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Abstract—Blockchain, a distributed and shared ledger, provides a credible and transparent solution to increase application auditability
by querying the immutable records written in the ledger. Unfortunately, existing query APIs offered by the blockchain are inflexible and
unscalable. Some studies propose off-chain solutions to provide more flexible and scalable query services. However, the query service
providers (SPs) may deliver fake results without executing the real computation tasks and collude to cheat users. In this paper, we
propose a novel intelligent blockchain analytics platform termed IQUERY, in which we design a game theory based smart contract to
ensure the trustworthiness of the query results at a reasonable monetary cost. Furthermore, the contract introduces the second
opinion game that employs a randomized SP selection approach coupled with non-ordered asynchronous querying primitive to prevent
collusion. We achieve a fixed price equilibrium, destroy the economic foundation of collusion, and can incentivize all rational SPs to act
diligently with proper financial rewards. In particular, IQUERY can flexibly support semantic and analytical queries for generic
consortium or public blockchains, achieving query scalability to massive blockchain data. Extensive experimental evaluations show that
IQUERY is significantly faster than state-of-the-art systems. Specifically, in terms of the conditional, analytical, and multi-origin query
semantics, IQUERY is 2 ×, 7 ×, and 1.5 × faster than advanced blockchain and blockchain databases. Meanwhile, to guarantee 100%
trustworthiness, only two copies of query results need to be verified in IQUERY, while IQUERY’s latency is 2 ∼ 134 × smaller than the
state-of-the-art systems.

Index Terms—Blockchain, second opinion smart contract, game theory, data analytics, query platform
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1 INTRODUCTION

B LOCKCHAIN revolutionizes the traditional centralized
application mode and overcomes the trust challenges

in multiple application scenarios [1], [2], [3]. For example,
once a payment system writes user payment behaviors into
a blockchain network, any authorized user is capable of
querying the immutable records in the blockchain to achieve
accountability and transparency of transactions. Nowadays,
employing a smart contract to query ledger data from
bookkeeping nodes is a general method for blockchain data
query. However, existing query methods struggle to search
for accurate and comprehensive ledger data due to their lack
of flexibility and scalability [4], [5].

Prior works [6], [7], [8] concentrated on improving
the analysis capability of bookkeeping nodes for querying
ledger data. Yet, these works have difficulties in providing
rich semantics for blockchain data query and yielding poor
performance in handling large-scale data [9], [10]. For ex-
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ample, Nathan et al. [7] leverage the serializable snapshot
isolation (SSI) to design a blockchain relational database
for permissioned blockchain query. Cai et al. [11] propose
a SGX-based public blockchain query framework that sup-
ports single keyword and boolean queries. Nevertheless,
such blockchain relational databases and query frameworks
suffer from the flexibility issue due to a lack of fine-grained
query semantics. Additionally, they are ungeneralized, de-
signed explicitly for consortium or public blockchain, and
therefore cannot adapt to flexible application scenarios.

Furthermore, SEBDB [8] optimizes the SQL-like query
semantics with novel indices, while LineageChain [6] en-
ables provenance queries by storing provenance in a Merkle
DAG structure. Unfortunately, SEBDB and LineageChain
still suffer from the scalability issue and struggle to deal
with the query demand of massive application data. Al-
though these efforts enrich blockchain query semantics,
the query service is tightly coupled with the blockchain
transaction system. Executing too many query transactions
at the blockchain layer will result in consensus performance
degradation and lower transaction throughput for book-
keeping.

After scrutinizing the existing related works [11], [12],
[13], we found that the rich semantic query service in
bookkeeping nodes can be extracted for supporting the
ledger data query. Heuristically, we consider decoupling the
rich semantic query service from bookkeeping nodes into a
blockchain query layer, expecting to make a breakthrough in
the technology of blockchain data query. Towards the goal
of solving the flexibility and scalability issues mentioned
above, we further identify some key requirements to be ful-
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Fig. 1. Trustworthiness, flexibility and efficiency requirements for
IQUERY.

filled when designing a decoupled blockchain query layer.
Trustworthiness of Query (R1): We first need to guaran-

tee the trustworthiness of queries when designing a scal-
able and decoupled blockchain query layer. Specifically,
suppose a user doubts the transactions on the blockchain;
the user can verify them by submitting a query request to
an authorized query service provider (SP), who listens to
bookkeeping nodes (Fig. 1). SP will receive rewards from the
user for providing the query service requested by the user.
Unfortunately, the integrity of some blockchain query ser-
vice providers is relatively low. In order to maximize their
benefits, some SPs may deliver fake information instead of
making efforts to query the blockchain data. Thus, to ensure
the trustworthiness of queries, it is best for users to send the
same requests to multiple SPs and verify the consistency of
their returned results. If users only choose a limited number
of SPs, some providers may conspire together to provide
fake information. Existing solutions [14], [15] overcome this
issue by sending query requests to all providers, which is
costly and impractical. Therefore, a scalable and economical
solution for ensuring query trustworthiness is much cov-
eted.

Flexibility of Query (R2): We propose to build a query
layer that flexibly supports running generic, user-defined
consortium or public blockchain. Additionally, the query
service needs to support queries with sufficient semantics to
address the flexibility issue. For instance, the fine-grained
query semantic GetPayment($in(price:[𝑛𝑢𝑚𝑠 , 𝑛𝑢𝑚𝑒])) gets
all payments within a price window, and the analytical
query semantic GetTotal($𝑒𝑞(𝑢𝑠𝑒𝑟 𝐼𝑑 :?)) gets the total pay-
ment value of a particular user.

Efficiency of Query (R3): A more efficient query service
is desired for both flexibility and scalability issues because a
real-time analysis is essential for blockchain query services.
However, according to the prior research [10], Fabric can
only handle less than 200 queries per second. Ethereum
transactions have a gas limit and cannot perform complex
queries in one transaction [3]. Consequently, consortium and
public blockchain both fail to support a substantial number
of application users simultaneously performing thousands
of queries to access the blockchain transactions [5].

In this paper, we propose IQUERY, a truly distributed
blockchain query platform. To guarantee the trustworthi-
ness of queries (R1), we design a game theory based method
that employs a second opinion mechanism to ensure the
correctness of query results while minimizing the number
of query SPs. To tackle the inflexibility of query (R2), we

introduce a set of rich semantic query APIs that utilize log-
ical operators, condition parameters and Select-Aggregate
functions to answer complex queries in off-chain databases.
Finally, we maintain these databases that extract key infor-
mation from blocks to improve query efficiency (R3).

According to Bernoulli analysis, when the proportion of
honest SPs in the network is 80%, our second opinion mech-
anism only needs to compare two copies of query results
to ensure 100% trustworthiness. In contrast, state-of-the-art
systems require four copies of query results to achieve query
confidence of 95%. Furthermore, empirical results show that
the latency of IQUERY is at millisecond level and 2 ∼ 134 ×
smaller than the state-of-the-art methods. In summary, the
contributions are:

• We propose a decentralized and scalable blockchain
analytics platform IQUERY. Specifically, rich query
semantics, including conditional, analytical, and
multi-origin query methods, are introduced to offer
flexible, efficient, and verifiable query services for
generic types of blockchain users (§3 and §4).

• We design a second opinion smart contract to min-
imize the number of query SPs while guaranteeing
the trustworthiness of query results. In particular, the
game theory based method that combines incentive
mechanisms and auditable smart contract is formally
verified (§5).

• We categorize SPs into three different types with var-
ious abilities matching realistic scenarios and present
corresponding countermeasures to prevent collusion
in IQUERY. Specifically, the randomized SP selection
approach coupled with a non-ordered asynchronous
querying primitive makes it impossible for the first
colluder to infer who the user will choose next, thus
motivating rational SPs to be honest. Additionally,
the self-interest hypothesis can easily prove the im-
practicality of SPs colluding together and the repu-
tation mechanism removes malicious irrational SPs
from the system (§5.3).

• Extensive experiments demonstrate the effectiveness
and performance advantages of IQUERY compared
with state-of-the-art systems (§6). IQUERY is released
on Github for public use1.

The rest of the paper is organized as follows. In section 2,
we give a brief introduction of blockchain data query and
game theory models. Then, we describe the design and
architecture of IQUERY in section 3, followed by query
methods with rich semantics in section 4. In section 5, we
give the details of how the second opinion smart contract
guarantees the trustworthiness in IQUERY. In section 6, we
conduct extensive experiments to evaluate the performance
of IQUERY. Finally, we conclude our paper in section 7.

2 RELATED WORK

2.1 Blockchain Data Query

Blockchain. Ethereum [16] is the first public blockchain
to introduce the smart contract. Users can read and

1. https://github.com/lulinglingcufe/iQuery
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TABLE 1
Comparison of Query in Blockchain Systems

Catalog Representative Decoupled Semantic Analytical Authenticated
Systems Query Query Query Query

Blockchain Fabric [5], Ethereum [16], × Weak Weak ×
FISCO BCOS [17]

Blockchain LineageChain [6], Blockchain Blockchain relational
Database relational database [7], × Strong Weak database: ×, Others: X

SEBDB [8], FalconDB [18]

Public Blockchain Etherscan [19], EthScope [20], Blocksci [21], Etherscan, Blocksci Etherscan, SGX-based query framework,
Query Layer EtherQL [22], vChain [2], GEM2 [23] X EtherQL: Strong Blocksci: Strong vChain, GEM2, VQL:X

VQL [24], SGX-based query framework [11] Others: Weak Others: Weak Others:×

Generic Block-
IQUERY X Strong Strong

Flexible and efficient methods
chain Query Layer to ensure trustworthiness

write blockchain data via the smart contract. Consor-
tium blockchains, e.g., Fabric [5] and FISCO BCOS [17],
achieve better performance while meeting security require-
ments in commercial scenarios. Nevertheless, these popular
blockchain systems lack rich query semantics.
Blockchain Database. Some works leverage rich features
in relational databases to enhance blockchain systems, thus
directly handling query requests. LineageChain [6] enables
fine-grained and secure provenance queries in the smart
contract via Merkle DAG. Blockchain relational database
[7] and SEBDB [8] apply SQL-like language to access data.
FalconDB [18] and SEBDB employ authenticated data struc-
tures (ADS) to ensure the correctness of queries. Unfor-
tunately, these databases lack optimization methods for
blockchain data analysis.
Public Blockchain Query Layer. Some works leverage
the query layer decoupled from the blockchain transaction
system to improve query efficiency. Etherscan [19] is a
widely-used Ethereum explorer. EthScope [20] is an efficient
query framework for Ethereum attack replays. However,
they do not support authenticated queries. The SGX-based
query framework [11] relies on trusted hardware to deliver
authenticated queries, while other works depend on ADS
to achieve authenticated queries. Besides, these works only
support public blockchain, lacking a solution for consortium
blockchain. These works have two limitations: (1) high cost
for users to verify the integrity of query transactions and (2)
limited query semantics. Specifically, vChain [2] and GEM2

[23] change the block structure, construct ADS, embed them
into each block and use off-chain SPs to answer queries.
Despite making progress in query throughput, the cost
for users to cryptographically verify the query results is
excessive. Precisely, the latency of users verifying query
results in vChain and GEM2 is at the second level. In contrast,
the latency of users verifying query results in IQUERY is
at the microsecond level. VQL [24] requires miners to verify
the query layer’s data consistency, which significantly takes
up miners’ computing power. Furthermore, authenticated
query semantics are limited to boolean range queries and
time-window queries in vChain, GEM2 and VQL. Compared
with existing works [2], [11], [23], IQUERY offers a game
theory based authenticated query method that improves the
trustworthiness of any query semantics.
Comparison. Table 1 compares blockchain systems,

blockchain databases, public blockchain query layer and
IQUERY. Among these state-of-the-art systems, IQUERY is
the first off-chain query platform that achieves semantic,
analytic and authenticated query methods, significantly im-
proving trustworthiness, flexibility and efficiency for query-
ing generic types of blockchains.

2.2 Game Theory Models in Trustworthy Queries

Many works use game theory in replication based verifiable
computation. We compare the second opinion model with
other game theory models used in trustworthy queries
regarding (1) threat models (the number of chosen SPs),
(2) querying primitive, (3) monetary cost, and (4) protocol
implementation.

The Prisoner’s Dilemma Game. Dong et al. [14] proposed
a contract that induces the Prisoner’s Dilemma game be-
tween two SPs. The contract employs synchronized query-
ing primitive, thus giving dishonest SPs a chance to collude
before returning query results. To prevent collusion, the
incentive mechanism in the contract encourages colluders to
report collusion to the client user. If another SP does cheat,
the reporting SP will get another SP’s deposit.

The Multi-Player Outsourcing Game. Alptekin [25] pro-
posed a multi-player outsourced computation game to en-
sure the outsourced job is computed correctly. The game
motivates rational SPs to be honest and enforces a bound on
the damage malicious SPs can cause. We remove malicious
irrational SPs from the IQUERY pool via the reputation
mechanism in the second opinion model.

Comparison. (1) Threat Model: Both [14] and IQUERY
present a two-player game aiming at minimizing the num-
ber of SPs while guaranteeing the trustworthiness of query
results. [25] proposed a multi-player game. The multi-player
threat model is less efficient than IQUERY in the blockchain
query scenarios. Because the cost of querying multiple SPs
is a great economic burden for users. (2) Querying Prim-
itive: Because [14] and [25] employ synchronized query-
ing primitive, rewards and fines are required to prevent
collusion. The second opinion model employs non-ordered
asynchronous querying primitive, making it impossible for
the first SP to infer who the user will choose next and
collude. (3) Monetary Cost: The second opinion contract
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Fig. 2. The life-cycle for querying ledger data via IQUERY.

does not require deposits from SPs, making it a more at-
tractive design for SPs who offer services for thousands of
users. In this situation, the deposits will be a prohibitively
high financial cost for SPs. (4) Protocol Implementation: [25]
relies on a trusted centralized bank to execute the payment
protocol, while IQUERY and [14] implement the protocol in
the smart contract for self-enforcing payment.

3 DESIGN AND ARCHITECTURE OF IQUERY

In this section, we describe the overview of how users get
trustworthy query results form IQUERYS, followed by the
main components of the IQUERY system.

3.1 System Overview
Fig. 2 illustrates the lifecycle of querying ledger data via
IQUERY. Each IQUERY has a SP to offer blockchain query
service and we design the blockchain analytics platform as
a decentralized and scalable IQUERY pool. First, we write
transactions into blockchain (¬, more details in §3.2). Then,
users select an IQUERY from the decentralized IQUERY pool.
IQUERY is able to answer complex queries with rich query
APIs (). Next, in order to ensure the trustworthiness of
query results, SP utilizes a contract manager for two types
of smart contracts (®). (i) if users want to query the ledger
directly, the contract manager will employ APIs of the
corresponding smart contract to execute simple queries on-
chain and retrieve trustworthy results, (ii) users utilize the
rich query APIs to perform fine-grained query semantics
off-chain while executing the game theory based second
opinion smart contract to ensure trustworthiness. Afterwards,
IQUERY returns query results with its attached signature
(¯). Finally, if users confirm the correctness of query results,
the second opinion smart contract will give the reward honest
IQUERYS (°).

3.2 Write Transactions to Blockchain
We prepare transactions in advance for queries by writing
transactions to blockchain. Note that IQUERY can flexibly
support both consortium and public blockchain. Therefore,
We adopt Fabric [5], the most widely used consortium
blockchain platform, and Ethereum [16], the largest decen-
tralized application platform, to write payment transaction
records in step ¬ of system overview in §3.1. Besides,
the payment transactions are also example transactions for
queries in §4 and datasets in §6.1.

Payment transactions. Table 2 shows the transactions in
a simple payment scenario. First, a user initializes his/her
blockchain identity by submitting 𝑡𝑥𝑖𝑛𝑖𝑡𝑈𝑠𝑒𝑟 . There are two

TABLE 2
Examples of Payment Transactions Used in §4 (Queries) and §6.1

(Dataset)

Transaction Type Correlated User Identity

initUser (𝑇1) user@company.cn
user@supermarket.com

initCommodity (𝑇2) user@company.cn
rechargeToken (𝑇3) user@supermarket.com

commodityConsumption (𝑇4) user@supermarket.com
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types of users: company (𝑢𝑠𝑒𝑟@𝑐𝑜𝑚𝑝𝑎𝑛𝑦.𝑐𝑛) and super-
market (𝑢𝑠𝑒𝑟@𝑠𝑢𝑝𝑒𝑟𝑚𝑎𝑟𝑘𝑒𝑡.𝑐𝑜𝑚). If the user belongs to the
company organization, the user will have a unique id
in the blockchain generated from 𝑢𝑠𝑒𝑟@𝑐𝑜𝑚𝑝𝑎𝑛𝑦.𝑐𝑛. Sec-
ondly, this user submits 𝑡𝑥𝑖𝑛𝑖𝑡𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦 to init commodities
with price and id. Then, the commodities attached with
RFID tags and provided by the company user are shipped
to the supermarket for sale. Next, a user identified as
𝑢𝑠𝑒𝑟@𝑠𝑢𝑝𝑒𝑟𝑚𝑎𝑟𝑘𝑒𝑡.𝑐𝑜𝑚 submits 𝑡𝑥𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇 𝑜𝑘𝑒𝑛 to recharge
his/her smart card. Finally, the user of the supermarket
applies a smart card to buy these commodities through
𝑡𝑥𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛.

Blockchain consensus. Fabric uses a practical byzantine
fault tolerance (PBFT) consensus [5], and Ethereum employs
proof of work (POW) or proof of stake (POS) consensus
[16]. Notably, the blockchain transaction system consists
of the application, execution, data, and consensus layers
[9]. We implement a game theory based query protocol in
the second opinion smart contract, incentivizing IQUERY
to deliver honest query services. Regardless of how we
implement the application logic in a smart contract, the
underlying consensus layer guarantees the secure execution
of smart contract transactions, ensuring that the IQUERY
analytics platform is trustworthy.

3.3 Query Service Provider
The decentralized IQUERY pool in Fig. 2 is composed of a
set of IQUERY entities for parallel query processing. To be
precise, Fig. 3 illustrates that each IQUERY entity consists of
a query service provider and an off-chain database maintainer.

The audit query requests are first handled by a provider
as shown in Fig. 3. The provider guarantees secure and
trustworthy query services through Access Control and Con-
tract Manager. The Access Control defines users’ query per-
missions to protect the privacy of our blockchain analytics
platform [21], [26]. For example, an ordinary user can only
query transactions related to him/herself, but a VIP user
such as a bank can query its customers’ transactions. The
second opinion smart contract is a game theory based



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

mechanism that incentivizes each IQUERY to deliver query
services and ensure the trustworthiness of query results (see
§5).

The requests that pass the security and trustworthiness
check can call rich query APIs. These APIs provide users
with flexible query methods including conditional, analyti-
cal and multi-origin queries. A query engine is responsible
for improving query efficiency and supporting rich query
semantics. Specifically, Select-Aggregate functions support
conditional query (see §4.1) and analytical query (see §4.2).
In order to support results verification among multiple
SPs, Merkle Bucket Tree based authenticated query module
supports multi-origin query (see §4.3).

3.4 Off-Chain Database Maintainer
There are two reasons for maintaining an off-chain database:
1) the inflexibility of blockchain database affects the query
efficiency (e.g., attributes in the value field cannot be in-
dexed in blockchain 𝑆𝑡𝑎𝑡𝑒𝐷𝐵𝑝𝑒𝑒𝑟 [9]), 2) it is a significant
burden for the transaction processing lifecycle to directly
perform queries via the smart contract [5], [24]. Thus, we
design an off-chain database maintainer that reads ledger
data using a valid certificate or public key in the blockchain
network.
Maintain Off-Chain Database. IQUERY maintains two
local data-bases, i.e., 𝑆𝑡𝑎𝑡𝑒𝐷𝐵𝑖𝑄𝑢𝑒𝑟 𝑦 and 𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐷𝐵𝑖𝑄𝑢𝑒𝑟 𝑦

that extract key information from blockchain network to
improve query efficiency. IQUERY obtains transactions from
the blockchain network by a Blocklistener. In particular, it
registers a 𝐵𝑙𝑜𝑐𝑘𝐸𝑣𝑒𝑛𝑡 ( ) SDK API [27] to read raw block data
from a peer node and inserts the update (i.e., 𝑆𝑡𝑎𝑡𝑒4) to local
databases.

4 QUERY METHODS WITH RICH SEMANTICS

In this section, we use the payment transactions as an
example to illustrate the technical details of rich query APIs
including conditional, analytical and multi-origin query
methods.

4.1 Conditional Query Method
IQUERY improves query flexibility with general, practical
and sufficient condition parameters [28], [29], [30] for target
records queries.

In conditional queries, users can add additional con-
straints in the query selector. 𝑞 = 〈𝑜𝑝{𝑐1, 𝑐2...𝑐𝑛}, 𝑑𝑏〉 is
an example of a conditional query, where 𝑜𝑝 is the logical
operator, and 𝑐𝑛 is the condition parameter. The logical
operators include $𝑎𝑛𝑑, $𝑜𝑟 , $𝑒𝑞 and $𝑔𝑡, etc.

Temporal Query is a special case of conditional query
which allows users to query records within a certain
time period, i.e., 𝑞 = 〈[𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑], 𝑑𝑏〉. With the increas-
ing block number, we formalize the temporal query as:
𝑞 = 〈[𝑏𝑠𝑡𝑎𝑟𝑡 , 𝑏𝑒𝑛𝑑], 𝑑𝑏〉. [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑] is the time interval
parameters (e.g., 𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑟𝑒𝑐𝑜𝑟𝑑.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ≤ 𝑡𝑒𝑛𝑑) and
[𝑏𝑠𝑡𝑎𝑟𝑡 , 𝑏𝑒𝑛𝑑] is the block interval parameter (e.g., 𝑏𝑠𝑡𝑎𝑟𝑡 ≤
𝑟𝑒𝑐𝑜𝑟𝑑.𝑛𝑢𝑚𝑏𝑙𝑜𝑐𝑘 ≤ 𝑏𝑒𝑛𝑑). Note that 𝑑𝑏 is the target database
table applied with indexes to improve query efficiency.

We use conditional query 𝑄1 to illustrate how IQUERY
improves query performance with correlated read set.

Example 1: 𝑄1 is a join query that searches the com-
plete 𝑡𝑥 𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 with detailed commodity and
user information. To perform the query, client users send
a logical query selector in the form of 𝑄1 but spec-
ifies commodityId to IQUERY. Then it will search the
𝑑𝑏𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐽𝑜𝑖𝑛𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦 table in 𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐷𝐵IQUERY with
a customized index to improve query speed and return
qualified records.

𝑄1 : 〈$𝑒𝑞(𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦𝑖𝑑 :?), 𝑑𝑏𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐽𝑜𝑖𝑛𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦〉

Although, 𝑡𝑥𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 in Table 2 only records
commodityID and userID instead of the detailed com-
modity and user information. To improve the per-
formance of 𝑄1, when updating IQUERY databases,
we first identify the correlated read set [31] 𝑟𝑠 =

{(𝑘𝑒𝑦𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦𝐼𝐷 , 𝑣𝑒𝑟𝑠𝑖𝑜𝑛), (𝑘𝑒𝑦𝑢𝑠𝑒𝑟 𝐼𝐷 , 𝑣𝑒𝑟𝑠𝑖𝑜𝑛)} in 𝑡𝑥𝑐𝑜𝑚𝑚𝑜𝑑

𝑖𝑡 𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛. We assign the former element in rs 𝑘1 and
the latter 𝑘2. Then we search the value of 𝑘1 and 𝑘2
from 𝑆𝑡𝑎𝑡𝑒IQUERY. The response (𝑘𝑒𝑦𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦𝐼𝐷 , 𝑣𝑎𝑙𝑢𝑒) and
(𝑘𝑒𝑦𝑢𝑠𝑒𝑟 𝐼𝐷 , 𝑣𝑎𝑙𝑢𝑒) are combined together to form a more
user-readable record. Besides, IQUERY also attaches the
basic information of transactions, i.e., timestamp, Txid,
𝑏𝑙𝑜𝑐𝑘𝑛𝑢𝑚 and 𝑡𝑥𝑛𝑢𝑚. The record will be inserted into
𝑑𝑏𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐽𝑜𝑖𝑛𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦 of 𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝐷𝐵IQUERY.

4.2 Analytical Query Method

In analytical queries, users can send logical query selectors
to IQUERY for elaborate blockchain data analysis. Moreover,
IQUERY enhances the performance of ledger data analytics
by using Select-Aggregate style query functionalities.

Select Records to View. In the selection stage, IQUERY
uses a customized 𝑆𝑒𝑙𝑒𝑐𝑡 (·) function to construct the view in
CouchDB [32]. The record selection consists of the following
steps. ¬ 𝑉𝑖𝑒𝑤𝑑𝑎𝑡𝑎 = {∑𝑛

𝑖=1 (𝑘𝑖 , 𝑣𝑖) | (𝑘𝑖 , 𝑣𝑖) ∈ 𝑆𝑒𝑙𝑒𝑐𝑡 (𝑑𝑜𝑐𝑑𝑎𝑡𝑎)}:
Let data view be an ordered collection of key value pairs,
where 𝑆𝑒𝑙𝑒𝑐𝑡 (𝑑𝑜𝑐𝑟𝑒𝑐𝑜𝑟𝑑) function generates each (k,v). 

𝑆𝑒𝑙𝑒𝑐𝑡 (𝑑𝑜𝑐𝑟𝑒𝑐𝑜𝑟𝑑) → (𝑘𝑒𝑦𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1, 𝑣𝑎𝑙𝑢𝑒𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒2): 𝑆𝑒𝑙𝑒𝑐𝑡 (·)
function has a user-defined selection logic. It scans all the
records in a database and returns a key-value pair where the
key and value are attributes of the qualified records selected
by the selection logic.

Aggregate View by Feature. In the aggregation stage,
IQUERY analyzes the blockchain data characteristics by
calculating selected records’ features from aggregated
𝑉𝑖𝑒𝑤𝑑𝑎𝑡𝑎. 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒(𝑘𝑒𝑦𝑠, 𝑣𝑎𝑙𝑢𝑒𝑠) → {∑𝑛

𝑖=1 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑖}:
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 function takes selected (k,v) pairs in 𝑉𝑖𝑒𝑤𝑑𝑎𝑡𝑎,
and outputs the features of these pairs.

We use analytical query 𝑄2 to illustrate how IQUERY
integrates Select-Aggregate style functionalities.

Example 2: 𝑄2 is an analytical query that analyzes the
total value of the recharge token in a specific time period
[𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]. To perform the query, client users send a logical
query selector in the form of 𝑄2 but specifies the time period
to IQUERY.

𝑄2 : 𝐺𝑒𝑡𝑇𝑜𝑡𝑎𝑙 ($𝑖𝑛( [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]), 𝑑𝑏𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇 𝑜𝑘𝑒𝑛)

To answer 𝑄2, IQUERY forms the 𝑉𝑖𝑒𝑤𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇 𝑜𝑘𝑒𝑛

based on 𝑑𝑏𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇 𝑜𝑘𝑒𝑛 in the selection stage. The Select
function filters all valid transactions and sets the timestamp
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Bucket 2

Node 2

h(B3) h(B4)

Node 1

h(B1) h(B2)

𝑷𝒂𝒚𝒎𝒆𝒏𝒕𝒊𝒅 𝑻𝒊𝒅 𝑻𝒊𝒎𝒆𝒔𝒕𝒂𝒎𝒑 𝑩𝒍𝒐𝒄𝒌𝒊𝒅

payment1 𝟏𝟐𝟏𝒆𝟐𝟔𝟒𝒃𝒊𝒕 𝟐𝟎𝟐𝟏 − 𝟔 − 𝟐𝟕𝑻𝟎𝟗: 𝟒𝟑: 𝟒𝟐. 𝟒𝟐𝟗𝒁 10

payment8 𝟏𝟗𝒄𝟗𝒆𝟔𝟒𝒃𝒊𝒕 𝟐𝟎𝟐𝟏 − 𝟔 − 𝟐𝟕𝑻𝟎𝟗: 𝟒𝟑: 𝟒𝟑. 𝟑𝟒𝟕𝒁 22

𝑭𝒊𝒏𝒅𝑫𝒐𝒄𝒊𝒅 𝑷𝒓𝒊𝒄𝒆 𝑼𝒔𝒆𝒓𝒊𝒅 𝑪𝒐𝒎𝒎𝒐𝒅𝒊𝒕𝒚𝒊𝒅

1 30 user1@supermarket.com #A1_pizza

2 30 user9@supermarket.com #A1_pizza

Query Results:

… … 𝒐𝒕𝒉𝒆𝒓 𝒓𝒆𝒄𝒐𝒓𝒅𝒔

Conditional query:
25 30 user18@supermarket.com #A1_pizza

Bucket 1 Bucket 3 Bucket 4

Root

h(N2) h(N3)

𝑸𝟏 = {$𝒆𝒒 𝑪𝒐𝒎𝒎𝒐𝒅𝒊𝒕𝒚𝒊𝒅: #𝑨𝟏_𝒑𝒊𝒛𝒛𝒂  , 𝒅𝒃𝑪𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝑱𝒐𝒊𝒏𝑪𝒐𝒎𝒎𝒐𝒅𝒊𝒕𝒚}
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Fig. 4. Target IQUERY𝑛 constructs a MBT-based ADS from rich query
results and generates 𝑉𝑂𝑛.

of a record as key and recharge token as value. When IQUERY
receives 𝑄2 request, it forms a time window [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑] to
select the inputs for Aggregate function from 𝑉𝑖𝑒𝑤𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦 .
Finally, all token values are added by 𝑆𝑢𝑚(·) to obtain total
values in the aggregation stage.

4.3 Multi-Origin Query Method

We design a multi-origin query method, allowing a client
user to validate whether multiple IQUERYS have answered
consistently. The multi-origin query method returns a
set of data attached with a cryptographic proof, known
as a verification object (VO), for client users to verify the
completeness and soundness of query results from the target
IQUERY data source. Example 3 indicates the usage of VO.

ADS Construction. IQUERY applies Merkle Bucket Tree
(MBT) for ADS constructions. The sequentiality of blocks
and transactions contributes to the identical ADS compared
in two distinct IQUERY data sources. We define the buckets
in MBT as follows.

Definition 1 (Records in a bucket). The query results of
𝑄 〈𝑜𝑝{𝑐1, 𝑐2...𝑐𝑛}, 𝑑𝑏〉 are a set of records. The serial
number of a record in the query results is 𝐹𝑖𝑛𝑑𝐷𝑜𝑐𝑖𝑑 and
it is computed through Eq.1. We place these records in
a set of buckets to construct MBT, and the capacity of a
bucket is denoted as 𝑐𝑎𝑝. The serial number of a bucket
is 𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑑 and the position of the records in the bucket
is 𝑝𝑜.

𝐹𝑖𝑛𝑑𝐷𝑜𝑐𝑖𝑑 = 𝑐𝑎𝑝 × (𝑏𝑢𝑐𝑘𝑒𝑡𝑖𝑑 − 1) + 𝑝𝑜 (1)

After all records in the query results are placed in the
buckets, hash buckets are computed and served as leaf
nodes of a MBT. Then MBT is constructed from bottom to
up. Moreover, ℎ𝑟𝑜𝑜𝑡 is the root of a MBT and the internal
nodes are formed by the cryptographic hashes computed
from their intermediate children. Besides, the children of an
internal node are called fanout [33].

VO Generation. After constructing the ADS, IQUERY can
generate VO from ADS. As shown in Fig. 4, VO consists
of (1) ℎ𝑟𝑜𝑜𝑡 , (2) the bucket hashes in the MBT, and (3) the
ordered query results set. A user can (i) recompute the
bucket hashes based on the query results set to ensure the
completeness of the query, (ii) compare the ℎ𝑟𝑜𝑜𝑡 from distinct

IQUERY to check the soundness of query results, because
ℎ𝑟𝑜𝑜𝑡 in VO is the digest of ADS.

Example 3: 𝑄3 is a multi-origin query that sends 𝑄 to
multiple IQUERY data sources in the decentralized IQUERY
pool, e.g., IQUERY1, IQUERY2, ..., IQUERY𝑛. A user can
decide to send 𝑄 to how many IQUERYS, which defines the
𝑛 in 𝑄3. In this example, we set 𝑄 to 𝑄1, a conditional join
query defined in §4.1. Then a client user sends the multi-
origin query to target IQUERYS.

𝑄3 : 〈IQUERY𝑛, 𝑄〉, 𝑛 = 1, 2, 3...

In the IQUERY𝑛 server side, Fig. 4 shows how target
IQUERY𝑛 constructs a MBT-based ADS from the rich query
result of 𝑄1, then generates 𝑉𝑂𝑛. The fanout is 2, and the
capacity is 8. In Example 3, IQUERY𝑛 receives a multi-origin
query requests from the client user and finds that the query
result of 𝑄1 contains 25 query records as shown in Query Re-
sults (®) of Fig. 4. A record includes many fields: 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑖𝑑 ,
Txid, Timestamp, 𝐵𝑙𝑜𝑐𝑘𝑖𝑑 , Price, 𝑈𝑠𝑒𝑟𝑖𝑑 and 𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦𝑖𝑑 ,
etc. More importantly, the returned doc has a 𝐹𝑖𝑛𝑑𝐷𝑜𝑐𝑖𝑑
which identifies the serial number of the doc in the result
set. IQUERY𝑛 uses the 𝐹𝑖𝑛𝑑𝐷𝑜𝑐𝑖𝑑 to compute which bucket
to place the record. We take the last record in the query
results with the 𝐹𝑖𝑛𝑑𝐷𝑜𝑐𝑖𝑑 25 as an example. According to
Eq. 1, 25 = 8 × (4 − 1) + 1, so this record should be put
in the 1st position of the 4th bucket. When all the records
are placed in the bucket. IQUERY𝑛 computes hash buckets
and can construct the MBT from bottom to up and establish
ADS. IQUERY𝑛 then delivers 𝑉𝑂𝑛 to the client user.

In the client user side, we show how to verify query
results with 𝑉𝑂𝑛. We assume client users receive 𝑉𝑂𝑛 from
IQUERY𝑛. If ℎ𝑟𝑜𝑜𝑡 in 𝑉𝑂1 and ℎ𝑟𝑜𝑜𝑡 in 𝑉𝑂2 are the same, the
user can ensure the soundness of query results. Because the
IQUERYS from distinct query origins return the same proof
of query integrity to prove the query results are consistent.

5 THE SECOND OPINION SMART CONTRACT

We design a game theory based method to minimize the
number of query SPs and reduce the monetary cost of users
while guaranteeing the trustworthiness of query results. The
proposed query protocol is implemented in an auditable
self-enforcing blockchain smart contract and destroys the
economic foundation of SP collusion.

5.1 Threat Model
IQUERY receives rewards from the user for providing correct
query results requested by the user, but performing query
computations incurs cost. There is a potential risk of IQUERY
giving incomplete or fake results without executing real
queries. To ensure the trustworthiness of query results, we
can query multiple IQUERYS. If the majority of query results
are consistent, we assume the result is correct. Unfortu-
nately, users cannot query all available SPs to obtain the
majority of query results due to excessive financial cost.
Alternatively, users can sample some IQUERYS to obtain
the required query results. In such circumstances, some
IQUERYS may collude and deliver fake results to save cost
as shown in Fig. 5. Therefore, we need a new query pro-
tocal to ensure the trustworthiness of query results while
minimizing the number of IQUERY.
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Fig. 5. Protocol of the user and IQUERYS using the second opinion
smart contract to complete the query procedure

We also make the following assumptions.

• Rational IQUERY always acts in a way that maximizes
its benefit (reward).

• We do not consider the incorrect query results caused
by system failures, i.e., if an IQUERY is an honest
provider, it should make the best efforts to deliver the
correct query results. Otherwise, it is a conspirator.

• An IQUERY will choose a high or low effort when
computing the query results. A high effort will al-
ways lead to a correct result. A low effort will lead to
a wrong result.

• If two IQUERYS return consistent query results, we
consider other IQUERYS who give inconsistent results
are cheating users.

5.2 Protocol of Using the Contract for Queries
We implement the mechanism of second opinion in the
smart contract [1], [2], [24], achieving a protocol between
users and IQUERYS to complete the query procedure. Based
on our design, users only need to control incentive monetary
parameters while selecting two IQUERYS for queries and
then compares their query results to ensure trustworthiness.
Moreover, the incentive mechanism encourages IQUERY to
deliver correct results to maximize its benefits.

Monetary Variables. 𝑐 is the cost for an IQUERY to compute
a query request. 𝑑 is the amount that a user agrees to pay to
IQUERY for computing the query task. A reward 𝑝 is sent to
IQUERYS who make consistent query results. 𝑣 is user utility
when the user gets a correct query result.

Fig. 5 illustrates how the user and IQUERYS use the
second opinion smart contract to complete the query pro-
cedure. We present the contract and the protocol below.

¬ First a user searches the IQUERY pool (1a) and
IQUERY𝑛 is selected to provide query service (1b).

 The second opinion contract should be signed be-
tween the user and the selected IQUERY𝑛. The user
registers a service order 𝑂𝑞𝑢𝑒𝑟 𝑦 and sets the incentive
parameters 𝑑 and 𝑝 in the smart contract (2a). 𝑑 and
𝑝 are calculated based on Theorem 2 (see §5.4). If
IQUERY𝑛 agrees with the incentive parameters and
signs the contract, IQUERY𝑛 sets the id of the query

request order 𝑂𝑞𝑢𝑒𝑟 𝑦 in the contract. The content of
𝑂𝑞𝑢𝑒𝑟 𝑦 will not be recorded in the contract (2b).

® Next, IQUERY𝑛 chooses to make a high or low effort
to compute user’s query result (3a), IQUERY𝑛 is later
placed in the selected IQUERY list (3b).

¯ Upon receiving the query result from IQUERY𝑛, the
user pays IQUERY𝑛 the agreed amount 𝑑 via the con-
tract (4a). Note that the query result is attached with
IQUERY𝑛’s signature for the message, so IQUERY𝑛

cannot refuse to acknowledge that this result has
been sent to the user. Then the user puts the returned
documents 𝑑𝑜𝑐𝑛 in the query result set, if there exist
two identical query results, the user goes to step °

(4b). Otherwise, the user repeats step ¬, i.e., the user
continues to searching for another query result until
the user finds two consistent results (4c).

° In the game theory analysis of the second opinions
model, an incentive parameter 𝑝 satisfying Theorem
2 will motivate IQUERYS to deliver honest query
results to maximize their payoffs (see §5.4). There-
fore, upon receiving two identical query results from
distinct IQUERYS (5a) in non-ordered asynchronous
queries, the user considers the query results correct.
By using the contract, the user rewards the two
IQUERYS each 𝑝

2 for being honest (5b).

5.3 Countermeasures to Prevent Collusion

Instead of forbidding or preventing collusion through cryp-
tography, we destroy the economic foundation of collusion
[14]. Using financial incentives is a reasonable solution for
preventing collusion and related works haven been studied
in economics for many years [34]. We categorize SPs into
three representative types with various abilities matching
realistic scenarios and discuss how the second opinion
mechanism motivates SPs to stay honest and follow the
protocol in the contract.

(1) A single rational SP. It cannot identify which IQUERY to
collude with because the user can randomly choose another
IQUERY. In order to maximize its payoff, the IQUERY will
choose to be honest according to the analysis in §5.4.

(2) A set of colluding rational SPs. These colluders ex-
change information to see if they have received the same
query. Once anyone of them receives a request, it can verify
if other colluding fellows have previously received the same
request and cheated the user. If other colluding fellows have
cheated the user, the SP can return a same query result to
cheat the user.

We explain why these colluders still fail to harm users’
interest. The prerequisite of a user to select the next SP
is that the user has completed the first query. Therefore,
the first SP does not know who the next SP is and has a
high risk of losing rewards if it behaves dishonestly. More
specifically, the first colluder will lose rewards, if the user
chooses a second SP who is not colluding with them. The
first colluder can only cheat the user, when he is sure the
user will select a next SP who is colluding with them.
However, the randomized SP selection approach coupled
with non-ordered asynchronous querying primitive makes
it impossible for the first colluder to infer who the user will
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choose next. Consequently, the first colluder can never be
sure wether he is able to deceive a user through collusion.

Moreover, the self-interest hypothesis can easily prove
the impracticality of SPs colluding together. Assume that a
SP tries to negotiate result duplication (fake results) with
other set of SPs. If one of those SPs in the system turns out
to be honest and reports the dishonest SP to the IQUERY
system, then the dishonest SP risks losing its reputation
and incurred rewards. Given the high-risk outcome of
a dishonest behavior, we believe it is against the self-
interest of the SP to behave dishonestly. In other words,
given the workings of the system and the secure protocols
in place, it is in the self-interest of the SP to behave honestly.
We can conclude that there is no well-established reward
mechanism possible for behaving dishonestly, except losing
reputation and existing financial gains.

(3) Malicious irrational SPs. They are willing to spend time
and money to convey questionable results or disrupt the
system.

We introduce the reputation mechanism, if a SP is re-
ported to have repeatedly provided incorrect results, it is
deleted from the IQUERY pool. As all service orders are
registered in the blockchain and IQUERY signs the query
results, users can identify adversaries who deliver malicious
query services and lose rewards from users. We also offer
an alternative way to evaluate the credibility of SPs, i.e.,
sending SPs some test queries for which the results are
already known. The IQUERY system is able to remove these
malicious users from the pool.

5.4 Game Theory Analysis

In this section, we provide a formal analysis to explain
why the second opinion model can prevent the collusion.
We assume that a user requires services from IQUERY, but
he/she does not know which IQUERY can meet his/er
requirements. The user benefits from the query service 𝑎

only if it matches his query demand 𝛼. If 𝑎 = 𝛼, his/er
utility 𝑈𝑢𝑠𝑒𝑟 is 𝑣. Otherwise, the utility is zero [34].

𝑈𝑢𝑠𝑒𝑟 =

{
𝑣, if 𝛼 = 𝑎 where 𝑣 > 0
0, if 𝛼 ≠ 𝑎

5.4.1 User Payoff
We define the user payoff under distinct searching strategies
as follows. 𝑓 is probability that the user stops after the first
search and 1 − 𝑓 is the probability of the user searching
for the second matching results. The probability of a user
selecting an IQUERY with high effort is 𝑥.

Definition 2. If the user stops after the first search, the user’s
payoff is

𝑈
(1)
𝑢𝑠𝑒𝑟 = 𝑥𝑣 − 𝑝 − 𝑑 (2)

Definition 3. If the user has to search for second matching
results, the user’s payoff is:

𝑈
(2)
𝑢𝑠𝑒𝑟 = 𝑣 − 𝑝 − 2𝑑

𝑥
(3)

By comparing the payoff 𝑈
(1)
𝑢𝑠𝑒𝑟 in Eq. 2 with 𝑈

(2)
𝑢𝑠𝑒𝑟 in

Eq. 3, the user chooses the strategy that bringing higher
payoff.

Proof 5.1. We prove the user payoff 𝑈
(2)
𝑢𝑠𝑒𝑟 in Definition 3.

First, we need to prove the search cost of finding two
matching results. We assume the query result of the n-
th IQUERY is correct and a random sampled IQUERY
computes the correct query result with probability 𝑥.
Therefore, the expected duration of the search for one
correct query result is 1

𝑥
. This means that

𝑛∑︁
𝑖=0

(1 − 𝑥)𝑖 = 1 − (1 − 𝑥)𝑛
1 − (1 − 𝑥) =

1
𝑥

(4)

Therefore, the expected duration of the search for two
correct query results is 2

𝑥
and the corresponding expected

search cost is 2𝑑
𝑥

. The payoff 𝑈
(2)
𝑢𝑠𝑒𝑟 in Eq. 3 equals the

utility of a user getting correct results (𝑣) minus the amount
that the user rewards IQUERYS who make consistent query
results (𝑝) minus the search cost of finding two matching
results ( 2𝑑

𝑥
).

5.4.2 IQUERY Payoff
We define the IQUERY payoff under distinct computation
strategies as follows. First, let probability 𝐵 denotes the
IQUERY’s belief conditional on the user accepting the query
result.
Definition 4 (IQUERY’s belief). 𝐵 is formalized as:

𝐵 =
𝑥

𝑓 𝑥 + 2(1 − 𝑓 ) (5)

We use the following notations to calculate 𝐵:

• 𝑛: the number of query results received before the
sampling of IQUERY 𝑘 .

• 𝐻𝑘 : the set of histories such that 𝑘 is sampled.
• 𝑃(𝑛|𝐻𝑘 ): the probability that a user receives 𝑛 query

results before sampling IQUERY 𝑘 (conditional on 𝑘

being sampled) [35].
• 𝑇 : the random stopping time of the search over the

set of IQUERYS excluding 𝑘 .
Proof 5.2. We prove IQUERY belief 𝐵 of Definition 4. We

compute 𝑃(𝑛 | 𝐻𝑘 ) by decomposing the sampling pro-
cess over IQUERYS other than k into the disjoint events,
T = 1, 2, .... This yields,

𝑃(𝑛 | 𝐻𝑘 ) =
∑︁

𝑚≥𝑛+1

𝑃(𝑛 | 𝑇 = 𝑚, 𝐻𝑘 )𝑃𝑟 (𝑇 = 𝑚 | 𝐻𝑘 ) (6)
Notice that,

𝑃(𝑛 | 𝑇 = 𝑚, 𝐻𝑘 ) =


1
𝑚

𝑖 𝑓 0 ≤ 𝑛 ≤ 𝑚 − 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)
Furthermore,

𝑃𝑟 (𝑇 = 𝑚 | 𝐻𝑘 ) =
𝑃𝑟 (𝐻𝑘 | 𝑇 = 𝑚)𝑃𝑟 (𝑇 = 𝑚)∑
𝑛≥1 𝑃𝑟 (𝐻𝑘 | 𝑇 = 𝑛)𝑃𝑟 (𝑇 = 𝑛)

=
𝑚 × 𝑃𝑟 (𝑇 = 𝑚)∑
𝑛≥1 𝑛 × 𝑃𝑟 (𝑇 = 𝑛)

(8)

where the last equality uses the fact that

𝑃𝑟 (𝐻𝑘 | 𝑇 = 𝑚)
𝑃𝑟 (𝐻𝑘 | 𝑇 = 𝑛) =

𝑚

𝑛
(9)

To compute the likelihood ratio of two zero probability
events we take the limit of shrinking neighbourhoods of
positive probability. Hence,
𝑃𝑟 (𝐻𝑘 | 𝑇 = 𝑚)
𝑃𝑟 (𝐻𝑘 | 𝑇 = 𝑛) = lim

𝜖→0

𝑃𝑟 ({𝐻�̃� | �̃� ∈ [𝑘, 𝑘 + 𝜖]} | 𝑇 = 𝑚)
𝑃𝑟 ({𝐻�̃� | �̃� ∈ [𝑘, 𝑘 + 𝜖]} | 𝑇 = 𝑛)

= lim
𝜖→0

1 − (1 − 𝜖)𝑚
1 − (1 − 𝜖)𝑛 =

𝑚

𝑛
(10)
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and therefore equation Eq.9 follows. Substituting Eq.8
and Eq.7 into Eq.6 yields

𝐵 = 𝑃(0 | 𝐻𝑘 ) =
∑

𝑚≥1 𝑃𝑟 (𝑇 = 𝑚)∑
𝑛≥1 𝑛 × 𝑃𝑟 (𝑇 = 𝑛) =

1
𝑓 + (1 − 𝑓 ) 2

𝑥
(11)

where the last equality follows since
∑

𝑚≥1 𝑃𝑟 (𝑇 = 𝑚) = 1
and

∑
𝑛≥1 𝑛 × 𝑃𝑟 (𝑇 = 𝑛) = 𝑓 + (1 − 𝑓 ) 2

𝑥
.

Definition 5. With high effort, IQUERY’s payoff is:

𝑈
ℎ𝑖𝑔ℎ

IQUERY
= 𝑑 + 𝑝 𝑓 𝐵 + (1 − 𝑓 𝐵) 𝑝

2
− 𝑐 (12)

Definition 6. With low effort, IQUERY’s payoff is:

𝑈𝑙𝑜𝑤
IQUERY = 𝑑 + 𝑝 𝑓 𝐵 (13)

By comparing 𝑈
ℎ𝑖𝑔ℎ

IQUERY
in Eq. 12 with 𝑈𝑙𝑜𝑤

IQUERY
in Eq. 13,

the IQUERY chooses the strategy that bringing higher payoff.
Proof 5.3. In Eq. 12, 𝑓 𝐵 is the probability that the user has

never sampled before and stops after the first query and
(1 − 𝑓 𝐵) is the probability that the user searches for a
matching query results. In the latter case, IQUERY gains a
reword with probability 1

2 . This follows because the user
samples IQUERYS in random order and the quality of the
service provided by the IQUERY following the U(0, 1)
uniform distribution according to the assumptions in
§5.4. On the other hand, if IQUERY does not incur the
cost c, it will give an incorrect query result. The expected
profit 𝑈𝑙𝑜𝑤

IQUERY
in this case is 𝑑 + 𝑝 𝑓 𝐵 in Eq. 13.

Equilibrium. The profile (𝑑, 𝑝, 𝑥, 𝑓 ) is a fixed price equilib-
rium if the user’s search strategy, 𝑓 , is optimal given (𝑑, 𝑝, 𝑥)
and the IQUERYS’s effort decision 𝑥 ∈ [0, 1] is optimal given
(𝑑, 𝑝, 𝑥, 𝑓 ) and the belief 𝐵. (𝑑, 𝑝, 𝑥, 𝑓 ) is non-degenerate if
IQUERYS choose high effort with positive probability, i.e. if
𝑥 > 0.

5.4.3 Incentive Parameter Control
Based on the definitions of payoff functions, we can

derive theorem 1 and theorem 2 to calculate the conditions
that need to be satisfied between monetary variables. Users
control incentive monetary parameters 𝑑 and 𝑝 in the smart
contract, so that 𝑑 ≤ 𝑑 ≡ 𝑣

2
√

2+3
(according to Theorem 1) and

𝑝 > 2𝑐 (according to Theorem 2) are satisfied. We motivate
the rational user to ask a second opinion and IQUERYS to
return the correct query results with high effort to maximize
their payoffs. Therefore, we can minimize the number of
query SPs while guaranteeing the trustworthiness of the
query results.
Theorem 1 (Conditions for a user to search a second

opinion). In a non-degenerate fixed price equilibrium,
if 𝑑 ≤ 𝑑 ≡ 𝑣

2
√

2+3
is satisfied in the smart contract, the user

weakly prefers to ask a second opinion and search for
two matching query results where

𝑈
(2)
𝑢𝑠𝑒𝑟 ≥ 𝑈

(1)
𝑢𝑠𝑒𝑟 , 𝑖.𝑒.,

𝑣 − 𝑝 − 2( 𝑑
𝑥
) ≥ 𝑥𝑣 − 𝑝 − 𝑑 (14)

Users can quantify the value of 𝑣 based on custom
methods, e.g., the analytic hierarchy process (AHP) [36].
Then users are able to calculate the acceptable 𝑑 to pay to

IQUERY for computing the query task, and set the monetary
parameters in the smart contract.

Proof 5.4. Eq. 14 can be solved for 𝑥 ∈ [0, 1] when 𝑑 ≤ 𝑑 ≡
𝑣

2
√

2+3
, that is, when the service fee are not too large. In

that case, Eq. 14 is satisfied for all 𝑥 ∈ [𝑥(𝑑), 𝑥(𝑑)] where
𝑥(𝑑) < 1 and 𝑥(𝑑) < 1 are the two roots of the quadratic
equation implied by Eq. 14 when it holds with equality.
Eq. 14 implies that the user can only be induced to search
for a matching query result if 𝑑 ≤ 𝑑 ≡ 𝑣

2
√

2+3
. Hence, non-

degenerate equilibria can exist only when 𝑑 ≤ 𝑑.

Theorem 2 (Conditions for IQUERY to be honest). In a non-
degenerate fixed price equilibrium, if 𝑝 > 2𝑐 is satisfied
in the smart contract, IQUERY has a greater incentive to
make a high effort to return a correct result where

𝑈
ℎ𝑖𝑔ℎ

IQUERY
> 𝑈𝑙𝑜𝑤

IQUERY, 𝑖.𝑒.,

𝑑 + 𝑝 𝑓 𝐵 + (1 − 𝑓 𝐵) 𝑝
2
− 𝑐 > 𝑑 + 𝑝 𝑓 𝐵 (15)

𝑐, IQUERY’s cost for computing the query request, can
be quantified from history off-chain computation cost. Then
users are able to set an acceptable 𝑝 in the smart contract
that is greater than 2𝑐.

Proof 5.5. We need to prove with any probability 𝑓 , 𝑈ℎ𝑖𝑔ℎ

IQUERY

is always greater than 𝑈𝑙𝑜𝑤
IQUERY

. If when 𝑓 = 0, (1− 𝑓 𝐵) 𝑝

2 >

𝑐 is satisfied, then for any 𝑓 ∈ [0, 1], (1− 𝑓 𝐵) 𝑝

2 > 𝑐 will be
satisfied. So we have the monetary variable relationship
𝑝 > 2𝑐 that must be satisfied.

5.5 Query Frequency Analysis

Existing blockchain query layer is able to apply the
replication-based approach to guarantee the trustworthiness
of query results. More specifically, users send query requests
to multiple SPs and cross-check the query results. Hence,
we analyze how many SPs a user has to query by using
the replication-based approach, i.e., the query frequency to
ensure result trustworthiness with a formal proof.

We make the following assumptions to define the prob-
ability of getting trustworthy query results.

• Let 𝑛 be the number of SPs in the network, and 𝐸 is
the query procedure, i.e., a user sends a query request
to a single SP. There are only two possible outcomes
in 𝐸 : 𝐴 and 𝐴, 𝐴 = {SP returns correct results}, 𝐴 =

{SP returns wrong results}. Then, we have 𝑃(𝐴) =

𝑝, 𝑃(𝐴) = 1 − 𝑝 = 𝑞 (0 < 𝑝 < 1).
• If the probability of event 𝐴 occurring in each 𝐸 is

𝑝, in a Bernoulli process [37], the probability of event
𝐴 happens 𝑘 times is 𝑃(𝐴 = 𝑘) = 𝐶𝑘

𝑛 𝑝
𝑘𝑞𝑛−𝑘 , 𝑘 =

0, 1, 2, ...𝑛.
• A user can cross-check query results retrieved from

different SPs to validate the correctness of query
results. A user gets verifiable query results only when
the number of correct results is greater than the
number of wrong results.

The number of correct results when a user selects any
𝑦 SPs for query, conforms to the Binomial distribution, i.e.,
𝐴 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑦, 𝑝). When 𝑦 is large, 𝑥 is not close to 0 or 1,
then 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑦, 𝑝) ≈ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝑦𝑝, 𝑦𝑝(1 − 𝑝)).
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Definition 7. The probability that a user cannot get verifiable
query results is 𝑃(𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑦, 𝑝) ≤ 𝑦

2 ), i.e., the number
of correct results are less than or equal to 𝑦

2 :

𝑃(𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑦, 𝑝) ≤ 𝑦

2
) ≈ 𝑃(𝑁𝑜𝑟𝑚𝑎𝑙 (𝑦𝑝, 𝑦𝑝(1 − 𝑝)) ≤ 𝑦

2
)

= 𝑝𝑛𝑜𝑟𝑚( 𝑦
2
, 𝑦𝑝, 𝑦𝑝(1 − 𝑝)) (16)

TABLE 3
Minimum Query Frequency with Given 𝑝𝑡𝑟𝑢𝑠𝑡 and 𝑝ℎ𝑜𝑛𝑒𝑠𝑡

𝑝𝑡𝑟𝑢𝑠𝑡 𝑝ℎ𝑜𝑛𝑒𝑠𝑡 y

95% 78% 5

95% 80% 4

Minimum Query Frequency Calculation. We assume that
there are enough SPs in the network. If a user initiates a
query request to an arbitrary SP in the network, 𝑝 equals the
proportion of honest SPs 𝑝ℎ𝑜𝑛𝑒𝑠𝑡 in the network. A user sets
a query credibility threshold 𝑝𝑡𝑟𝑢𝑠𝑡 , i.e., the probability that
the user gets a verifiable query result is greater than or equal
to 𝑝𝑡𝑟𝑢𝑠𝑡 . Moreover, we have 𝑝𝑡𝑟𝑢𝑠𝑡 = 1 − 𝑃(𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑦, 𝑝) ≤
𝑦

2 ). With given 𝑝ℎ𝑜𝑛𝑒𝑠𝑡 and Eq. 16, we can compute the
minimum query frequency 𝑦 to achieve 𝑝𝑡𝑟𝑢𝑠𝑡 that satisfies
user needs.

Table 3 lists the 𝑦 with corresponding 𝑝𝑡𝑟𝑢𝑠𝑡 and 𝑝ℎ𝑜𝑛𝑒𝑠𝑡 .
For example, when a user wants to achieve query confidence
of 95%, and the proportion of honest SPs in the network is
78%, the user has to query 5 SPs at least. Notably, with the
help of the second opinion smart contract, a user only needs
to query two SPs to achieve 100% query credibility.

6 EVALUATION

In this section, we provide a set of comprehensive ex-
periments. Our second opinion mechanism only needs to
compare two copies of query results to ensure the trustwor-
thiness (tackle R1), while the query frequency is 2 ∼ 134
× less than the state-of-the-art systems. Moreover, our pro-
posed system offers a set of rich query semantics to support
different types of queries, e.g., conditional, analytical, and
multi-origin query methods (tackle R2). In terms of these
query semantics, IQUERY is 2 ×, 7 ×, and 1.5 × faster than
advanced blockchain and blockchain databases (tackle R3).

6.1 Experimental Setup

Cluster Setup. We perform all experiments on a 7 node
cluster interconnected with 1Gbps networking. Each node
has an equal configuration with 32 cores (2.40GHz Intel
Xeon E5 v3 CPU), 256 GB RAM, 2 TB hard drive, and
Ubuntu 14.04 Trusty operation system. The prototype is
implemented by Node.js, interacting with Hyperledger Fab-
ric v1.4 or Geth v1.10.23 (popular Go implementation of
Ethereum) as the underlying blockchain technology, and
CouchDB 2.3.1 is used to store off-chain data.

Datasets. The datasets consist of four types of transactions
as shown in Table 2 of §3.2, which is simulated by Caliper
[38]. The size of each record is 300 Byte, and an exam-
ple record is in the form of {commodityID: #A1 pizza,
Txid:121𝑒264𝑏𝑖𝑡 , timestamp: t, price:30, ...}. We use the same

TABLE 4
Query Operation Benchmark

𝑞1 〈[$𝑒𝑞 (𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 :?) , 𝑑𝑏𝑖𝑛𝑖𝑡𝑈𝑠𝑒𝑟 〉

𝑞2 〈[𝑏𝑠𝑡𝑎𝑟𝑡 , 𝑏𝑒𝑛𝑑 ], $𝑒𝑞 (𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑇 𝑦𝑝𝑒 : 𝑐𝑙𝑜𝑡ℎ𝑒𝑠) , 𝑑𝑏𝑖𝑛𝑖𝑡𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 〉

𝑞3 〈$𝑖𝑛(𝑝𝑟𝑖𝑐𝑒 : [𝑛𝑢𝑚𝑠 , 𝑛𝑢𝑚𝑒 ]) , 𝑑𝑏𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇𝑜𝑘𝑒𝑛 〉

𝑞4 〈$𝑒𝑞 (𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦𝑖𝑑 :?) , 𝑑𝑏𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐽𝑜𝑖𝑛𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 〉

𝑞5 𝐺𝑒𝑡𝑇 𝑜𝑡𝑎𝑙 ($𝑒𝑞 (𝑈𝑠𝑒𝑟𝑖𝑑 :?) , 𝑑𝑏𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇𝑜𝑘𝑒𝑛)

𝑞6 𝐴𝑛𝑎𝑛𝑙𝑦𝑧𝑒𝑈𝑛𝑖𝑞𝑢𝑒𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦 (𝑑𝑏𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐽𝑜𝑖𝑛𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦)

𝑞7 〈IQUERY𝑛 , 𝑞〉, 𝑛 = 1, 2, 3...

configurations as the SEBDB experiment [8]. Each block con-
tains 200 transactions. We use SHA-256 for VO generation.

Workloads. The workloads include seven queries listed in
Table 4. 𝑞1 tracks all 𝑡𝑥𝑖𝑛𝑖𝑡𝑈𝑠𝑒𝑟 from the indexed 𝑑𝑏𝑖𝑛𝑖𝑡𝑈𝑠𝑒𝑟 ,
where the user identities belong to a certain organiza-
tion. 𝑞2 tracks all 𝑡𝑥𝑖𝑛𝑖𝑡𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦 in a time window, i.e.,
[𝑏𝑠𝑡𝑎𝑟𝑡 , 𝑏𝑒𝑛𝑑], where the product type is clothes. 𝑞3 tracks
all 𝑡𝑥𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇 𝑜𝑘𝑒𝑛 where the recharge token is within an
amount window, i.e., [𝑛𝑢𝑚𝑠 , 𝑛𝑢𝑚𝑒]. 𝑞4 tracks the complete
information of a consumption payment which contains
𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦𝑖𝑑 . It selects from 𝑑𝑏𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐽𝑜𝑖𝑛𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦

which joins 𝑡𝑥𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 and commodity details.
𝑞5 and 𝑞6 are analytical query operations. 𝑞5 analyzes the
total user recharge of 𝑈𝑠𝑒𝑟𝑖𝑑 . 𝑞6 tracks unique commodities
in all consumption payment transactions. 𝑞7 delivers 𝑞 to
multiple origin SPs (identified by IQUERY𝑛) to evaluate the
performance of multi-origin query operations. Note that 𝑞

is a user-defined rich semantic query.

Metrics. Latency is measured as the average response time
per query operation. We evaluate the multi-origin query
with the following metrics: (i) VO construction cost in terms
of IQUERY server CPU time, (ii) result verification cost in
terms of user CPU time, and (iii) size of the VO.

6.2 IQUERY Efficiency and Trustworthiness Evaluation

In this subsection, we first demonstrate efficient implemen-
tation of our proposed system by performing 𝑞1 in Fabric,
Ethereum, SEBDB, and IQUERY in a single node. Next,
we turn on the second opinion method to show off the
advantage of IQUERY that ensures the trustworthiness of
query results.

Efficiency evaluation in single node. We first raise the block
number from 500 to 2500 and fix the returned result size to
10,000. Fig. 6 shows that the proposed system outperforms
the state-of-the-art systems in terms of latency. It is because
IQUERY applies a record-level B-tree, a more efficient in-
dex for retrieving blockchain data than the block-level B-
tree used by SEBDB and the Merkle Patricia tree used by
Ethereum. Moreover, Fabric utilizes the smart contract APIs
to query the world state database where the indexes are not
optimized.

Secondly, we fix the block number to set the number of
transactions in the blockchain database and adjust the result
size from 2,000 to 1,250,000. Fig. 7 shows IQUERY achieves
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the smallest latency. Note that, Fabric runs out of memory
when the result size is 1,250,000.

The efficiency of achieving trustworthiness. Our second
opinion mechanism only needs to compare two copies of
query results to ensure the trustworthiness which is 2.5 or
2 × less than SEBDB, Fabric and Ethereum with different
trustworthiness configurations. The fewer copies of query
results, the fewer resulting transactions will be queried.
Consequently, IQUERY reduces the query latency signifi-
cantly.

To define trustworthiness, we denote the query config-
urations in the form of C/P, where C is the confidence of
query results, and P is the percentage of honest SPs in the
blockchain query layer. We intend to compare the query
efficiency of three systems under different trustworthiness
configurations. Fig. 8 shows that the latency of IQUERY is
7 ∼ 270 × less than other three systems for executing 𝑞1
when the result size rises.

By employing the second opinion smart contract, a
user only needs to query two origins to ensure that ratio-
nal IQUERY will return correct results. SEBDB, Fabric and
Ethereum support query ledger data from local databases,
e.g., the state and history databases. According to the anal-
ysis in Table 3 of §5.5, when the confidence is 98%, and the
percentage of honest SPs in the blockchain query layer is
78%, a user needs to query four origin SPs in SEBDB(98,78).
When C is 95%, and P is 80%, a user needs to query five
origin SPs in SEBDB(95,80). Consequently, with fixed sin-
gle query result size, SEBDB/Fabric/Ethereum(98,78) and
SEBDB/Fabric/Ethereum(95,80) need to return four × and

five × the amount of data a single 𝑞1 request requires,
respectively.

6.3 Evaluation of IQUERY Flexibility

In this subsection, we evaluate the rich query APIs offered
by IQUERY to demonstrate its flexibility while guaranteeing
its efficiency.

Range query. 𝑞2 is a temporal query, which is required to
provide a pair of time window (𝑇𝑊) parameters (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑).
Let 𝑠𝑡𝑎𝑟𝑡 = 0, and change 𝑒𝑛𝑑 block number to 1000/2𝑖−1

for 𝑇𝑊𝑖 . We set blockchain to contain 10,000 𝑡𝑥𝑖𝑛𝑖𝑡𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦

and there exist 1,000 resulting transactions. Fig. 9 shows that
IQUERY outperforms the other three systems for executing
𝑞2.

Fig. 10 and 11 show that IQUERY achieves the best per-
formance, while Fabric has the highest latency for executing
𝑞3. In Fig. 10, the number of resulting transactions is fixed
to 1,000. The resulting transactions are the 𝑡𝑥𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒𝑇 𝑜𝑘𝑒𝑛

whose price attribute falls into the price window. In Fig. 11,
the number of resulting transactions is changed from 1,000
to 10,000. The latency of IQUERY, SEBDB and Ethereum
remains stable. It is because IQUERY applies the layered
index in CouchDB, while SEBDB and Ethereum employ a
customized layered index in the contract layer.

Join query. Fig. 12 and 13 demonstrate that IQUERY
achieves the best performance, compared with two other
systems for performing join query 𝑞4. Fig. 12 shows that the
latency of IQUERY and SEBDB remains the same when we
increase block number (blockchain database size) and fix the
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result size to 10,000. It is because IQUERY applies a joined
table 𝑑𝑏𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐽𝑜𝑖𝑛𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦 , whereas SEBDB employs a
layered index.

Fig. 12 shows that Fabric has the most significant la-
tency. Because in Fabric and Ethereum queries, we need
to add user details, price, and commodity information
fields for 𝑡𝑥𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 in the smart contract. It
significantly increases the read and write time of smart
contracts. Furthermore, in order to implement 𝑞4 opera-
tions, SEBDB needs to query 𝑡𝑥𝑐𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 table
and commodity information table with a layered index for
the join operation. The runtime join operations introduce
an additional operation cost. IQUERY applies a joined table
𝑑𝑏𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐽𝑜𝑖𝑛𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡 𝑦 built in the block information
extracting stage in advance, thus reducing query latency.
Fig. 13 shows that IQUERY maintains its performance ad-
vantages when the result size rises from 1,000 to 5,000.
Analytical query. The analytical query is a unique feature
offered by IQUERY, which allows users to reconstruct meta
records and analyze blockchain data (see §4.2). We extend
Fabric, Ethereum and SEBDB by first querying blockchain
data and then analyzing data on the client side. Fig. 14
illustrates that the latency of IQUERY is 102 ∼ 105 × less
than other three systems for executing 𝑞5 with the record
size from 2,000 to 1,250,000. The record size is the amount
of blockchain transaction records that need to be analyzed.
IQUERY maximizes the parallel processing for designing the
analytical query to achieve outstanding performance. Note
that, Fabric is unable to respond to the query requests when
the record size is 1,250,000. Fig. 15 shows that IQUERY’s
latency is 25 ∼ 7 × smaller than SEBDB, 315 ∼ 85 × less than
Fabric, and 46 ∼ 13 × less than Ethereum when performing
𝑞6 with the record size from 1,000 to 5,000.

6.4 Evaluation of the Multi-Origin Query
The multi-origin query enables users to efficiently verify the
correctness of query results from distinct IQUERY. Because
Fabric and Ethereum do not implement the VO mechanism,
in this subsection, we benchmark multi-origin query 𝑞7 in
IQUERY and SEBDB. As mentioned in §4.3, the multi-origin
query is an authenticated query method that can increase
the trustworthiness of any query semantics. Note that it is
not query semantics but resulting transactions that affects
the performance of the multi-origin query. On the other
hand, authenticated range query and authenticated tracking
query have different performances in SEBDB. Consequently,
we denote SEBDB-Tracking and SEBDB-Range as the per-
formance results of authenticated tracking query 𝑞1 and
authenticated range query 𝑞2 in SEBDB. Besides, we only
use iQuery to denote the performance of authenticated 𝑞1
and 𝑞2 in IQUERY.
VO size. The resulting transactions are set as 10,000. Fig. 16
shows that the VO size of IQUERY is always smaller than
the other two methods of SEBDB. The smaller the VO size,
the smaller the network bandwidth will be consumed in
large-scale application query scenarios. SEBDB adds sibling
nodes to VO, thus increasing VO size. Fig. 16 illustrates that
the VO size of IQUERY stays constant, and the VO size of
SEBDB increases when the block size increases. Because the
VO size of SEBDB depends on the number of blocks that

contain query results [8] and the VO size of IQUERY only
depends on the size of resulting transactions.
VO construction cost. We compare the VO construction cost
in terms of CPU time on the server side. Fig. 17 shows
that the VO construction cost of IQUERY is always smaller
than the other methods because SEBDB applies Merkle B-
tree (MB-tree) to generate VO and IQUERY employs Merkle
Bucket Tree (MBT). With the same number of indexed nodes,
the height of the MBT is smaller, thus the VO construction
cost is smaller.
Result verification cost. We compare the result verification
cost in terms of user CPU time on the client side. Fig. 18
shows that the result verification cost of IQUERY is 103×
less than SEBDB-Tracking and SEBDB-Range. Because the
multi-origin query method in IQUERY builds a MBT based
on query results, the client only needs to check the root hash
to verify the correctness of query results. On the other hand,
the client needs to reconstruct every MB-tree root, where the
MB-tree contains query results in SEBDB.

7 CONCLUSION AND FUTURE WORK

We propose IQUERY, a novel blockchain analytics system
which is scalable and decentralized. A user pays the SP
for every query request and applies the replication-based
approach to guarantee the trustworthiness of query results.
However, some SPs may collude and deliver fake results
to save costs and maximize their benefits. Therefore, we
propose a query protocol based on game theory that can
destroy collusion’s economic foundation.

In real-world scenarios, a trusted third party is usually in
charge of enforcing protocols. Fortunately, blockchain pro-
vides a trusted execution environment, and smart contracts
guarantee the protocol execution according to predefined
rules. Consequently, we design the second opinion smart
contract, incentivizing SPs to deliver honest query services
and minimizing the user’s monetary cost. Moreover, the
trustworthiness, flexibility and effectiveness of our system
have been proved in a real blockchain system. Extensive ex-
periments demonstrate that the performance of our system
significantly surpasses state-of-the-art systems.

For future work, we plan to build a decentralized reputa-
tion mechanism for IQUERY. We may further propose a rep-
utation blockchain, a side chain recording the query orders
between IQUERY and users in the blockchain query layer.
The consensus protocol in reputation blockchain utilizes
reputation rank as the measurement of IQUERY ’s trust and
the probability of a leader-elected consensus process. Users
tend to select high reputation IQUERYS for query services,
thus increasing the revenue of these IQUERYS.
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