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Abstract—Underwater Acoustic Target Recognition (UATR)
can be significantly empowered by advancements in deep learn-
ing (DL). However, the effectiveness of DL-based UATR methods
is often constrained by the limited computing resources avail-
able on underwater platforms. Most of the existing knowledge
distillation (KD) strategies try to build lightweight DL models,
but these strategies rarely consider the acoustic properties of
underwater environments, making them less efficient for UATR
tasks. Thus, fully harnessing the potential of DL techniques while
ensuring the model’s practicality, is one of the urgent problems
to be solved in UATR research. In this work, we introduce the
Union-Domain Knowledge Distillation (UDKD) to establish an
accurate and lightweight UATR model. UDKD integrates two KD
strategies: Dual-frequency Band Distillation (DBD) and Cross-
domain Masked Distillation (CMD). DBD improves the learning
process for a simple student model by decoupling the knowledge
of spectrograms into the local structural (i.e., line spectra) and
global composition (i.e., propagation patterns) aspects. CMD
reduces redundant information from the Fourier Transform pro-
cess, enabling the student model to concentrate on essential signal
elements and to learn underlying time-frequency distribution.
Extensive experiments on two real-world oceanic datasets confirm
the superior performance of UDKD compared to existing KD
methods, i.e., achieving an accuracy of 94.81% (↑ 3.19% v.s.
91.62%). Notably, UDKD showcases a 10.5% improvement in
the prediction accuracy of the lightweight student model.

Index Terms—Acoustic recognition, computer vision, knowl-
edge distillation, model compression, frequency domain.

I. INTRODUCTION

UNDERWATER Acoustic Target Recognition (UATR)
[1]–[4] classifies the target types based on received

acoustic signals, which is crucial for understanding the marine
environment. The application of UATR is broad, spanning
from the exploration of oceanic resources to the development
of advanced marine apparatus [5]–[7]. However, unlike con-
ventional speech recognition technologies, UATR technology
faces significant engineering challenges, particularly the en-
ergy scarcity in underwater platforms. This leads to very lim-
ited computational resources, and thus becoming problematic
given the high computational demands of deep learning (DL)
techniques. To mitigate these constraints, there is a growing
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Masking Ratio

Fig. 1. The recognition accuracy (ACC) of teacher model under different
masking ratios on DeepShip and ShipsEar datasets. The accuracy does
not decrease significantly as the masking area on the input spectrograms
increases, indicating that a great deal of redundant information exists in the
spectrograms.

interest in model light-weighting strategies, such as quanti-
zation [8], knowledge distillation [9], and neural architecture
search [10], [11]. Among these, knowledge distillation (KD)
emerges as a popular approach. It transfers the performance
of a complex, high-parameter deep model (the teacher) to a
simple, low-parameter light-weight model (the student). This
offers more flexibility and robustness for the UATR tasks.

Knowledge distillation is categorized mainly into logit-
based [12]–[14] and feature-based methods [15]–[17]. Logit-
based KD involves teaching the student model to emulate
the teacher’s output logits, while feature-based KD allows the
student to learn from the teacher’s intermediate feature maps.
Feature-based KD typically offers superior performance [18]
by imparting more comprehensive knowledge, making it an
appealing choice for UATR. However, the direct application of
existing feature-based KD methods to the UATR task is often
inefficient due to the inherent differences between traditional
digital imagery and acoustic data represented in spectrograms.

Specifically, UATR models commonly utilize spectrograms,
such as Mel spectrograms, to visualize changes in frequency
content over time. In contrast to digital images that display rich
semantic content through a blend of high-level and low-level
features [19], Mel spectrograms lack explicit content-related
information. Therefore, it necessitates more effective inter-
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Fig. 2. Visualization of feature heatmaps from student model using different
KD frameworks, i.e., our proposed UDKD, MGD [20], and WSLD [21]. The
student from UDKD can better grasp the essential features such as the distinct
line spectral and underlying time-frequency distribution pattern.

pretation mechanisms in the KD process. Furthermore, while
digital images exhibit significant pixel contrast variations,
changes in Mel spectrograms are comparatively subtle, leading
to information redundancy. For instance, as demonstrated in
Fig. 1, increasing the masking ratio in spectrograms does not
significantly impact the model accuracy. Such an information
redundancy in spectrograms restrains the efficiency of tradi-
tional KD approaches.

The discrepancies between the acoustical spectrograms and
the digital images prompt two rationales for designing a KD
paradigm specific for the UATR task: (1) Knowledge learning
in the frequency domain. Establishing the feature representa-
tion in the frequency domain allows for richer patterns, which
provide diverse interpretations for original acoustical data [22].
(2) Masked Image Modeling (MIM). MIM [23]–[25] scheme
masks a significant amount of image information to eliminate
the redundancy, which can be potentially beneficial for dealing
with the redundant information of Mel spectrograms.

To this end, we propose a new knowledge distillation
framework, namely Union-Domain Knowledge Distillation
(UDKD), which involves two strategies for effective knowl-
edge transfer in acoustical spectrograms. First, we present the
Dual-frequency Band Distillation (DBD) module that engages
with the frequency domain characteristics of spectrograms.
DBD performs the Fourier Transform to convert feature vec-
tors into their frequency domain representations [22]. Essential
frequencies are then isolated to allow for the precise transfer
of the teacher’s high and low-frequency features to the student.
Consequently, the student model can focus on crucial spectral
features and pivotal time periods (high-frequency), i.e., Fig. 2
(a) and (b), while concurrently assimilating the global propa-
gation patterns of underwater acoustic signals (low-frequency).

Second, to mitigate the information redundancy in spec-
trograms, we propose the Cross-domain Masked Distilla-
tion (CMD) module. Traditional random patch-masked strate-
gies [26], while effective to a degree, often compromise the
structural integrity of the acoustic data. In comparison, CMD
respects time-frequency regularities by masking all frequency
domain information within a specific time slot and obfuscating

all time domain knowledge for a designated frequency band.
This masking strategy naturally simulates the interference of
the marine environment, such as transient noises or silent
intervals. Consequently, CMD enhances the student’s ability
to understand the complex interactions between frequency
bands and time segments, and thus grasping the underlying
time-frequency distribution patterns of acoustic signals (see
Fig. 2(c)). A supervision task is further introduced into the
CMD to improve the student’s efficiency in learning from the
masked areas. With these two modules, UDKD significantly
enhances the student’s learning capacity. To summarize, this
paper makes the following main contributions:

• We introduce a novel knowledge distillation framework,
tailored for UATR tasks, called Union-Domain Knowl-
edge Distillation (UDKD). UDKD facilitates knowledge
transfer across both time and frequency domains simulta-
neously, which represents the first of its kind in the UATR
task.

• We develop the Dual-frequency Band Distillation (DBD)
module to analyze spectrograms from a frequency per-
spective. DBD enables the student to learn key fea-
tures, i.e., line spectral features (high-frequency) and
propagation patterns of acoustic signals (low-frequency),
establishing a more holistic mechanism for knowledge
distillation.

• To address the issue of information redundancy in the
spectrograms, we design the Cross-domain Masking Dis-
tillation (CMD) module. It establishes a masked au-
toencoder paradigm that includes an effective masking
strategy and a sophisticated decoder module. CMD facil-
itates efficient learning for the complex time-frequency
distribution patterns in acoustic signals.

• On two real-world oceanic datasets, our proposed UDKD
further enhances the effectiveness of feature-based distil-
lation, achieving the recognition accuracy of 94.81% for
a simple student (3-layer convolutional model), which is
10.5% higher than the baseline, and also outperforms the
existing SOTA methods.

II. RELATED WORK

A. Underwater Acoustic Target Recognition

Due to the complex acoustic properties in the marine envi-
ronment, UATR tasks face great challenges, such as ambient
noise effects, propagation losses, and multi-path interference.
Traditional recognition methods are affected by physical and
psychological factors, which may not generalize well in prac-
tical applications. In the last decades, using machine learning
and deep learning to identify underwater acoustic signals has
gained a great deal of attention.

The research of UATR based on machine learning mainly
focuses on feature extraction of acoustic signals and classifier
design. The main feature extraction methods include the
Hilbert-Huang Transform (HHT) [27], the Short-Time Fourier
Transform (STFT) [28], the Mel Frequency Cepstrum Coef-
ficient (MFCC) [29]. In addition, the classifiers represented
by Decision Tree (DT) [30], Support Vector Machine (SVM)
[31] and other machine learning methods were applied to
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UATR. These methods significantly improved the performance
of UATR tasks. Furthermore, with the wide applications of
deep neural networks (DNN) [32], researchers have begun
to apply DNN to solve the UATR problems, and remarkable
progress has been made. For instance, Liu et al. [3] designed a
recognition method based on a convolutional recurrent neural
network. Since the Mel spectrograms can only represent static
features, the dynamic features in delta spectrograms were
introduced to construct 3-D Mel spectrogram input. Tian et al.
[2] explored a deep convolutional stack network suitable for
perceiving underwater radiation noise. On this basis, a multi-
scale residual module was presented to classify underwater
acoustic signals. Xie et al. [4] established a contrastive learning
paradigm that included audio, spectrogram, and text modes,
integrating relevant information from different perspectives.
Zhou et al. [1] adopted a joint training framework for noise-
robust underwater acoustic recognition, in which, a cross-
attention mechanism was proposed to simulate the noisy
environment.

B. Knowledge Distillation

Knowledge Distillation (KD) is a model compression and
acceleration technique. During the KD process, the student
can learn the diverse knowledge and generalization capabilities
of the teacher, resulting in a smaller computational complex
and faster running speed while maintaining high accuracy. The
logit-based distillation was first proposed by Hinton et al. [9],
which used the soft logit outputs of the teacher model as the
target labels to train the student model. Unlike conventional
one-hot labels, which cannot fully describe the nuanced rela-
tionships between samples and their corresponding labels due
to their overconfidence, these soft logit outputs assign higher
probabilities to classes that are similar to the correct class.
They consider that other classes information can provide some
additional knowledge, i.e., “dark knowledge”, representing
instance-to-class and class-to-class similarity information. On
this basis, several improvement methods were proposed to fur-
ther enhance the efficiency of knowledge transferring. CCKD
[33] took correlation between instances as the transferred
knowledge, thus mimicking the characteristics of intra-class
samples aggregation and inter-class samples separation in the
teacher’s feature space. SSKD [34] introduced self-supervised
learning to help student extract more comprehensive knowl-
edge from teacher. KDExplainer [35] analyzed the effects of
soft labels in training the student, and further designed virtual
attention module to coordinate different types of knowledge
conflicts. DKD [36] divided the logit knowledge into target
knowledge and non-target knowledge to explore the richer
semantic information in the deeper layers of the model.

The feature-based distillation was originally proposed
in [37], which forced the student model to mimic the inter-
mediate feature maps of the teacher model. This paradigm
broadened the definition of knowledge, i.e., knowledge was
not only a response to the outputs of a larger model, but also
implicit in some intermediate layer representations. Since then,
various methods have been proposed to facilitate knowledge
transfer by changing matching methods or replacing matching

features. AT [17] enabled student to mimic the attention maps
of a strong teacher to significantly improve its performance.
SP [38] calculated the pair-wise similarities between teacher
and student, so that the teacher and student generated similar
activation for the same samples. RKD [14] considered the
mutual relations of data instances as knowledge that was trans-
ferred between teacher and student. reviewKD [39] proposed
a new knowledge transfer mechanism that used multi-level
information of teacher to guide single-level learning of student.
OFD [40] studied various aspects of knowledge distillation,
making distillation losses synergistic among teacher/student
feature transformation and the feature position.

III. METHODOLOGY

In this section, we first provide the preliminaries regarding
the principles of Mel spectrograms. Then, we elaborate on the
proposed Union-Domain Knowledge Distillation framework,
dubbed UDKD, which involves two kinds of knowledge dis-
tillation: Dual-frequency Band Distillation (DBD) and Cross-
domain Masked Distillation (CMD).

A. Principles of Mel spectrograms

The acoustic signals can be transformed into various for-
mats of spectrograms, which are generally treated as input
data to train the UATR model. In Fig. 3, we present four
commonly used spectrograms in the UATR tasks, including
Short-Time Fourier Transform (STFT), Mel Frequency Cep-
strum Coefficient (MFCC), Constant Q Transform (CQT) [41],
and Mel spectrograms. As can be observed, the STFT and
CQT exhibit comprehensive time-frequency information of the
targets. However, the spectral characteristics and crucial time
periods of the targets are not clearly highlighted. As for the
MFCC, the discrete cosine transform filters out considerable
time-frequency characteristics of the data. In comparison, Mel
spectrograms earn three advantages: (1) Mel spectrograms
preserve the spectral features more complete (see the black
box in Fig. 3). (2) Mel spectrograms avoid blocky represen-
tations with low resolution (such as STFT) and point-like
noise (such as CQT), as shown in azure box in Fig. 3. (3)
Mel spectrograms exhibit the clearer time-frequency variation
patterns. Therefore, this work utilizes the Mel spectrograms
as the inputs for model training.

In the process of generating the Mel spectrogram, the
acoustic signal is converted to the Mel scale in the frequency
domain by applying a series of triangular band-pass filters. The
Mel scale mimics the human’s auditory perception towards
different frequencies of sounds, especially the high sensitivity
in the low-frequency range and the low sensitivity in the high-
frequency interval. The generation of Mel spectrograms is
summarized in Fig. 4, which involves five stages.

1) The acoustic signal is pre-processed through framing
and windowing. Due to the short-time stationary charac-
teristics of the signals, it is necessary to perform fram-
ing. The purpose of windowing is to mitigate spectrum
leakage.
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Fig. 3. Visual representations of different spectrograms. Mel spectrograms
preserve rich visual information.

Fig. 4. Generation process of Mel spectrograms.

2) STFT is utilized to transform the signal from the time
domain into the time-frequency domain. The trans-
formed signals are squared to obtain the linear power
spectrum on the Hz frequency scale:

S(u, v) = |STFT(y(n))|2, (1)

where y ∈ RN×1 denotes the signal and N represents
the number of sampling points per frame of the signal.
S ∈ RU×V indicates the linear power spectrum for the

v-th time frame and the u-th frequency bin, where v ∈
1 ∼ V and u ∈ 1 ∼ U .

3) A set of Mel filter banks B are applied to convert
the linear power spectrum into the non-linear power
spectrum on the Mel frequency scale, written by:

X(e, v) = EIN(S,B), (2)

where X ∈ RE×V denotes the Mel spectrogram, E
represents the number of Mel bands, and EIN(·, ·)
indicates the Einstein summation convention [42].

4) A logarithmic operation is performed to compress the
non-linear power spectrum obtained in Stage 3) and map
it onto the frequency bands.

5) Finally, we save the mapped Mel spectrogram in
the form of a color image, formulated as X ∈
RCM×HM×WM , where CM , HM , and WM represent
the channel number, height, and width of the Mel
spectrogram, respectively.

B. Overall Framework

The architecture of Union-Domain Knowledge Distillation
(UDKD) is shown in Fig. 5. Let F S,i ∈ RCi×Hi×Wi and
F T,i ∈ RCi×Hi×Wi be the intermediate feature maps from
the i-th layer of the student model S and teacher model T ,
respectively. We first utilize a 1×1 convolutional layer on F S,i

to align the channel dimension between the F S,i and the F T,i.
Then, F S,i and F T,i are sent to Dual-frequency Band Distil-
lation (DBD) to force student to mimic the teacher’s frequency
domain features. DBD adopts the pre-defined filters to obtain
the low-frequency and high-frequency feature maps of the
student and teacher, and then performs the standard feature-
based distillation between the corresponding features. Finally,
a Cross-domain Masked Distillation (CMD) is introduced to
encourage students to learn the time-frequency distribution
patterns of acoustic signals. We mask F S,i using a dedicatedly
designed masking strategy while maintaining the whole input
for F T,i, and the masked feature map is then sent into a
decoder to reconstruct the latent representation. We calculate
the distillation loss between the reconstructed student’s feature
maps and the complete teacher’s feature maps. The above
process can be formulated as:

P =

KS∑
i=1

[Pfet (fDBD (F T,i) , fDBD (φ (F S,i)))+

Pfet (F T,i, fCMD (φ (F S,i)))] ,

(3)

where KS indicates the number of layers in the student model,
Pfet denotes the standard feature-based distillation paradigm,
and φ represents the 1×1 convolutional layer. fDBD and fCMD

denote the proposed DBD and CMD modules, respectively.
To ease the understanding of the proposed UDKD process,

we utilize a standard convolutional neural network (CNN) as
an example of the student model, which consists of three
convolutional blocks (Conv-BN-ReLU), as shown in Fig. 6(a).
For the teacher model, we choose the pre-trained ResNet-
18, which is widely utilized as a backbone network across
a diverse range of computer vision tasks [43], [44], as shown
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Fig. 5. Overall framework of the proposed UDKD.
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Fig. 6. The architecture of the exemplified student model and teacher model.
In practice, the student and teacher can be arbitrary, i.e., CNN-based or vision
transformer-based.

in Fig. 6(b). However, the architecture of the student model
and teacher model can be arbitrary based on the application
scenarios.

Our training pipeline can be divided into two steps. Firstly,
we pre-train the teacher model on the DeepShip [45] and
ShipsEar [46] datasets to obtain a robust teacher network.
Secondly, we perform the overall distillation process, where
the weights of the teacher model are frozen and the student
model is trainable. Unlike digital images, which contain rich
semantic content, Mel spectrograms primarily represent time-
frequency distributions and lack high-level semantic details.
Thus, we discard the final layer of the teacher model, as it is

mainly responsible for capturing the abstract semantic features.
Finally, we transfer knowledge from the first three layers of
the teacher model to the corresponding layer of the student
model in a one-to-one manner.

C. Dual-frequency Band Distillation

The Mel spectrogram is fundamentally a result of the Short-
Time Fourier Transform. It converts the signal from the time
domain to the time-frequency domain, and finally maps it into
the form of a digital image. However, unlike conventional
digital images, it is difficult to learn an effective classification
pattern from the spatial domain solely in the Mel spectrogram.
To this end, this paper shifts the focus to the frequency domain
to exploit the underlying patterns from the Mel spectrograms.
Specifically, the low-frequency components contain the prop-
agation patterns of acoustic signals, while the high-frequency
counterparts exhibit important line spectra and prominent
time periods. These properties in the frequency domain are
effectively complementary to those from the spatial domain.
Therefore, we propose the Dual-frequency Band Distillation
(DBD) module to transfer the low/high-frequency features of
the intermediate feature maps between the student and the
teacher.

The architecture of DBD is illustrated in Fig. 7, where
the inputs to DBD are intermediate feature maps of student
and teacher models. The channel dimension of the student’s
feature map is aligned with the teacher through a 1 × 1
convolutional layer. Given a feature map F ∈ RC×H×W (for
simplification, we omit the subscript S, T , and i), we first
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perform Discrete Fourier Transform (DFT) F to obtain the
corresponding frequency representation:

F(F )(a, b) =

H−1∑
h=0

W−1∑
w=0

F (h,w)e−j2π( ah
H + bw

W ), (4)

where F(F )(a, b) is the complex value at the coordinate of
(a, b) on the frequency spectrum. e and j are Euler’s number
and the imaginary unit, respectively. Note that F operates on
each channel independently.

We then design a filter Φ ∈ {0, 1}H×W with a circular
shape to execute low/high-pass filtering. The value of Φ is
determined by an indicator function in Eq. (5), which separates
the low frequencies and high frequencies based on the radius
r of the circular filter:

Φ(a, b) =

{
1, if D ((a, b), (OH , OW )) < r,
0, otherwise ,

(5)

where (OH , OW ) denotes the center of the feature map and
D(·, ·) represents the Euclidean Distance. The filter shape is
intuitively designed based on that the low-frequency informa-
tion is aggregated in the center of the feature map. In addition,
the circular filter removes the same amount of frequencies
in all directions of the spectra, ensuring the balance between
the low-frequency features and high-frequency features. We
have discussed the effects of different filter shapes on the KD
performance in Table V in Section IV.

With Φ, we can obtain the low-frequency feature map F l

and high-frequency feature map F h as:

F l = F−1(F(F )⊙Φ),

F h = F−1(F(F )⊙ (1 −Φ)),
(6)

where F−1 denotes the inverse Fourier transform, ⊙ indicates
the Hadamard product, and 1 is an all-ones matrix. In practice,
F and F−1 can be calculated using Fast Fourier Transform
(FFT) algorithm.

Finally, we distill F l and F h from teacher to student by:

p†
i = 1−

〈
F †

S,i,F
†
T,i

〉
= 1−

F †
S,i∥∥∥F †
S,i

∥∥∥
2

·
F †

T,i∥∥∥F †
T,i

∥∥∥
2

, † = {l, h},

(7)
where p†

i is the cosine distance between low-frequency feature
maps or high-frequency feature maps from the i-th layer of the
student and teacher models, ⟨·, ·⟩ denotes the cosine similarity,
and ∥ · ∥2 indicates L2-norm. The distillation loss for DBD is
calculated by averaging pl

i and ph
i , and summing them across

layers in the model, written by:

LDBD =

KS∑
i=1

(
pl
i + ph

i

)
2

. (8)

The proposed DBD utilizes the dedicatedly designed filters
to decouple the frequency knowledge. This allows the model
to focus on crucial frequency information, while avoiding a
significant amount of duplicate information to confuse the
student model.

D. Cross-domain Masked Distillation

Having improved the distillation effectiveness from the
perspective of the frequency analysis, we further explore the
time-frequency regularities exhibited in the Mel spectrograms.
As illustrated in Fig. 1, the spectrograms have the nature of
information redundancy, thus impeding the learning efficiency
of the student. To address this, we designed the Cross-domain
Masked Distillation (CMD) module to make the student learn
the time-frequency regularities efficiently. CMD randomly
masks the frequency bands and time periods in the student’s
feature maps while maintaining the whole feature maps for
the teacher. We introduce a decoder-based supervision task
to force the student to comprehend the intrinsic relationships
between the masked regions and their surrounding area, thus
reconstructing the disrupted time-frequency patterns. Ulti-
mately, the student can learn the underlying time-frequency
distribution patterns of acoustic signals.

1) The Masking Strategy:
The architecture of CMD is illustrated in Fig. 8. Specifically,

we send all the intermediate feature maps of the student model
into CMD. Given a feature map F S,i ∈ RCi×Hi×Wi , we first
adjust the channel number using a 1 × 1 convolutional layer
to align it with the channel number of the teacher’s feature
map. We then align all the feature maps to the same spatial
resolution through a convolutional layer with the kernel size
s. The aligned feature F̃ S,i can be obtained as:

F̃ S,i = Convs×s (Conv1×1 (F S,i)) , (9)

where F̃ S,i ∈ RCS,i×H̃×W̃ , H̃ = HM/16, W̃ = WM/16,
and s = Hi/H̃ = Wi/W̃ . CS,i indicates the channel number
of student’s feature map, which is consistent with the channel
number in teacher’s feature map.

When interpreting Mel spectrograms from an acoustic per-
spective, they display higher energy (loudness) in certain
frequency bands and specific time segments, reflecting how
sounds vary in loudness and pitch over time. Correspondingly,
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we propose masking all the frequency information according
to the designated time slots, and occluding all the time knowl-
edge at the selected frequency positions. Specifically, we first
initialize an all-ones matrix and then randomly choose some
time and frequency points based on the specified masking
ratio. According to these selected time and frequency nodes,
all the corresponding frequency and time information are
masked, i.e., their values are set to 0. Finally, we generate a
binary mask M . The overall masking procedure with pseudo-
code is presented in Algorithm 1.

Furthermore, the high complexity of the marine environment
may cause acoustic signals to lose information in certain
frequency bands and time intervals. The designed masking
strategy can simulate such a situation, thus increasing the
student’s tolerance for the absence of acoustic information.
This further enhances the practicality and robustness of the
student. On the basis of M , the masked feature F̂S,i can be
obtained by Hadamard product:

F̂ S,i = F̃ S,i ⊙M . (10)

2) The Decoder for Feature Recovery:
We leverage a decoder module to recover the missing

information. Following the standard MAE [26] architecture,
we first perform a series of dimensional transformations and
information fusion on F̂ S,i, including: (1) Transform the shape
of F̂ S,i to RH̃W̃×CS,i along the channel dimension. (2) Adjust
the channel number of F̂ S,i to CD through a linear projection
layer. (3) Add positional embedding Epos to all tokens in the

Algorithm 1 Pseudo-code of masking procedure in a Python
code style.

# F̃S,i: the aligned feature, B× CS,i × H̃× W̃, B denotes
the batch size.

# mask ratio: the pre-defined masking ratio. The time and
frequency points are randomly selected based on this para-
meter.

def MaskCreation(F̃S,i, mask ratio):
B, , H̃, W̃ = F̃S,i.shape
# initialize mask.
mask = torch.ones([B, 1, H̃, W̃])
for b in range(B):

# calculate the time and frequency masking ratio.
f r = random.uniform(0, mask ratio)
t r = mask ratio - f r
# randomly select the time and frequency points.
f p = f r ×H̃
t p = t r ×W̃
s f p = random.sample(list(range(H̃)), f p)
s t p = random.sample(list(range(W̃)), t p)
# set the values for the corresponding time and

frequency positions to 0.
mask[b, :, s f p, :] = 0
mask[b, :, :, s t p] = 0

return mask

F̂ S,i. These operations can be formulated as in:

F̈ S,i = Linear
(
Transform

(
F̂ S,i

))
+Epos, (11)

where F̈ S,i ∈ RH̃W̃×CD and Epos = {1, 2, . . . , H̃ × W̃}.
We then send F̈ S,i into the multiple transformer blocks to
perform the feature reconstruction task. A transformer block
consists of a multi-head self-attention (MHSA) module and a
multi-layer perceptron (MLP). The MHSA contains h heads
each with the dimension of d = CD/h. F̈ S,i is transformed
into three groups of matrices of the query Q, key K, and
value V through three different linear projection layers, where
Q = [Q1, ...,Qh] ,K = [K1, ...,Kh] ,V = [V 1, ...,V h] ∈
RH̃W̃×CD for Qh,Kh,V h ∈ RH̃W̃×d. Q, K, and V are
essential components of the self-attention mechanism. They
are utilized to calculate the attention scores that determine
how much each input element should contribute to the output.
The self-attention is formulated as in:

Atten (Qh,Kh,V h) = Softmax

(
QhK

T
h√

d

)
V h, (12)

and we can obtain the output of the transformer block:

MHSA(Q,K,V ) =Cat (Atten (Q1,K1,V 1) , . . . ,

Atten (Qh,Kh,V h)) ,

ZS,i =MHSA(Q,K,V ) + F̈ S,i,

Z̃S,i =MLP (Norm (ZS,i)) +ZS,i,

(13)

where Norm(·) denotes the layer normalization, Cat(·) indi-
cates the concatenation operation, and Z̃S,i ∈ RH̃W̃×CD . The
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: mask token : associated token

(a) MGD (b) MKD (c) CMD

Fig. 9. Comparison of the recovery principles under different masking
strategies, including MGD [20] and MKD [47] and CMD (ours).

final output of the decoder is given by:

ẐS,i = Reshape
(
Linear

(
TFN

(
F̈ S,i

)))
, (14)

where TF(·) denotes the transformer operation explained in
Eq. (13), N indicates the number of transformer blocks, and
ẐS,i ∈ RCS,i×H̃×W̃ . Linear(·) denotes the linear projection
layer, which is utilized to restore channel numbers. Reshape(·)
transforms the feature shape from RH̃W̃×CS,i to RCS,i×H̃×W̃ .

Finally, we restore the decoder output ẐS,i to its original
spatial resolution. We apply a 1 × 1 convolutional layer to
change the channel number to CS,i × s2, and then perform
pixel reshuffling to adjust the spatial dimension to the same
as F T,i. The output of CMD can be obtained as:

Z̈S,i = PR
(
Conv1×1

(
ẐS,i

))
, (15)

where PR(·) indicates the pixel reshuffle operation and Z̈S,i ∈
RCi×Hi×Wi .

The cosine distance is adopted to calculate the distillation
loss for CMD:

LCMD =

KS∑
i=1

(
1−

〈
Z̈S,i,F T,i

〉)
. (16)

Note that the decoder is only used during training to perform
the KD process, while only the student model is applied in the
testing stage.

3) Recovery Principles under Different Masking Strategies:
Applying masking strategies in the KD process is a common

practice. To further highlight the effectiveness of our proposed
CMD module, we present the recovery process of student
feature maps under different masking strategies in Fig. 9,
including CMD, MGD [20] and MKD [47].

MGD is a typical random-masking strategy, which randomly
masks pixels of the student feature maps during the forward
process of the backbone network. The information on the
masked tokens has been ‘leaked’ due to the full image input.
Consequently, MGD tends to extract the knowledge from
adjacent tokens to restore the features of the masked regions,
leading to incomplete feature recovery. On the other hand,
MKD applies masks not only to the initial input image but also
to the intermediate outputs throughout the model’s layers. This
strategy effectively prevents information leakage from masked
areas, encouraging the student model to utilize a wider range
of data for learning. However, the random nature of masking
in both MGD and MKD disrupts the structural coherence

TABLE I
CONFIGURATIONS OF DEEPSHIP AND SHIPSEAR DATASETS.

Configurations DeepShip ShipsEar

Dataset size 53155 3738
Category 4 5
Location Canada Strait of Georgia Spanish Atlantic Coast

Equipment icListen AF Hydrophone digitalHyd SR-1

within the time-frequency domain of spectrograms. Addition-
ally, this randomness often causes critical data points to be
overshadowed by less relevant information, which complicates
the student’s ability to identify and reconstruct vital features
accurately.

In contrast, CMD offers two significant advantages over
these random masking strategies: (1) CMD respects the inher-
ent structure of acoustic signals, which often exhibit crucial
patterns over time and across frequencies. This preservation of
key characteristics enhances the feature imitation process dur-
ing distillation. (2) CMD can naturally simulate interference
in the marine environment. By masking specific frequency
information, CMD can replicate transient noises or distortions.
Furthermore, intermittently obscuring time information helps
the model adapt to various lengths of silent intervals. These
merits improve both the robustness and generalization capa-
bilities of the student model (see Section IV-E).

E. Overall Loss of UDKD

To summarize, the overall loss function is defined as:

L = Ltask + λLDBD + γLCMD, (17)

where Ltask is the classification loss, i.e., CrossEntropy (CE)
loss. λ and γ are the weights to balance the distillation losses.
We perform end-to-end training and optimization. During the
test phase, we discard all the attached components, and thus
no extra inference costs compared with the original student
model.

IV. EXPERIMENTS

A. Experiment Setup

Benchmark Datasets. We conduct comprehensive exper-
iments on the two authentic underwater acoustic datasets,
i.e., DeepShip [45] and ShipsEar [46]. Specifically, DeepShip
dataset comprises four categories: Cargo, Passenger-boats,
Tug, and Tanker. ShipsEar dataset groups underwater acoustic
records into five categories: Class-A (Fishing boats, Trawlers,
Mussel boats, Tugboats, and Dredgers), Class-B (Motorboats,
Pilot boats, and Sailboats), Class-C (Passenger ferries), Class-
D (Ocean liners and RO-RO vessels), and Class-E (Back-
ground noise). Following the standard practice [1], we convert
all the audio recordings in both datasets into Mel spectro-
grams, each with 3 seconds recording with 50% overlapping.
Details of the two datasets are provided in Table I.

Implementation Details. We train the UDKD for up to
30 epochs using the AdamW optimizer with a batch size
of 16. The initial learning rate is 0.001 and it is adjusted
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT KD METHODS ON DEEPSHIP AND SHIPSEAR DATASETS. TOP THREE RESULTS ARE COLORED IN RED, BLUE,

AND GREEN, RESPECTIVELY. ↑ INDICATES THE PERFORMANCE IMPROVEMENT OF UDKD COMPARED WITH THE SECOND-BEST METHOD. ⇑ DENOTES
THE PERFORMANCE IMPROVEMENT OF UDKD COMPARED WITH THE STUDENT MODEL.

Distillation
Mechanism Method DeepShip ShipsEar

ACC F1-Score AUC ACC F1-Score AUC

Baseline
(No KD)

Teacher (ResNet-18) 83.88 83.63 96.16 97.74 97.73 99.91
Student (CNN-3) 73.50 73.48 90.59 84.31 84.22 97.46

Logit

KD [9] 79.88 79.95 94.15 90.29 90.24 98.82
CC [33] 76.13 76.14 92.00 86.70 86.63 98.22

DKD [36] 79.63 79.70 94.00 90.91 90.91 99.21
WSLD [21] 79.00 79.06 94.62 91.62 91.58 99.14
SRRL [48] 78.38 78.43 93.56 90.51 90.51 98.78
NKD [49] 74.63 75.00 92.31 90.03 89.97 99.03
LSKD [50] 76.88 76.90 93.22 90.96 90.91 99.15
SDD [18] 77.00 77.03 93.76 91.22 91.18 98.96

Feature

AT [17] 79.25 79.31 94.19 87.85 87.83 98.60
SP [38] 79.75 79.82 94.23 87.63 87.57 98.54

RKD [14] 79.50 79.57 93.85 90.51 90.51 99.00
PKT [51] 79.38 79.44 94.11 88.83 88.77 98.31
FSP [52] 78.63 78.68 94.09 90.69 90.64 99.21
NST [53] 79.25 79.31 94.02 90.78 90.78 98.55
VID [54] 79.38 79.44 94.05 89.36 89.30 99.02

ICKD [55] 77.38 77.41 93.93 86.66 86.63 97.81
MGD [20] 79.38 79.44 94.05 91.09 91.04 98.70
MKD [47] 77.88 77.92 93.67 90.03 89.97 98.58

CAT-KD [56] 78.13 78.17 93.37 90.56 90.51 98.87
UATR-KD [57] 77.63 77.66 93.88 87.90 87.83 98.35
UDKD (Ours) 81.00 81.09 94.91 94.81 94.79 99.50

↑ + 1.12 + 1.14 + 0.29 + 3.19 + 3.21 + 0.29
⇑ + 7.50 + 7.61 + 4.32 + 10.5 + 10.6 + 2.04

by the Cosine Annealing Warm Restarts strategy. The hyper-
parameter r decreases gradually with the reduction of the
spatial dimension in the feature map, i.e., r = {4, 2, 1}.
Our decoder consists of 4 transformer blocks, where each
transformer block is configured with 256 channels and 8 heads.
The masking ratio is set to 0.1 by default. We choose λ = 1
for DBD loss and γ = 1 for CMD loss. For each dataset,
70% samples are randomly selected for training, 10% samples
are randomly selected for validation, and the remaining 20%
samples are utilized for testing. We repeat the experiments
10 times with different splits of the training, validation and
test sets, and the average of the 10 experimental results are
reported. We utilize the PyTorch 1.13.0 framework to build
the entire model architecture and perform all experiments on
an NVIDIA GeForce RTX 3080.

Evaluation Metrics. We evaluate the performance by Ac-
curacy (ACC), F1-Score, and Area Under Curve (AUC). ACC
measures the proportion of correctly classified instances out
of the total instances. F1-Score provides a balance between
precision and recall, especially when the dataset is imbalanced.
AUC comprehensively measures the effectiveness across all
the possible classification thresholds. It represents the proba-
bility that the model ranks a randomly chosen positive sample
higher than a randomly chosen negative sample.

B. Comparison With the State-of-the-arts
Our proposed UDKD is compared with 20 classical or pop-

ular state-of-the-art (SOTA) knowledge distillation methods,
including KD [9], CC [33], DKD [36], WSLD [21], SRRL
[48], NKD [49], LSKD [50], SDD [18], AT [17], SP [38],

RKD [14], PKT [51], FSP [52], NST [53], VID [54], ICKD
[55], MGD [20], MKD [47], CAT-KD [56], and UATR-KD
[57]. Among them, the first 8 methods (i.e., KD, CC, DKD,
WSLD, SRRL, NKD, LSKD, SDD) belong to the logit-based
distillation. The other 12 methods (i.e., AT, SP, RKD, PKT,
FSP, NST, VID, ICKD, MGD, MKD, CAT-KD, UATR-KD)
belong to the feature-based distillation. From Table II, it is
observed that UDKD significantly improves the performance
of student and outperforms the SOTA methods substantially.
Specifically, on the ShipsEar dataset, UDKD improves the
student with 10.5% ACC, which greatly fills the performance
gap between the student and the teacher. Besides, compared
with the second-best method, UDKD brings 3.19% ACC
improvement. These observations strongly demonstrate the
effectiveness and superiority of learning low/high-frequency
features and time-frequency distribution patterns in the UATR
tasks. By comparison, many logit-based and feature-based dis-
tillations only achieve a moderate performance. For example,
MGD [20] masks random pixels in the student’s feature and
forces it to generate the teacher’s entire feature representation
through a convolutional block. This disrupts the structural
integrity of information in the time-frequency domain. In
contrast, our masking strategy in CMD is more suitable for
analyzing underwater acoustic knowledge.

C. Ablation Study and Hyper-parameter Analysis

We conduct extensive ablation studies and hyper-parameter
analysis to examine the effectiveness of UDKD. All the ex-
periments are performed on DeepShip and ShipsEar datasets.
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TABLE III
OVERALL ABLATION STUDY OF UDKD.

KD
Types

DeepShip ShipsEar
ACC ACC

- 73.50 84.31
DBD 75.88 90.69
CMD 76.63 89.76

Low, CMD 79.63 93.75
High, CMD 78.25 93.35
DBD, CMD 81.00 94.81

TABLE IV
PERFORMANCE EVALUATION OF THE

HYPER-PARAMETER r.

r
DeepShip ShipsEar

ACC ACC

1 79.25 93.62
2 78.13 92.95
4 78.75 92.55

{4, 2, 1} 81.00 94.81

TABLE V
PERFORMANCE EVALUATION OF THE FILTER

SHAPE.

Filter
Shape

DeepShip ShipsEar
ACC ACC

Circle 81.00 94.81
Square 79.25 93.09

Rhombus 78.63 93.22
Irregular 76.13 88.65

TABLE VI
PERFORMANCE EVALUATION OF THE MASKING

RATIO.

Mask
Ratio

DeepShip ShipsEar
ACC ACC

0 78.63 91.49
0.1 81.00 94.81
0.3 80.13 93.75
0.5 79.88 93.22
0.7 78.38 92.15
0.9 75.88 90.16

TABLE VII
PERFORMANCE EVALUATION OF THE MASKING

STRATEGY.

Mask
Strategy

DeepShip ShipsEar
ACC ACC

Freq 79.63 93.75
Time 78.13 93.62

Random 78.50 92.29
Block 76.63 89.72
Grid 75.88 88.83

Full-freq/time 81.00 94.81

TABLE VIII
PERFORMANCE EVALUATION OF THE DECODER

DEPTH.

Decoder
Depth

DeepShip ShipsEar
ACC ACC

2 80.50 93.62
4 81.00 94.81
6 80.63 94.02
8 80.25 94.41

TABLE IX
PERFORMANCE EVALUATION OF THE DECODER

WIDTH.

Decoder
Width

DeepShip ShipsEar
ACC ACC

128 79.50 93.88
256 81.00 94.81
512 80.13 94.28

TABLE X
PERFORMANCE EVALUATION OF THE DECODER

HEAD.

Decoder
Head

DeepShip ShipsEar
ACC ACC

4 79.38 93.09
8 81.00 94.81

16 80.38 93.75

TABLE XI
PERFORMANCE EVALUATION OF THE LOSS

WEIGHT λ.

λ
DeepShip ShipsEar

ACC ACC

1 81.00 94.81
3 79.88 94.15
5 79.13 94.41
7 80.63 94.55

TABLE XII
PERFORMANCE EVALUATION OF THE LOSS WEIGHT γ .

γ
DeepShip ShipsEar

ACC ACC

1 81.00 94.81
3 80.63 93.88
5 79.75 94.02
7 79.88 94.28

TABLE XIII
PERFORMANCE EVALUATION OF THE LOSS FUNCTION.

Loss
Function

DeepShip ShipsEar
ACC ACC

MSE 78.50 90.43
Cosine Similarity 81.00 94.81

Unless specified, the experimental settings remain the same as
those explained in “Implementation Details” in Sec. IV-A.

Overall ablations. The proposed UDKD consists of two
essential components, i.e., Dual-frequency Band Distillation
(DBD) and Cross-domain Masked Distillation (CMD). We first
examine the individual contribution of each component. The
ablation results are presented in Table III, where Low and High
indicate that we only use low-frequency components and high-
frequency components in DBD, respectively. In Table III, we
can find out that without any KD process, the student achieves
low prediction accuracy. When adding DBD or CMD, the
student achieves 6.38% and 5.45% improvements on ShipsEar
dataset, respectively. By further analysis, we can find out
that adding Low and High on the basis of CMD enables the
student to achieve the performance gain, i.e., 3.99% and 3.59%
on ShipsEar dataset, respectively. Finally, combining DBD
and CMD can further improve the performance gain, which
strongly demonstrates that all the designed KD components
are effective and contribute to the overall performance.

Hyper-parameter r. Table IV studies the effects of hyper-
parameter r in DBD, which determines the number of frequen-
cies processed by the low/high-pass filters. A larger r includes
more frequencies in the low-pass and fewer in the high-pass
filter. It may be straightforward to set r as a constant. However,
as the model goes deeper, a static value of r will lead to
disproportionate filtering effects across layers. For instance,
with r = 4, a 56 × 56 feature map processes 45 frequencies
in the low-pass and 3091 in high-pass filter. For a 28 × 28
feature map, the low-pass still processes 45 frequencies, but
the high-pass only handles 739 frequencies. Obviously, this
disrupts the balance between the low and high frequencies,
restraining the efficiency of the KD process. Thus, we propose
dynamically adjusting r in proportion to changes in the spatial
scale of feature maps, i.e., r = {4, 2, 1}. As a result, both
low and high-pass filters can adapt their frequency processing
capabilities accordingly. The results in Table IV confirm our
proposal.

Filter shape. We compare different filter shapes in DBD
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Freq Time Random

Block Grid Full-freq/timeRhombus Irregular

(a) Visualization of filter shapes

Circle Square

(b) Visualization of masking strategies

Fig. 10. (a) Visualization of filter shapes. (b) Visualization of masking strategies. In order to improve observability, we increase the size of the filter shape
areas and adjusted the masking ratio in the visualizations. In (a), for each filter shape, the left column denotes the low-pass filter and right column indicates
the high-pass filter.

TABLE XIV
TEACHER-STUDENT OUTPUT LOGIT DIFFERENCES ON DEEPSHIP AND SHIPSEAR DATASETS.

CC
[33]

DKD
[36]

WSLD
[21]

SRRL
[48]

NKD
[49]

LSKD
[50]

SP
[38]

RKD
[14]

PKT
[51]

FSP
[52]

VID
[54]

ICKD
[55]

MGD
[20]

UATR-KD
[57]

UDKD
(Ours)

DeepShip 7.05 5.80 5.47 5.53 6.34 5.47 5.73 5.77 5.75 5.81 5.83 5.84 5.60 5.22 5.06
ShipsEar 3.39 2.16 2.27 2.76 2.93 2.25 3.27 2.20 2.69 2.32 2.51 4.06 2.74 3.05 1.67

and the results are shown in Table V. Fig. 10(a) shows the
different filter shapes that focus on different directions [22].
Specifically, square shapes focus on horizontal and vertical
directions, rhombus shapes emphasize more frequencies on
the diagonal, and irregular shapes randomly affect some direc-
tions. The results demonstrate that the circle shapes with equal
attention to all directions of frequencies perform favorably.

Masking ratio. We investigate the influence of different
masking ratios. As show in Table VI, with the increase
of masking ratio, ACC gradually decreases, which fits our
intuitive impression. The larger masking ratio makes the
distillation process more difficult. However, it is worth noting
that even with a masking ratio as high as 90%, we still achieve
a 5.85% improvement on the ShipsEar dataset compared with
student without KD. This verifies the effectiveness of our
distillation mechanism. Additionally, when the masking ratio
is set to 0, CMD degenerates into the basic autoencoder archi-
tecture. Due to the interference of redundant information in the
Mel spectrograms, the teacher transfers ineffective knowledge
to the student, resulting in performance degradation.

Masking strategy. We further examine how the masking
strategies influence the distillation performance. Fig. 10(b)
shows the different masking strategies, and we conduct these
strategies in the CMD module, including random masking,
block masking, and grid masking. The experimental results
are presented in Table VII, where Freq and Time mean that
our designed masking strategy is only performed on specific
time slots and frequency points. As observed, the designed
masking strategy earns the best performance, which strongly
demonstrates its effectiveness. In comparison, the block and
grid masking disrupt the structural integrity and continuity
of the spectral knowledge in the time-frequency domain,
rendering to a moderate performance.

Decoder design. A well-designed decoder is important
for reconstruction tasks [47]. Therefore, we explore different

options for decoder design, as studied in Table VIII, Table IX,
and Table X. Specifically, we change the depth, width (num-
ber of channels), and the number of heads of the decoder.
When we change one hyperparameter, the others remain at
their default values described in “Implementation Details” in
Sec. IV-A. The experimental results show that a decoder with
a depth of 4, a width of 256, and 8 heads achieves superior
performance.

Loss weights. In Table XI and Table XII, we investigate the
effects of loss weights λ and γ on KD performance. For these
two loss weights, when we change the value of one, the value
of the other is set to 1. As observed, the performance gap
between the worst and best is within 0.66% ACC. This result
demonstrates that the student performance is not sensitive to
these loss weights.

Loss function. In UDKD, we utilize cosine similarity to
calculate the feature distillation losses. We herein explore the
effects of other loss functions on KD performance. We replace
the cosine similarity with MSE for the experiments and the
results are shown in Table XIII. As observed, cosine similarity
achieves better performance.

D. Teacher-Student Differences Analysis

Better learning in-distribution knowledge of teacher can
help reduce the performance gap between the student and
the teacher. Therefore, we investigate whether UDKD-trained
student indeed better captures the in-distribution knowledge
of teacher. The in-distribution knowledge can be effectively
represented by output logit [58]. Thus we calculate the teacher-
student output logit differences by mean-square error. As
shown in Table XIV, the output logit differences of UDKD are
consistently smaller than other KD methods, which indicates
that the in-distribution knowledge of student in UDKD is
closer to the teacher. It is worth noting that UDKD does not
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Fig. 11. Visualization of attention maps of student with different KD paradigms on ShipsEar dataset.

TABLE XV
ACC UNDER FGSM WHITE-BOX ATTACK WITH VARIOUS PERTURBATION

WEIGHTS ε ON SHIPSEAR DATASET. ε CONTROLS THE DIFFERENCE
BETWEEN ORIGINAL SAMPLE AND ADVERSARIAL SAMPLE, WHERE A

LARGER ε INDICATES A MORE SIGNIFICANT DIFFERENCE.

Method ε = 0.0001 ε = 0.0005 ε = 0.001

KD [9] 86.30 68.84 41.13
DKD [36] 88.79 71.85 40.60

WSLD [21] 88.70 70.92 41.89
NKD [49] 85.59 70.39 39.94
LSKD [50] 89.10 71.45 43.79
SDD [18] 88.30 71.32 43.26
AT [17] 85.06 69.33 45.66
SP [38] 84.57 69.06 42.77

RKD [14] 86.66 69.73 32.93
PKT [51] 87.50 70.04 42.02
MGD [20] 87.50 73.23 42.91

CAT-KD [56] 86.84 68.97 38.12
UDKD (Ours) 92.42 75.00 45.97

explicitly compute logit-based losses, while our output logit
differences are still minimal.

E. Robustness Evaluation

In real underwater environments, acoustic signals are in-
evitably disturbed by underwater environmental noise and
multi-path propagation. Therefore, it is important to evalu-

TABLE XVI
PERFORMANCE EVALUATION OF THE LOW/HIGH-FREQUENCY FEATURES.

Data Type DeepShip (ACC) ShipsEar (ACC)

Low-pass spectra 78.0 92.3
High-pass spectra 54.9 82.1

Mel spectrograms 83.9 97.7

ate the robustness of our distillation framework. Adversarial
learning can easily deceive a model by adding small but
deliberate worst-case perturbations that are difficult to detect
in the input image. Thus we conduct adversarial experiments
to evaluate the model robustness. Specifically, we compare
the robustness of KD mechanisms under FGSM white-box
attack [59]. As shown in Table XV, UDKD significantly
improves robustness and consistently outperforms other KD
methods under different perturbations. The results show that
UDKD has better potential in complex ocean environments.

F. Discussion

We present a detailed discussion from two perspectives to
further analyze our proposed UDKD.

Low/high-frequency features. In DBD module, the student
absorbs the low/high-frequency knowledge of the teacher. We
are therefore interested in their individual effectiveness. To
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TABLE XVII
PERFORMANCE EVALUATION OF THE TRANSFORMER-BASED DECODER

AND CNN-BASED DECODER.

Decoder DeepShip (ACC) ShipsEar (ACC)

CNN-based decoder 76.38 86.84
Transformer-based decoder 81.00 94.81

Category

A

B

C

D

E

Category

1

2

3

4

ShipsEar DeepShip

Fig. 12. Distribution of the high-frequency information for the DeepShip and
ShipsEar datasets, where categories 1, 2, 3, and 4 in the DeepShip dataset
represent the Cargo, Passenger boats, Tug, and Tanker classes, respectively.
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Fig. 13. The L2 distance between the reconstructed student’s feature maps
and the corresponding teacher’s feature maps on ShipsEar dataset.

this end, we perform the low/high-pass filtering on the Mel
spectrograms on the DeepShip and ShipsEar datasets, and gen-
erate the corresponding low/high-pass spectra. We utilize the
ResNet-18 to train these spectra, and the results are shown in
Table XVI. For the ShipsEar dataset, the low/high-pass spectra
achieve close performance to the Mel spectrograms. However,
the accuracy of the high-pass spectra decreases significantly
on the DeepShip dataset. This can be attributed to the low
separability of the high-frequency features in the DeepShip
dataset. As shown in Fig. 12, in DeepShip, the distribution of
the high-frequency information for the last three categories is
highly overlapping, while the ShipsEar dataset has a large gap
in the distribution of the high-frequency information for each
category. In summary, the low/high-frequency features work
in synergy to enhance the student’s learning.

Transformer-based decoder v.s. CNN-based decoder. A
well-performing decoder is important for the feature recon-
struction. The decoder in MGD [20] consists of multiple
convolutional layers, while our proposed CMD adopts the
transformer-based decoder. Therefore, we compare the per-
formance between different types of decoders through two
schemes. We first calculate the L2 distance between the re-

UDKD MGD

WSLD SRRL

Fig. 14. t-SNE of features learned by our proposed UDKD, MGD [20],
WSLD [21], and SRRL [48] on ShipsEar dataset.

(a) Failure cases by UDKD

(b) Some cases that can be classified correctly 

by UDKD while misclassified by MGD

B C→ B C→ D A→ C B→

B C→ B C→ A C→ A B→

Fig. 15. (a) Some failure cases from the proposed UDKD. a → b indicates
that true label is a and prediction is b. (b) Example cases that can be classified
correctly by the UDKD-trained student while misclassified by the MGD-
trained student [20]. a → b denotes that UDKD predicts a, but MGD predict
b. We report the results on ShipsEar dataset.

constructed student’s feature maps and the complete teacher’s
feature maps during the training process, and the results on
ShipsEar dataset are shown in Fig. 13. Throughout the training
process, the L2 distance of the transformer-based decoder is
significantly smaller than that of the CNN-based decoder. We
further replace the transformer-based decoder in CMD with the
CNN-based decoder to verify the advantages of transformer-
based decoder, where the CNN-based decoder consists of three
BasicBlocks (the building blocks in the ResNet architecture).
As observed in Table XVII, the transformer-based decoder
achieves superior performance, and thus it is more conducive
to feature reconstruction.

G. Qualitative Analysis

We present visualizations from three perspectives to illus-
trate the principles of our approach.

Visualization of attention maps. Fig. 11 shows the atten-
tion maps of student with different KD frameworks. According
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to the feature comparison in the red box, UDKD shows the
high responses in some line spectra and time periods, while the
attention distribution of other methods is more chaotic and the
responses are indistinctive. This demonstrates that the student
using UDKD learns more representative knowledge from the
teacher than other feature-based and logit-based methods.

t-SNE visualizations. We visualize the inter-class distance
map via t-SNE projection in Fig. 14. We can observe that the
representations of UDKD are more separable than other KD
mechanisms, showing the proposed UDKD can enhance the
discriminative capacity of student.

Failure cases. Although the proposed UDKD can achieve
optimal performance in the UATR tasks, there are still some
challenging scenarios. As shown in Fig. 15(a), it is challenging
for UDKD to classify Mel spectrograms without obvious
line spectra and time periods. The time-frequency distribution
patterns of these Mel spectrograms change slowly, making it
difficult for UDKD to extract effective features from them.
Furthermore, we visualize some cases that can be classified
correctly by the UDKD-trained student while misclassified by
the student trained with MGD [20], and the results are shown
in Fig. 15(b). From this figure, we can observe that the samples
misclassified by MGD all contain distinct line spectra and time
regions. These results verify our proposal that UDKD can help
the student extract the low/high-frequency features, thereby
improving its discrimination ability to the acoustic signals.

V. CONCLUSION

This paper reveals the challenges of the feature-based
knowledge distillation paradigms in the underwater acoustic
target recognition (UATR). To overcome these challenges, we
propose the Union-Domain Knowledge Distillation (UDKD),
which employs two new strategies of knowledge transfer-
ring for acoustic data. Specifically, we introduce the Dual-
frequency Band Distillation (DBD) module that enables the
student to efficiently learn the low/high-frequency features in
the frequency domain spectra. Furthermore, we design the
Cross-domain Masked Distillation (CMD) module that guides
the student to learn the intricate time-frequency distribution
patterns of acoustic signals. Extensive experiments on two
benchmark datasets demonstrate the effectiveness of UDKD.
The proposed union-domain solution offers a new perspective
for the community to rethink the model design of UATR tasks.
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