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Abstract—Advanced communication systems and military reconnaissance are
increasingly prevalent in high-tech environments, greatly supported by the
flourishing in signal processing technologies. The recent exponential proliferation of
sensors led to an unprecedented expansion in the scale and diversity of signals
across various modalities. Such influx poses significant challenges in effectively
integrating multi-modal signal data to deliver comprehensive and interpretive
solutions across a diverse range of applications. In this paper, we provide an
overview of the core issues, challenges, and future research directions in different
stages of developing large-scale multi-modal signal processing models.
Additionally, we introduce a prior investigation into signal representation learning,
where we propose a contrastive learning-based framework to extract fine-grained
signal features under few-shot conditions. Our proposed framework achieves a
24.1% performance improvement over baseline approaches, consistently
demonstrating superiority over state-of-the-art methods. The code is accessible

in this repository: https://github.com/YYH211/LSM.
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patterns from raw signals that may lack visual inter-
pretability. This has led to notable achievements across
a range of applications, including cognitive radio, mil-
itary reconnaissance, threat evaluation, and spectrum
monitoring, among others.

Benefiting from the powerful pattern extraction capa-
bilities of deep learning approaches, the signal
processing community starts to discern meaningful

Recently, the contemporary digital landscape is wit-
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in a multitude of modalities, encompassing a variety of
types (e.g., radar signals, WiFi signals, and modulated
signals) as well as various formats (e.g., constella-
tion diagrams and spectrograms), driving the need for
more sophisticated and efficient methods to manage
and interpret this vast influx of data. Nonetheless,
existing methods tend to be task-specific, modality-
restricted and generalization-limited, making them
less capable of handling complex applications and
potentially leading to adverse impacts, as illustrated in
the following examples.

Smart Semantic Communication. The next genera-
tion of end-to-end intelligent semantic communication
systems equipped with artificial intelligence technology
has been proposed due to the problem of transmis-
sion error of binary bit streams used in traditional
communication. In this new paradigm, the multi-modal
information (text, speech, images, etc.) being trans-
mitted is compressed into semantic information at
the transmitter and decoded at the receiver. The use
of semantic transmission effectively mitigates the bit
error rate (BER) problem at low signal-to-noise ratios.
However, there is still a huge gap between the current
version of semantic communication and its practical
application, i.e., the general semantic communication
model that has not yet been developed.

As depicted in Figure conventional semantic
communication approaches predominantly utilize end-
to-end neural networks, rendering them deficient in
generalization to novel signals. Consequently, when
senders transmit novel signals via conventional se-
mantic communication, they encounter semantic diver-
gence issues, leading to inaccuracies in reconstruct-
ing the novel signal message from the receiver 1
perspective. In contrast, on the new paradigm (i.e.,
multi-modal based smart semantic communication),
the model on the receiver 2 side should be able to fuse
the multi-modal data knowledge and give an analysis.
Such communication paradigm could provide more
high quality message transmission ability as well as
the generalization ability.

Given these circumstances, the urgency to develop
a large-scale multi-modality model for signal process-
ing has become more apparent. The Al community
has already seen revolutionary advancements in the
vision and language processing fields with the rise of
large-scale multi-modality models such as PixelBERT#
and PaLM-E®. However, signals often possess unique
attributes that distinguish them from images and texts,
presenting new challenges in the development of large-
scale multi-modality models. To this end, we com-
prehensively investigate the primary challenges en-
countered throughout the lifecycle of designing multi-
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FIGURE 1. The difference between the current semantic
communication model and the smart semantic communication
model.

modality signal models and outline the corresponding
key research directions.
The main contributions are summarized as follows:

e This is the first position paper that compre-
hensively investigates the key challenges and
corresponding research directions in developing
large-scale multi-modal signal models.

e We propose a novel contrastive learning-based
framework for learning fine-grained signal rep-
resentations under few-shot sample conditions,
which serves as a foundational step in the de-
sign of multi-modality signal model architectures.

e Extensive experiments were conducted, and we
studied the proposed framework in detail. The
promising results suggested its effectiveness

Automatic Modulation Recognition contributes as the
mainstream task in the communication signal process-
ing domain, which aims to identify the modulation
category of the received radio signals. This technology
is widely used in spectrum management, interference
identification, and electronic reconnaissance systems.

Due to the label scarcity property of communica-
tion signals, large-scale signal processing often relies
on unsupervised learning approaches, which can be
mainly divided into two categories: Context-based
methods®”®¥ aiming to leverage local-global con-
trastive optimization to extract meaningful information
from raw signals, and Instance-based methods™"",
which aim to leverage local-wise or instance-wise con-
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FIGURE 2. Challenges on the large-scale multi-modal signal model development life-cycle.

trastive optimization for the same purpose. However,
the previous approaches mainly adapted from the vi-
sion or language domain neglect the impact of noise
on the unique properties (such as frequency, phase,
and amplitude) in the signal domain. When applied
to data migration between different signal scenarios,
these methods may suffer from model collapse and
accuracy degradation.

In this section, we briefly investigate the key challenges
during the multi-modal signal model development life-
cycle (as presented in Figure [2). Specifically, we an-
alyze the issues encountered throughout the develop-
ment lifecycle due to the distinct properties of signals,
such as noise interference, unique characteristics, and
the challenge of objective interpretability.

Data Processing

Challenge—Data Contamination. A problem also
studied in the context of large language models,®
pertains to the possibility of testing content available on
the web being unintentionally included in the training
data. This can lead to a distortion in the performance
evaluation of high-capacity models. The issue of data
contamination in signal data (e.g., modulated signals
and radar signals) can be markedly more complex, as
signals are often transmitted in open environments that
are prone to substantial noise interference. Such data
contamination could distort the original patterns that
exist in signals, resulting in erroneous interpretations
and inaccurate model predictions.
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Potential Direction—Noise Reduction. The problem
of model instability due to noise interference in sig-
nals is significant, as noise types and sources dif-
fer. Traditional noise reduction approaches work well
in vision and language processing, but the unique
challenges of signal noise due to air transmission
require a different solution. One proposal is an adaptive
noise filtering module that can adjust to different types
of signals. This could include a system combining a
conditional signal module and a denoising module,
which would apply specific conditions to the noisy
signal and clean it at the feature level. This would
help the learning system adapt better from the start.
Another suggestion is equivariant learning,2 which
maintains the consistency of noisy data under differ-
ent transformations. This would need a specialized
augmentation/transformation function designed around
the specific properties of signals, such as symmetry
and periodicity, for the optimization of the equivariance
constraint. This approach could enhance the denoising
capability of the system.

Challenge—Modality Discrepancy. Benefiting from
the inherent complementary nature and shared se-
mantics across vision-language-speech modalities,
cross-modal integration/fusion has been extensively
studied and achieved significant advancements in vari-
ous applications. However, the signal domain presents
significant heterogeneity for different modalities, rang-
ing from different categories (e.g., radar and WiFi
signals) to varied representations (e.g., constellation
diagram and spectrogram). The absence of inher-
ent semantic links largely increases the complexity
of feature alignment, which could result in negative
information interfering with the future feature extraction
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procedure.

Potential Direction—Multi-Modal Expert Labelling.
The recent advancements in cross-modal/multi-modal
learning systems are largely accredited to the existing
extensive parallelized cross-modality data (i.e., images
with corresponding text descriptions). However, as the
aforementioned signal domain limitation, the semantic
connection has still not been defined and investigated.
A penitential solution for connecting different modal-
ities on a signal domain could be “Expert Attribute
Generation". For example, similar to the vision fields
that describe the observable distinguishing proper-
ties (e.g., “black: yes, stripes: yes, eats fish: no") of
objects as a text auxiliary information, the observ-
able distinguishing properties of signal domain (e.g.,
"temporal frequency, amplitude, and pulse") could be
introduced. By introducing such intermediate attributes
with text and numerical descriptions, the large-scale
learning system would be able to map various signals
into shared semantic subspace for feature-level cross-
modality interaction and information complementari-
ness. Additionally, the designed attributes will largely
affect the final performance of the learning system, so
expert domain knowledge should be considered during
the design.

Network Architecture

Challenge—Complex Feature Modeling. The recent
advancements in the vision and language processing
community can be largely attributed to the specially
designed network architecture (e.g., Transformer and
its variants), which is capable of modeling complex
patterns, such as spatial-temporal patterns, from im-
ages and text tokens. These designs often take into
account the inherent properties and characteristics of
the image/text data being processed. For example,
the attention mechanism is designed to capture the
contextual relevance of different image/text pieces.
This allows the model to concentrate on the most
salient aspects, enhancing its interpretive capabilities
and decision-making process. However, signal data is
typically present in a complex-valued format, involving
both magnitude and phase components. Most deep-
learning architectures only utilize half of the spectral
input (i.e., the real-valued part), leading to information
loss during the feature extraction process. Besides,
signal data often exhibits patterns through frequency or
time-frequency domain, requiring the network architec-
ture to be designed to capture the interaction between
temporal dynamics and complex frequency.

Potential Direction—1) Spectrum-Spatial-Temporal
Modelling. Conventional spatial-temporal modeling is

Publication Title

introduced to capture fine-grained dynamic corre-
lated features from a sequence of data samples and
achieves decent performance on tasks such as video
analysis/summary and time-series modeling. However,
signals present an additional dimension (i.e., spec-
trum) to express patterns or information, which is not
able to be captured by the approaches from vision
and language domains. A potential solution might
be to entangle the designed spectrum learning layer
with spatial-temporal modeling. For example, dynamic
convolution with kernels of different sizes could be
introduced to capture fine-grained spectrum features.
Additionally, fusion mechanisms, such as bilinear/multi-
stage fusion, on kernel level (e.g., different kernel
sizes) and feature level (e.g., spectrum and spatial-
temporal features) should be further explored for bet-
ter feature level interactions and to prevent informa-
tion loss. 2) Dynamic Network Capacity. The large-
scale models, with their substantial data processing
capabilities, often contain a high capacity for pattern
memorization from extensive datasets. The current
large-scale models typically possess a pre-defined and
fixed capacity, which largely restricts the continual
learning ability of the learning system. Such phe-
nomena become more crucial when facing continuous
incoming signal data. A potential solution might be
to construct an expandable network structure for the
designed complex modeling architecture. For example,
similar to disentangled representation learning in the
vision community, the network architecture could be
separated into distinct components™® (e.g., top, inter-
mediate, and low-level feature extractors) to enable
network capacity expansion. The dynamic expansion is
triggered when the network capacity reaches the upper
boundary so as to provide the foundation for the subse-
quent tuning procedure. Additionally, the integration of
dynamic structure with the aforementioned spectrum-
spatial-temporal modeling may be difficult to train, due
to the extremely disentangled and complex architec-
ture. Thus, considering specific training paradigms to
facilitate dynamic network expansion could also be
investigated in the future.

Network Tuning

Challenge—Domain-restricted Tuning. To exceed
the performance limits of conventional fine-tuning tech-
niques for downstream tasks, prompt-driven tuning
has been well-studied in large-scale language models.
The prompt-driven tuning aims to design customized
prompts (e.g., different questions) with the correct
answers for the tuning process, so as to break through
the upper bound. However, restricted by the special
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characteristic of the signal domain, where the raw sig-
nals often suffer from non-interpretability, the definition
of prompt in the signal domain is still unclear.
Potential Direction—1) Network Incremental Learn-
ing. Recently, related incremental learning methods
have been introduced into wireless signal recognition,
such as the continuous registration of new devices
via In-phase and Quadrature (1Q) signals for Internet
of Things (loT) centers, providing incremental update
capabilities for aircraft identification systems. However,
the similarity of signals from wireless devices under
the same communication protocol makes it still difficult
for the model to learn the differences between the
new classes and the old classes at the same time.
Therefore, based on classical incremental learning
algorithms, the large model feature extraction capa-
bilities, such as multi-modal signal feature extraction,
should be used to provide more fine-grained features
to distinguish between new classes and old classes.
Providing discriminative multi-modal features in the
common space of new and old classes is of signifi-
cant importance for incremental learning. 2) Prompt
Tuning. To mitigate the semantic gap and over-fitting
problems between downstream tasks and pre-trained
models, prompt tuning techniques are currently being
extensively researched in natural language processing.
However, as mentioned previously, due to the lack of
appropriate prompts in the signal domain, they are
currently not applied. A potential approach in the signal
recognition scenario might be to construct specific
conditional templates for different downstream tasks.
For example, the conditional auto-encoder can em-
bed conditional variables for downstream tasks, thus
continuing to drive the fine-tuning process internally.
Another possible way to perform prompt learning on a
signal model is to transform the template into signal
data, which can be added to a neural network for self-
supervised learning. Overall, it is of great research
significance to perform prompt tuning on the signal
model in order to exploit the potential of the pre-trained
model.

Based on the discussed design philosophy and
methodology, we propose a large model framework
that can effectively mine knowledge from large-scale
signal datasets. As shown in Figure[3] in order to accel-
erate the deployment for different downstream tasks, a
preliminary attempt is made to capture generic signal
features for all downstream tasks in a self-supervised
learning manner. We explore the two principal direc-
tions of noise filtering and spectrum-spatial-temporal
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modeling. Specifically, we implement a novel generic
signal representation learning framework based on
contrastive learning. Compared to the traditional con-
trastive learning-based framework, we make specific
modifications to the network structure and data aug-
mentation, and achieve significant improvements in
signal recognition.

Signal Augmentation

To increase the diversity of signal samples so to en-
courage the feature extraction of the contrastive learn-
ing, we simultaneously apply two data augmentation
methods (i.e., cropping and rotation). Given an input
signal sample, we first crop a sub-segment of fixed
length according to a random number which diversifies
the samples and focuses on different parts of the
original signal to enhance feature extraction. Then, we
rotate the sample by a random rotation angle to further
enhance the sample diversity.

Signal Cropping. For signal cropping, we have de-
signed a patch-based cropping mechanism to preserve
local information integrity and reduce the impact of
noise on signal recognition. We performed one crop-
ping on each signal to extract a sub-sequence S’ of
length / from the original data of length L, as follows:

S =Crop(L,1,S)=S[a:a+1] for <=L, (1)

where S is the original signal data, and « is a random
number between 0 and L — /. For 1Q signals, the
modulation information generated should be stable
across various short-time delays, indicating that similar
modulation information is carried regardless of the
cropping location.

Signal Rotation. After cropping the signal data, we
apply a random rotation to further augment the data
features. Considering that a direct rotation of the signal
would destroy its integrity, we propose a semantic
invariant rotation method. First, we write the signal data
in the form as

S = Xreal + Ximag - |, (2)

where Xy and Xmag are 1xN vectors for the in-
phase (I) and quadrature (Q) signals, respectively, and
J indicates the imaginary part. From Equation (@), it is
obvious that the data distribution of an I1Q signal can
be represented in the complex plane. For this reason,
we retain its complex plane distribution and perform
an overall random rotation of it. Therefore, we use the
rotation matrix of the two-dimensional plane for 1Q to

obtain &:
3. x,%a/ _ cqs@ —Sind | | Xreal , 3)

Ximag sind  cost | |Ximag,
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FIGURE 3. The framework of the proposed method.

where the 0 is a randomly generated angle ranging
from 0 to 27. Note that the above rotation mechanism
will not destroy the original IQ plane distribution.

Pre-training with Contrastive Learning
Motivated by SimCLR,'® we design a pre-training
framework based on contrastive learning. Contrastive
learning learns intra-class and inter-class features
by comparing the differences between different aug-
mented samples to enable self-supervised feature ex-
traction. In particular, we explore the spectrum-spatial-
temporal modeling in depth to design a special back-
bone network that can integrate multi-modal signal
data.

By exploring the unique representation of signal
data, we find that the signal features are mainly ex-
pressed in the time and frequency domains. We design
two independent encoders to combine the data char-
acteristics of different modalities. (1) We use XCiT#
as an Encoder_s of the raw time series data since
this network mainly uses channel self-attention and
can better extract similar semantic features between IQ
channels. (2) Encoder_f sub-module acts as a feature
extractor for the signal data after the Fast Fourier
Transform (FFT), which will help to extract its frequency
domain information. The joint extraction of time and
frequency domain information will provide a more fine-
grained feature representation for downstream tasks of
the signal.

After that, we use the NT-Xent™® loss for our
contrastive learning framework, which is defined as
follows:

o exp(sim(s;, si)/1)
£ E(ieZB(longeB,k;ﬁeXp(Sim(Sf’Sk)/T) ,

(4)

where E denotes the expectation, B is the current
batch size, s; is the original sample, s/ is the aug-
mented sample, and T refers to the temperature pa-
rameter. The cosine similarity is used as the sim(.)
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function in Equation (4):

T .-
, S; S
sim(sj, §)) = —I >, (%)
P sl sl
where || - || denotes the kb norm.

Fine-tuning

In machine learning, the freezing of partial weights
is generally used to quickly train new classes. This
means that only a small set of the parameters is fine-
tuned. We use the same treatment in our fine-tuning
phase. As shown in Figure [3] the pre-trained encoder
is migrated directly to the fine-tuning phase and is
followed by a head for a specific downstream task. As
mentioned before, the head (we choose the simplest
multi-layer perception as the head) is updated without
updating the parameters of the encoder. In detail, we
use a small amount of labeled data to fine-tune using
the cross-entropy loss. The augmented data can be
obtained in two branches after passing through the
network, and we concatenate them in the horizontal
dimension.

Experimental Setup

We evaluate the performance of the proposed model
on the commonly used dataset RadioML2016.10a.18
The dataset contains 11 different signal modula-
tion categories, which include BPSK, QPSK, 8PSK,
QAM16, QAM64, CPFSK, PAM4, WB-FM, AM-SSB,
BFSK, and AM-DSB. It contains 11,000 signals per
SNR, with each modulation category comprising 1000
samples under the length of 128. In the pre-training
phase, we run 300 epochs with an Adam optimizer
with a learning rate of 0.001 to optimize our model. In
the fine-tuning phase, we train the downstream task
heads with an Adam optimizer with a learning rate
of 0.0001 about 2000 epochs, which means that the
weights of the backbone in the pre-training phase are
frozen at this stage. In all experiments, we utilize two
distinct random seeds. For each seed, we perform ten
trials and compute the average. This averaged value
represents our final experimental results.
Downstream tasks setting. As mentioned previously,
the large model for the signal can be applied to dif-
ferent downstream tasks. To validate the performance
of the network in Figure [3, we focus primarily on the
validation of the proposed model in two downstream
tasks (i.e., few-shot learning (FSL) and supervised
learning (SL)) in signal modulation classification. In
addition, we compare the performance of different
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FIGURE 4. Experimental results on different downstream tasks on the RadioML 2016.10a dataset.

contrastive learning methods under our framework.
In the FSL task, we follow the criteria in computer
vision™ to divide the signal modulation categories.
Specifically, there are six categories for pre-training
with 1000 samples per category. We conducted 5-
way 1-shot and 5-way 5-shot classification in the fine-
tuning period and all contain 500 query signals for
each of the sampled categories. In the SL task, we
divide the data set similarly to the FSL task. The
difference is that in supervised learning, the pre-
training phase has a large amount of labeled data. We
compare the gap between unsupervised contrastive
learning and supervised learning. It is worth noting
that the sample categories for supervised pre-training
and fine-tuning tests are not the same. And in con-
trastive learning experiments, we evaluate different
contrastive learning algorithms (i.e., SImCLR,% Sim-
Siam,™ and SCLBSS™®). For fair comparison with the
previous results reported in the literature, we follow
the data partitioning method of Liu et al.'® by dividing
each category in the RadioML2016.10a dataset into
three parts: training, validation, and testing, with a
ratio of 2:1:1. Five samples from the training set are
used for fine-tuning, and the rest are used as pre-
training samples. Specifically, each category includes
pre-training samples, fine-tuning samples, verification
samples, and test samples of 495, 5, 250, and 250,
respectively.

RESULTS

In this section, we experimentally compare several
recent algorithms in contrastive learning (CL), FSL,
and SL settings. Firstly, we compare three con-
trastive learning algorithms (SimCLR,™ SimSiam,™
and SCLBSS"®) under the same data division. In
Figure [4}a), at all signal-to-noise ratios, our method
achieves better results compared to other algorithms.
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In particular, our method achieves an accuracy of
73.71% at a signal-to-noise ratio (SNR) of 4 dB,
which outperforms SimCLR, SimSiam, and SCLBSS
by 24.1%, 23.7%, and 8.71% in accuracy, respectively.

Then in Figure [@[b), we evaluate the pre-trained
model in a downstream task of few-shot learning.
Based on the above dataset partitioning criteria, the
5-way 5-shot and 5-way 1-shot tasks are tested and
we have compared several classical few-shot learning
networks like Prototypical Network,™ and Relation
Network (RN)."Z Our framework achieves more than
92% accuracy on a 5-way 5-shot task when SNR is
above 0 dB, with a maximum accuracy of 99.09%.
Compared to the other two methods, our method im-
proves accuracy by 20% on average. It is worth noting
that the contrastive methods exhibited a significant
performance drop at SNR levels of -6dB and 6dB.
The potential consumption could be the contaminated
signal data, which disrupts the structural features of
the original signal, thereby increasing the difficulty of
model recognition. Importantly, while other methods
merely map a few samples to the most similar fea-
ture space using prototypes and functions, they often
overlook the challenge of dissimilarity. In contrast, our
method specifically addresses this issue, leading to
more stable model results.

Finally, we compare the proposed model with su-
pervised learning. Our model is compared by per-
forming supervised pre-training on a large amount of
labeled data and then fine-tuned with 1-shot or 5-shot
samples. In detail, we compare the CNN2, CNN-LSTM,
and ResNet18 algorithms. As Figure[d]c) shows, when
the SNR is higher than 0 dB, our framework has an
improvement of at least 20% over the three networks
compared, with a maximum improvement of 60%. It is
evident that supervised learning models are only able
to extract features related to known classes and are
unable to generalize over new classes.
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Discussion

In essence, we tested our proposed framework on
several downstream tasks. The results, as depicted in
Figures[d] illustrate the strength of our method in signal
extraction. This success is mainly due to our extractor
which can extract features from both the time and fre-
quency domains, offering a more comprehensive un-
derstanding compared to typical off-the-self networks.
Our data augmentation strategies, such as cropping
and rotation, eliminate unnecessary information and
increase sample diversity, thus accelerating feature
learning and improving model generalization. Although
good results have been achieved in all experiments,
there is still room for improvement here. The accuracy
in the FSL method with a low signal-to-noise ratio
needs further improvement and the performance is
unstable in the 1-shot fine-tuning setting.

The rapid development of communication technology
has brought great challenges to the processing of
multi-modal signals. In this paper, we made an in-depth
study of large-scale models in the field of signal data
and illustrated the problems, future challenges, and
research directions for different stages of the develop-
ment life cycle. Moreover, a preliminary study has been
conducted, wherein a multitasking signal model has
been proposed. This model has demonstrated decent
results across multiple tasks. However, there are ar-
eas that necessitate further improvements, specifically
when dealing with noisier data. Additionally, the issue
of unstable accuracy during fine-tuning with a small
number of samples also urgently requires a solution.
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