83E-3 1.60E-3
NME 2.00E-3 8.20E-3 5.27E-5

Signal-2
VMD 2.52E-2 5.42E-2 4.14E-2
NME 2.18E-2 4.03E-2 6.27E-5

Table 3: We perform mode decomposition for two instance
signals (i.e., the fsig1 and fsig2 in Eq. 22) by NME and VMD,
respectively. Then, we calculate the REs between the decom-
posed modes and the groundtruth (Mode-1, Mode-2 in table).
Then, we calculate the RE between the reconstructed signal
and the original signal (Rec-sig in table).

Table 2 compares the orthogonality values obtained by
both NME and VMD. The average IO value of the modes
decomposed by NME is slightly lower than that of VMD on
three datasets. Therefore, decomposition of NME is more or-
thogonal than that of VMD

3.3. Case Study
To further evaluate the effectiveness of NME, we use two syn-
thetic signals to demonstrate the correctness of mode decom-
position via NME. The benefit of using synthetic signals is
that we have the groundtruth of the modes of a given signal.
To this end, we use Eq 22 to generate two synthetic signals as
[9] illustrated.

fSig1 = cos(4πt) +
1

4
cos(48πt)

fSig2 =
1

1.2 + cos(2πt)
+

cos(32πt+ 0.2 cos(64πt))

1.5 + sin(2πt)
(22)

The accuracy is measured estimated relative error: As
a performance measure, the estimated relative error RE =
∥ŝ−s∥2

∥s∥2
, where ŝ and s denote the estimated and theoretical

value (i.e., groundtruth), respectively. Table 3 clearly illus-
trates that the decomposed modes by NME is closer to the
groundtruth, compared to that decomposed by VMD.

4. CONCLUSION
In this paper, we proposed a mode decomposition model
based on neural networks, which can perform fast and stable
mode decomposition. To our best knowledge, NME is the
first mode decomposition model without iterative algorithm.
We look forward to more mode decomposition models based
on neural estimation.
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