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ABSTRACT

The recent flourish of deep learning on various tasks is largely
accredited to the rich and high-quality labeled data. Nonethe-
less, collecting sufficient labeled samples is not very practical
for many real applications. Few-shot Learning (FSL) pro-
vides a promising solution that allows a model to learn the
concept of novel classes with a few labeled samples. How-
ever, many existing FSL methods are only designed for com-
puter vision tasks and are not suitable for radio signal recog-
nition. This paper calls for a radically different approach to
FSL: in contrast to develop a new FSL model, we should fo-
cus on transforming the radio signal to be better processed by
the state-of-the-art (SOTA) FSL model. We propose Modu-
lated Signal Pre-transformation (MSP), a parameterized radio
signal transformation framework that encourages the signals
having the same semantics to have similar representations.
MSP currently adapts to various SOTA FSL models for sig-
nal modulation recognition and can support the mainstream
deep learning backbone. Evaluation results show that MSP
improves the performance gains for many SOTA FSL models
while maintaining flexibility.

Index Terms— Signal Processing, Machine Learning,
Few Shot Learning

1. INTRODUCTION

Deep learning based methods have shown advantages in radio
signal modulation recognition [1]. However, the availability
of the labeled datasets for radio signal are very limited. Un-
like images data, to label these types of data the human anno-
tators needs to have the knowledge of radio signal processing.

FSL was proposed to solve such label-scarce problems
by learning a model on a set of base classes (i.e., base set)
and studying its adaptability to novel classes with only a few
samples (i.e., support set). Many classical FSL methods have
been proposed in computer vision, and prior works can be
roughly cast into three categories. Metric-based methods like
Matching network [2], Relation Network [3], Prototypical
Network [4] and RENet [5]) aim to learn a set of project func-
tions (embedding functions) and metrics to measure the sim-
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Fig. 1: The received modulated signals often suffer from
noise interference during the open environment transmission,
and the quantity of collected signals is usually less. Our pro-
posed MSP framework presents a novel transformation strat-
egy, taking the noisy problem into account, boosting the per-
formance of the FSL recognition.

ilarity between samples. Meta-based methods (MAML [6],
ProtoMAML [7]) aim to use a model agnostic meta-learner
to train a good basic model on a variety of training tasks,
such that given a new task with only few training samples, a
small number of gradient steps is sufficient to produce a good
generalization model. Augmentation-based methods [8, 9]
aim to design different sample generation strategies for novel
classes to encourage representation learning. Benefit from the
success of FSL methods in computer vision, a few improved
variations of these methods [10] have recently been pro-
posed to perform few-shot recognition on modulated signals.
For example, ARN [11] provides an improved metric-based
method by utilizing channel and spatial attention in the fea-
ture extractor.

However, the FSL methods in modulated signal mainly
focus on improving the learning approach. When adapting
those methods to the radio signals data, they may suffer from
a ’poor generalization’ problem, where the learned seman-
tic/constant information can not be effectively generalized
to the query/novel classes. This may caused by following
reasons: 1) The received modulated signals often suffer from



noise interference during the open environment transmis-
sion, making representation learning more difficult. 2) Radio
signal data has the unique characteristics of periodicity,
symmetry, etc., which are not easily learned by deep learning
models with insufficient samples.

To overcome the above-mentioned challenges, in this pa-
per, we shift the attention and propose, MSP, a parameter-
ized radio signal transformation framework. MSP is to obtain
the constants with high-density (e.g., semantic information)
while filtering the no constants such as added noises, provid-
ing better intra-class concentrated [12] constants for down-
stream FSL methods.

To the best of our knowledge, MSP is the first framework
that solves the radio signal modulation recognition FSL prob-
lem by transforming radio signals to be better processed by
SOTA FSL models. We perform extensive experiments and
analysis, and make the following key observations:

• We design MSP as an end-to-end joint pre-training
framework for learning effective representation from
modulated signal data.

• The MSP framework consists of two designed modules,
and we demonstrate it effectiveness under high and low
noise conditions.

• The existing SOTA FSL methods obtain decent perfor-
mance gain on radio signal modulation FSL task by at-
taching the proposed MSP framework.

2. SIGNAL PRE-TRANSFORMATION

To obtain the constant semantic information from the signals,
we aim to maximize the mutual information between two sig-
nal segments x1 and x2 that have similar semantics, which
can be formalized as:

I(x1, x2) =
∑

x1,x2

p(x1, x2) log(
p(x1, x2)

p(x1) · p(x2)
) (1)

To this end, proposed MSP framework is designed to mini-
mize an InfoNCE loss (see Eq. 9), which is equivalent to max-
imizing Eq. 1. Figure 2 demonstrates the process of the pro-
posed MSP framework. Specifically, we first utilize an Adap-
tive Noise Filtering module to reduce the interference of se-
mantically irrelevant information in input signal (i.e.,inherent
Gaussian noise). Moreover, we design a constraint loss (see
Eq. 7) to make it more approximate an optimum signal-filter.
Then, we use a Info-preserved Augmentation module to filter
(but remain modulation type unchanged) signal to support the
optimization of InfoNCE loss. At last, we exploit a shared
weight parametric model (e.g., CNN) to convert the signals
into high-level representations (i.e., capture the semantically
relevant information).

2.1. Info-preserved Augmentation

[13] discuss that data augmentation can greatly improve the
performance of extracting semantic information by InfoNCE.
This improvements come from two aspects: 1) data augmen-
tation can increase the size of training data; 2) data augmen-
tation increases the number of data that has similar seman-
tics to maximize the mutual information. We designed two
novel types of signal augmentation to generate information
preserved data samples.

Interception. For a quadrature modulated signal segment
x in original length L, the interception operation can be writ-
ten as:

ginter(x, a, L
′) = [x(a), x(a+ 1), ..., x(a+ L′)] (2)

where xa,L′ is the intercepted signal and L′ represents the pre-
defined interception length. The intercept start point a should
be selected from [0, L− L′] interval.

Rotation. In order to facilitate the illustration of rotation,
we will introduce a background knowledge of modulated sig-
nals. A quadrature modulated signal/complex signal [14] seg-
ment x is formed by the signal pairs {xR, xI} where xR and
xI represents the real and imaginary part of signals, respec-
tively. The relationship between these signals is given by:

x = xR + j · xI (3)

where j is a imaginary number, that is, j =
√
−1. We apply

the Euler formula [15] to rotate the original signals. For a
quadrature modulated signal, the rotation formulation could
be written as:

grotate(x, θ) = x · eθj
= (xR + j · xI)(cos(θ) + j · sin(θ)) (4)

where grotate(x, θ) represents the rotation augmentation
operation and θ ∼ U (0, 2π) denotes the rotation angle that
drawn from the uniform distribution.

2.2. Adaptive Noise Filtering

In order to filter signals adaptively, we utilize a parameterized
Gaussian filter [16] to filter noisy signal adaptively, which can
be formulated as:

fθ(x) = x ∗G s.t. G (n) =
1√
2πσ

e−
n2

2σ2 (5)

and G(n) is the n-index variable of the Gaussian filter kernel.
The parameter σ can be optimized by learning to adapt to dif-
ferent signal types. Moreover, an optimum filter f∗

θ (x) should
then be equivariant [13] to the augmentations g(x), i.e., swap-
ping the order of augmentation and filtering should yield the
same result:

g(f∗
θ (x)) = f∗

θ (g(x)) (6)
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Fig. 2: The structure of the proposed Modulated Signal Pre-transformation (MSP) framework. The base set classes are disjoint
with support and query sets. Further, the query set shares the same classes with the support set and is only used for testing,
which will not contribute to the training procedure.

Therefore, under this assumption, we utilize the parameter-
ized filter fθ to approximate the optimum filter by minimize
the constraint loss:

LG = ∥g(fθ(x))− fθ(g(x))∥22 (7)

2.3. Optimization Objective

The MSP framework is trained simultaneously under the op-
timization of the constraint loss LG and InfoNCE loss LC ,
which can be formulated as:

L = LC + LG (8)

Specifically, the InfoNCE loss could be formulated as:

LC = Exi
1,x

i
2∼p(x1,x2)(log

∑N
j ̸=i h(x

i
1, x

j
2)

h(xi
1, x

i
2)

) (9)

where h(x1, x2) = exp{sim(gθ(x1), gθ(x2))/α}, gθ repre-
sents the MSP framework and α represents a temperature pa-
rameter. sim(u, v) = uTv/ ∥u∥ ∥v∥ denotes the dot prod-
uct between l2 normalized u and v (i.e. cosine similarity),
which is used to measure the similarity between u and v. We
regard the augmented samples from the same signal as posi-
tives xi

1, x
i
2, and augmented samples from different signals as

negatives xi
1, x

j
2.

3. EXPERIMENTS

In this section, we evaluate the performance of MSP by com-
paring the SOTA FSL algorithms and these algorithms assem-
bled with our framework.

3.1. Datasets

We evaluate our proposed MSP framework on three bench-
mark datasets, namely, signal-128 [1], signal-512, and signal-
1024 [17], where the numbers represent the length of the sig-
nals.

Signal-128 is a public radio dataset that contains 11 mod-
ulations. Each modulation type has 20 different Signal-to-
Noise Ratios (SNRs) with 1000 samples. SNR is a measure-
ment of signal noise level as denoted Signal/Noise, where
the higher SNR, the less noise included in a signal.

Signal-512 is a private dataset that considers several non-
ideal effects of communication systems, including carrier
phase, pulse shaping, frequency offsets, and noise. Each data
sample contains 64 symbols, and the oversampling rate is 8,
so the number of sampling points for each sample is 512.

Signal-1024 is a public over-the-air radio signal which
provides 24 types of digital and analog modulations. Each
modulation type includes 26 diverse SNRs, and each SNR
with 4096 samples.

3.2. Experiment setup

Evaluation Models. The proposed MSP framework was im-
plemented in Pytorch [18] and trained on a Tesla V100. We
study the performance of our proposed MSP framework using
six existing FSL models, namely, MAML, MatchNet, Pro-
toNet, RelatNet, TIM-GD, TIM-ADM [19] and REnet.

Experiment setting. Following previous studies [20], we
conduct our experiments in 5-way-5-shot and 5-way-1-shot
settings, i.e., five novel classes, each of them only has 5 and
1 samples, respectively. For each dataset, two different SNR
conditions are studied: -4 dB, 18 dB.

Training setting. Our framework is optimized by Adam
optimizer [21] with a learning rate of 0.001. The maximum
training epoch is set to 50. The input batch size is set to 70
and 42 for the 5-way-5shot and 5-way-1-shot, respectively.

3.3. Experimental results

Table 1 demonstrates that our proposed MSP framework can
effectively boost the performance of the current SOTA FSL
methods on both 5-way-1-shot and 5-way-5-shot modulation



Backbone Method
Signal-128 Signal-512 Signal-1024

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Origin +MSP Origin +MSP Origin +MSP Origin +MSP Origin +MSP Origin +MSP

CNN

MAML 40.67% + 21.33% 61.93% + 13.57% 25.27% + 2.31% 27.52% + 2.39% 69.45% + 4.93% 80.43% + 2.93%
MatchNet 70.95% + 9.54% 73.97% + 9.46% 41.45% + 0.53% 42.33% + 2.43% 84.33% + 4.16% 87.41% + 5.36%
ProtoNet 71.61% + 10.23% 76.59% + 10.45% 39.09% - 0.28% 41.92% + 3.54% 82.17% + 6.73% 85.75% + 4.58%
RelatNet 67.73% + 13.76% 73.42% + 8.79% 37.76% + 0.83% 39.63% + 3.00% 80.11% + 7.35% 80.89% + 8.28%
Tim-GD 72.23% + 6.45% 78.47% + 6.56% 39.79% - 0.19% 41.68% + 3.99% 83.22% + 3.61% 87.61% + 5.08%

Tim-ADM 73.49% + 6.96% 79.36% + 7.21% 42.23% + 0.10% 42.81% + 2.73% 82.19% + 4.29% 88.15% + 4.74%
Renet 69.77% + 4.28% 73.58% + 3.93% 37.58% + 0.33% 40.26% + 0.64% 81.75% + 2.46% 88.19% + 5.49%

ResNet

MAML 38.39% + 15.48% 63.41% + 3.45% 27.45% + 0.76% 29.92% + 9.38% 67.00% + 6.35% 79.98% + 4.31%
MatchNet 69.55% + 12.89% 74.14% + 8.34% 40.75% + 1.39% 42.55% + 3.74% 80.92% + 6.31% 83.34% + 8.77%
ProtoNet 71.27% + 8.58% 77.67% + 7.26% 40.27% + 0.52% 42.79% + 3.06% 81.05% + 5.92% 82.12% + 11.70%
RelatNet 62.47% + 16.15% 70.39% + 14.93% 39.23% + 0.41% 37.47% + 3.67% 70.15% + 12.97% 80.45% + 7.78%
Tim-GD 72.66% + 13.34% 78.49% + 6.35% 41.73% + 0.87% 43.29% + 4.69% 86.38% + 3.78% 87.13% + 7.50%

Tim-ADM 73.58% + 12.82% 79.44% + 7.25% 42.21% + 0.28% 43.72% + 3.75% 86.95% + 4.37% 88.37% + 6.89%
Renet 68.74% + 2.53% 73.21% + 2.35% 38.65% + 0.32% 42.45% + 1.55% 83.85% + 1.67% 87.69% + 5.19%

Table 1: 5-way few-shot classification accuracy on signal-128, signal-512 and signal-1024 dataset. “Origin” represents the few-
shot learning result without the MSP framework, while “+MSP” denotes the few-shot learning result with the MSP framework.
Note: ‘+’ and ‘-’indicates the performance gain and drop respectively. The top performance gain is in ‘ ’ underline format.

recognition tasks with different backbone structures. Further-
more, we observe that the RelatNet with our MSP framework
achieves six top performance gains with an average growth of
8.16% in 12 tasks.

Moreover, we observe the performance improvement
is very slight in the 5-way-1-shot task with the signal-512
dataset, even experiencing about 0.28% performance drop
for ProtoNet with CNN backbone. One possible conjecture
is that large intra-class gaps in the signal-512 dataset make
statistical properties learning of different categories from a
single sample more challenging. This conjecture is further
proved that when we increase the number of samples (i.e., 5-
way-5-shot), the performance gain on the signal-512 dataset
is improved.

3.4. Ablation study on MSP framework

To study the effectiveness of the two components in the MSP
framework, we conduct experiments on every single compo-
nent and their combinations. Figure 3 reports the detailed re-
sults of the ablation studies, and we can see that each compo-
nent/module in the MSP framework contributes positively to
the final results. Moreover, the combination of noise filtering
and augmentation module always performs the best compared
with the single component. Besides, we also observe that the
contribution of the noise filtering module is marginal under
high SNR scenarios. That could result from the clean signals
provided in high SNR scenarios, where filtering is no more
required.

4. CONCLUSIONS

We propose MSP, a novel radio signal pre-processing frame-
work, which can be attached to various SOTA FSL models
for the modulation recognition task. Specifically, the MSP
framework utilizes the online Info-preserved augmentations

Signal-128 SNR:-4 

Signal-512 SNR:-4 

Signal-1024 SNR:-4  Signal-1024 SNR:18 

Signal-128 SNR:18 

Signal-512 SNR:18 

Pe
rf

or
m

an
ce

 C
ha

ng
e 2

4

6

8

10

12

−2

0

2

4

6

8

0.0

0.4

0.8

1.2

1.6

0

2

4

6

2

4

6

8

0

2

4

6

8

−20
24
68

1012141618

 A         F         A/F  

Fig. 3: Ablation study on 5-way-5-shot task for three datasets
under two different SNR scenarios. ‘A’, ‘F’ represents the
augmentation and noise filtering, respectively. The ‘A/F’ in-
dicates the combination of augmentation and noise filtering.
The dot line indicates the average performance change

to generate diverse signal segments and remove the carried
noises. Finally, a feature enhancement module simplifies the
signal representations to encourage representation learning.
Extensive experiments result presents the effectiveness of the
proposed MSP framework.
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