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Abstract—We present SNH-SLAM, a novel expandable dense
neural simultaneous localization and mapping (SLAM) method
that constructs a neural field in real-time based on run-time
observation. To reach this challenging goal without any scene
prior, we utilize instant depth supervision to drive the extension
of planar convex hulls, where a single hash table maintains
multi-level feature units embedded in the planar convex hulls.
This design facilitates high-fidelity, hole-free, and low-memory
map reconstruction while adding only a tiny time burden to the
training process. Our approach performs mapping by minimizing
both RGBD-based re-rendering loss and Truncated Signed
Distance Field (TSDF) loss. In addition, for camera tracking,
our optimization strategy allows SNH-SLAM to converge faster
on the pose estimation and maintain robustness. We evaluate our
method on common benchmarks and compare it with existing
dense neural RGB-D SLAM methods. The evaluation results
show the competitiveness of the SNH-SLAM in tracking accuracy,
reconstruction quality, memory usage, and frame processing speed.
Project page: https://xiaoshumiaol23.github.io.

Index Terms—planar convex hulls, hash table, hole-free, RGBD-
SLAM.

I. INTRODUCTION

ENSE visual simultaneous localization and mapping

(SLAM) aims to estimate the motion of the camera
and construct a high-resolution 3D map in real-time from
a continuous stream of visual data. As a core technology
for applications such as robotics, autonomous driving, and
augmented reality, it has remained a focal point of research in
3D computer vision.

In recent years, the emergence of NERF [1] has provided
new insights for dense visual SLAM. NERF can learn the
neural implicit representation of a scene and render scenes from
novel viewpoints. Thus, researchers have explored using neural
implicit representations as the underlying scene representation
for dense SLAM and developed NeRF-based SLAM systems
[2]-[7]. Compared to traditional methods, such approaches
exhibit significant advantages in mapping performance and
efficiency. Introducing neural implicit functions allows for de-
scribing three-dimensional space with fewer parameters. More
significantly, these methods compensate for the shortcomings of
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traditional dense SLAM to some extent by performing smooth
interpolation of unobserved regions within the scene, ultimately
achieving non-holey, high-precision reconstruction.

While NERF-based dense SLAM methods produce mod-
erately robust and complete dense maps, they rely on scene
boundary priors to pre-allocate feature grids of limited capacity,
thereby imposing fundamental limitations for open-world
deployment. To solve this issue, Vox-Fusion [8] employed
an octree-based incremental approach to create sparse voxel
grids, integrating neural implicit embeddings to achieve more
detailed reconstructions without boundary priors. However,
the voxel grids are only distributed near the surface points
with valid depth measurements and do not cover the occluded
area. This allocation method, commonly observed in traditional
SLAM systems [9]-[12], results in the loss of hole-filling
capability. Similarly, while Point-SLAM [13] dynamically
generates surface neural point clouds for more flexible memory
utilization, it still fails to bridge this gap. Additionally, for the
NERF-based SLAM methods, the parameters are optimized by
repeating the process of sampling sparse rays and minimizing
the loss of the rays. Unlike traditional dense SLAM methods,
neural scene representations struggle with a stark trade-off
between real-time performance and accuracy in run-time pose
estimation. Particularly, when boundary priors are canceled
and neural map units are dynamically expanded based on
estimated poses, it may introduce spatial drift that exacerbates
this phenomenon.

In this work, we aspire to apply neural SLAM to unknown
environments devoid of boundary priors, while preserving the
advantages that neural scene representations offer in completing
unobservable regions. To achieve this, we introduce SNH-
SLAM, a hash-based neural RGBD SLAM solution that
dynamically expands neural scene representation units and
enables hole-filling. Our key idea is to leverage real-time
depth sensing to supervise the expansion of unstructured
planes managed by a hash table, allowing for scalability
and low-memory compatibility. Unlike methods that encode
only surfaces [8], [13], we extend the encoding scope to the
unobservable areas around the surface using planar convex hulls,
enabling the reconstruction of more comprehensive maps while
maintaining minimal memory consumption. For points within
the domain governed by the planes, SNH-SLAM utilizes hash
lookup to swiftly access corresponding neighboring features
across different planes and obtains their feature embedding
through interpolation. After being decoded by Multi-layer
Perceptrons (MLPs), the feature embeddings produce predicted
color and geometry. Through a combination of selective ray
sampling and reduction of discrepancies between predicted
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and actual observations, tracking and mapping are alternately
performed. For the tracking, previous [2], [3], [5]-[8] adhere
to the NeRF paradigm, performing a full rerendering pipeline
to achieve rigid frame-to-model alignment for enhanced robust-
ness, which imposes a consistent computational burden and
leads to inefficiency. To improve the system’s efficiency, we
introduce customized inter-frame constraints as a substitute for
rerendering supervision. This approach enables us to sample
only near the surface along the rays and decode the geometry
selectively, thereby maintaining robust camera tracking with
reduced computational demand. Our method’s performance
is rigorously assessed using various indoor RGBD datasets,
and the experimental results demonstrate its superiority over
existing state-of-the-art (SOTA) systems. In summary, our
contributions encompass:

e We introduce SNH-SLAM, a novel dense RGBD SLAM
system that leverages a single hash table for the efficient
expansion and access of multi-level scene feature units,
permitting real-time, high-quality reconstruction without
any scene prior knowledge.

e We integrate planar convex hulls for the dynamic allo-
cation of feature units, which effectively enhances the
performance of neural scene representations in filling
holes while maintaining low memory consumption.

e We abandon re-rendering in favor of jointly supervising
camera tracking using surface geometry constraints and
inter-frame appearance constraints. This strategy signifi-
cantly improves the overall efficiency of the system while
maintaining robust tracking.

e We conduct comprehensive evaluations across multiple
datasets, confirming the competitive performance of our
method in various aspects, including tracking, mapping,
and efficiency.

II. RELATED WORK

Dense Visual SLAM. DTAM [14], an early representative
of dense SLAM, utilizes full-pixel photometric consistency
constraints to track camera poses and reconstruct detailed
environments. However, its application has often been confined
to small-scale spaces due to significant storage and computa-
tional costs. Concurrently, the advent of commodity RGB-D
cameras such as the Microsoft Kinect rapidly propelled depth-
measurement-based dense SLAM to the forefront. KinectFusion
[15] employs the Truncated Signed Distance Function (TSDF)
to represent 3D models and utilizes iterative closest point (ICP)
for frame-to-model tracking. It was the pioneering system to
achieve real-time dense reconstruction in indoor environments
using GPU acceleration. Subsequently, researchers made vari-
ous improvements to KinectFusion, including optimizing mem-
ory usage [16], [17], implementing loop closure [18], adapting
to dynamic environments [19], [20], and enhancing tracking
performance [21]. In recent years, inspired by deep learning,
some studies [22]-[28] extend real-time dense reconstruction to
low-cost sensors such as monocular and binocular, and further
improve the robustness of dense SLAM. Despite these methods
showing encouraging results, they still follow the traditional
scene representations and do not have predictive power for
unobserved regions.

Neural Implicit SLAM. Recently, NERF [1] has exhibited
remarkable potential in tasks involving pose estimation [29]-
[32] and offline 3D reconstruction [33]-[36]. Encouraged by
these advancements, researchers have extended its application
to SLAM. iMAP [2] introduced MLP as the underlying scene
representation for dense SLAM, which constructs NERF in
real-time through RGB-D sequences and implements camera
tracking. Leveraging the inherent continuity of MLP, it achieves
smooth and plausible fill-ins for occluded regions. However,
constrained by the limited capacity of a single MLP, imap shows
severe forgetting in larger scenes. To address this issue, NICE-
SLAM [3] combines MLPs with explicit feature grids, further
enhancing scene representation. Continuing this hybrid explicit-
implicit representation paradigm, subsequent efforts [4]—[7]
primarily focus on optimizing memory efficiency, reconstruc-
tion performance, and real-time capabilities. It’s noteworthy
that these methods pre-define finite feature grids based on given
scene boundaries, which restricts their adaptability to unknown
scenes.

The most relevant work to our method is VoxFusion [8].
It implements dynamic allocation of sparse feature voxels
based on an octree structure and utilizes neural radiance
fields for photometrically accurate reconstruction. In contrast
to methods like NICE-SLAM [8], Vox-Fusion [8] supports
dynamic expansion and marks the first achievement of neural
dense SLAM without boundary priors. However, the allocation
of voxels strictly follows the spatial distribution of the point
cloud mapped by depth, causing the radiation field to lose
the predictive ability of those areas with unknown depth (i.e.,
occluded areas). Similarly, Point-SLAM [13] anchors neural
features in dynamically created point clouds close to the surface,
and is subject to the same limitation. In order to preserve the
predictive performance and be scalable, we propose a neural
hash representation in this work. This representation utilizes
instantaneous depth to supervise the boundary and performs
real-time expansion of multi-level latent embeddings through
a single hash table. This dynamic representation allows us
to maintain robust camera tracking in unknown scenes while
recovering dense and hole-free scene geometry.

III. METHOD

An overview of SNH-SLAM is shown in Fig 1. SNH-
SLAM takes a continuous RGB-D sequence with known
camera intrinsic parameters as the input. The system aims
to concurrently maintain two processes: the mapping process
is responsible for dynamically creating and optimizing a neural
map, i.e. the proposed scalable neural hash representation.
Meanwhile, the tracking process estimates the 6-DOF camera
pose of the current input frame based on the predicted map.
The tracking and mapping are performed alternatively in the
proposed system.

Once the system is started, the first frame is used to initialize
the scene representation. After that, each frame achieves
the pose estimation by minimizing the loss on the sparsely
sampled rays. At regular intervals, defined by a set number of
frames, we execute a mapping process to refresh the scene’s
representation. In our method, the scene is represented through



IEEE TRANSACTIONS ON MULTIMEDIA

Scalable neural hash representation

—  Volume rendering —> BA optimization

Le\vel 2

Level 1

Planar convex hull ()

Planar convex hull (Q5)

Planar convex hull (3)

Fig. 1.

Pixel library update
.......... ffooo
1
1
Hash table X 1
BN 1 1
N2 T ‘ 9& :
Level N 1. I
1 Feature Position
encodlng\ ‘/ encoding |
|| 1
1 MLPs I
1B — 1
— S (¢ 1

System Overview. 1) Scalable neural hash representation: for each mapping frame, the multi-scale grid features are partitioned based on planar convex

hulls and inserted into a hash table. While decoding the RGB and TSDF values for a given spatial coordinate using MLPs, the input feature vector is obtained
by joint feature coding and position coding. 2) Tacking: keep the map fixed and sample rays only on the current frame to optimize the camera pose. 3) Mapping:
Sample rays from selected global keyframes and jointly optimize the scene representation along with the poses of these frames through bundle adjustment.

latent embeddings, controlled by a hash table and MLPs. During
each mapping phase, we initially expand the latent embeddings
to ensure they encompass newly explored areas. Following
this, we conduct a joint optimization of the complete scene
representation and the positions of chosen keyframes using
global bundle adjustment (BA).

A. Scalable Neural Hash Representation

We first introduce our neural scene representation that
anchors the latent embeddings in multi-level unstructured planes
and manages them by a single hash map. By encoding latent
embedding and MLP decoding, any spatial coordinate x within
the jurisdiction of the current planes can be mapped to truncated
signed distance (TSDF) s and color c.

Plane-based Perception. For single-frame input {I, D¢}, we
define the viewing frustum between the camera’s optical center
and the plane at the maximum depth currently captured as
the current perception space. We anticipate that the scene
representation will encompass the full range of perceptual
space, thus allowing it to address any location within that
space, even those areas that are obscured. A simple approach
is to fill the entire perception space with latent embeddings in
voxel form. However, it causes cubic memory growth resulting
in limited applications. Inspired by [6], [37], we register the
perceptual space to planes to achieve dimensionality reduction
for memory savings. It is noteworthy that the straightforward
mapping from 3D to 2D often blurs and amplifies boundaries,
rendering it inadequate in accurately guiding the creation of

potential embeddings on the planes, thus leading to memory
redundancy. To address this issue, we introduce planar convex
hulls to appropriately define the editable bounds of potential
embeddings. Specifically, we first recover the point cloud from
the input frame, then merge it with the camera’s optical center
o, and project them onto three orthogonal planes.

Ve =P (M7 (D, Ty)501)), s €{1,2,3} (D)

where II7! denotes the computational function that obtains
the 3D coordinates from the given depth D, and estimated
pose T, and Py denotes the projection operation from 3D
points to the three planes. V_ are the projected points on the
planes. Based on these projected points, we employ the classic
Quickhull algorithm [38] to create the planar convex hulls as
formulated below.

Q¢ = p - ConvexHull (V) )

where (). denotes the planar convex hulls. ;o (>1) is a scaling
factor, which is used to scale up the convex hull proportionally.
Hierarchical Embeddings. To estimate more detailed scene
appearance and geometry, we partition multi-level regular
grids {X l} =1 C § within the convex hulls and construct
latent embeddings {wg}l , to combine features at different

frequencies. To set the size of different level grids, we imitate
the multi-resolution rule in [39] as illustrated below.

In Zmazx — In Zmin
= ) 3)

z = [zmmbl] , b:=exp (
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Zmin and 2,4, correspond to the minimum and maximum size
of the grids, respectively.

To address the frequent updates and lookups of latent
embeddings during the tracking and mapping processes, we
consider hash table [40] as a suitable data structure. This is
because the hash table supports fast retrieval and insertion
operations. Furthermore, our method only utilizes a single hash
table avoiding overheads caused by frequent switching between
hash tables. To do this, we use the grids Xﬁ with tagged bits
7 :=[-< and their associated latent embeddings cplg as the keys
and values of the hash table. The tagged bits 77 make the grids
unique to avoid key collisions. Before each formal mapping,
we create latent embeddings of the newly explored region and
insert them into the hash table.

Scene Codec. For a certain point x in space, we obtain its
feature vector by querying the latent embeddings in the hash
table:

3 3 3
T(x) =D el x);> 02 (%) el (x)]| @
¢=1 s=1

s=1

where ¢! (x) denotes that the latent embedding ¢! is bilinearly
interpolated at the planar projection point of x.

After that, TSDF s and color ¢ are decoded by a mini-MLP
that contains only two hidden layers of size 32:

(8,0 =f3(v(x),T(x), e=fe(v(x),p) O

where p denotes a geometric feature vector. ~y (+) is a positional
encoding function recommend in [41].

B. Rendering

To utilize the input RGB-D images as directly supervised sig-
nals for optimizing the neural map, we render depth and color
by integrating the prediction of TSDF s and color ¢ at sample
points on rays. Given the camera’s intrinsic parameters, rays
can be determined by a camera pose and pixel coordinates. For
each selected ray, we uniformly sample Np,s. samples in the
range of [0.01D,1.2D] and N, near-surface samples in the
range of [D —T,., D +T,], where T,. is the truncation distance.
After obtaining the prediction {(s;,¢;) | i € {1,2,...,N}} of
the N := Npgse + Ngurr samples, we perform the rendering
following the method proposed in [42] as illustrated below.

(6

> widi (7

i =1

1 A 1
N Z w;Cq, D= N
dim Wi i dim W

w,; denotes the weights of the sample points, and d; denotes the
depths of the sample points under their corresponding camera
poses.

C. Mapping

In order to optimize the scene representation mentioned in
section III-A, we perform the mapping operation to each g
frame. During the mapping process, we sample rays from both
the current frame and selected keyframes and jointly optimize

the scene representation and the poses of these frames using
global bundle adjustment.

Keyframe Policy. In our approach, we follow Co-SLAM [5] to
maintain a keyframe pixel library, which adds a portion of the
mapped frame to the pixels at the end of each mapping. For each
mapping, Co-SLAM randomly samples a fixed number of rays
from the library and the current frame for global optimization
to prevent forgetting. However, as the system continues to
run, the amount of samples allocated to the current frame
gradually decreases causing a drastic degradation of the local
mapping capability. To alleviate this problem, we utilize a
scalable sliding window and select historical keyframes and
local keyframes at a specific ratio to perform ray sampling.
Specifically, the length sliding window W is extended as the
number of keyframes increases during the running process,
and is always maintained at about 10% of the total number of
keyframes. The W selected frames consist of 20% neighboring
keyframes of the current frame and 80% random selected
frames from earlier keyframes. The amount of ray sampling
per time is constant at K and is equally distributed to all

selected frames.

BA optimization. We perform BA optimization based on
rerendering supervision and TSDF supervision of spatial points.
The re-rendering loss defines the difference between the sensor
readings and our rendered results as illustrated in equation 8§,

LC_@;{(@—@)Q,@_ ;qk;((m—m)? ®)

where Cy and Dy, denote the rendered color and depth of the

k-th ray, respectively. Cj, Dj, are the corresponding sensor
readings. Referring to [42], the TSDF loss is used to accurately
define the surface of objects. For the points P,f ® located along
the sampled ray k and within the free space between the camera
center and the surface truncation boundary (Dy —d, > T;), we
expect their TSDF values to be one. Meanwhile, for those near-
surface points P5"" within the truncation region (| Dy, — d,| <
T,), their TSDF values should be close to the approximation
of the ground-truth TSDF value, i.e. D’“dep. Ultimately, free
space loss and surface loss are defined as:

1 1 2
=5 = -1 9
S S DO
keK k peplfs
1 1
Loww=1=D 5 . (dy+Tr-s,—Dp)*  (10)
K] 2 1B

where s, denotes the TSDF prediction at point p. We
combine the above losses to optimize the latent embeddings, the
decoders, as well as the camera pose {T;} of the K selected
keyframes:

arg min

{eL}Afg fe AT}

()\ch + )\de + )\stfs + )\surLsur)

(11)
where {Ac, Mg, Afs, Asur } are the weighting coefficients.

D. Tracking

In parallel to the mapping, we sample () rays each time
on the current frame ¢ and then optimize its camera pose
T; € SE(3) to achieve camera tracking. The initial pose is
determined by a constant motion model:

Ty = T 1 T, ', Ty (12)
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Given that tracking requires execution on every frame, its
computational efficiency significantly affects the overall system
speed. In our approach, we seek to enhance the computation
efficiency from the following two aspects: (1) Reducing
Sampling. Undoubtedly, reducing the number of sampled
points along the ray is a direct and effective way to lessen
the computational load. From our experience, the influence of
surface constraints significantly outweighs that of the free space
during the camera pose optimization process. Hence, along
each ray, we uniformly sample 7 - Ny, points only within the
truncation region, where 7 is a constant coefficient for adjusting
sample density. (2) Abandoning Re-rendering. For pose
optimization based on neural scene representation, decoding
geometry and appearance of sampled points to support re-
rendering supervision is relatively time-consuming yet crucial.
Particularly, re-rendering color loss serves as a regularization
term for TSDF loss, effectively mitigating the influence of
degenerate surfaces (e.g., plain walls). To this end, we introduce
inter-frame constraints as a replacement, which accelerates
computation while preserving robust tracking. Specifically, for
the current frame t, we designate the most recently added
keyframe as its reference frame and determine the projected
pixel ¢ on the reference frame corresponding to the sampled
pixel g € Q:

¢=T(II"" (Dy,T;), Tiy) (13)

where II denotes the computational function for mapping 3D
coordinates to pixel coordinates, and Ty denotes the estimated
pose of the reference frame. We optimize the initial pose by
combining surface TSDF loss and inter-frame color loss, as
illustrated below.

Ac
Lsur“”ﬁ E |O(170f§|
q€Q

(14)

arg min
T

where \.; is a weighting coefficient.

IV. EXPERIMENTS
A. Experimental Setup

Datasets. We evaluate SNH-SLLAM on three commonly used
3D benchmarks that cover both synthetic scenes and real-world
scans. (1) The Replica dataset [43] provides 18 synthesized
highly realistic 3D indoor scenes. Additionally, we use the
RGB-D sequences collected by Sucar et al. [2] for the replica
dataset. (2) The ScanNet dataset [44] comprises multiple RGB-
D sequences captured in the real world, as well as ground truth
pose obtained via BundleFusion [45]. (3) The TUM-RGBD
dataset [46] contains indoor RGB-D sequences recorded by
a Microsoft Kinect sensor. Their ground truth trajectory was
obtained from a high-accuracy motion-capture system.
Baselines. We compare our method to existing state-of-the-art
NeRF-based dense visual SLAM methods, including NICE-
SLAM [3], Vox-Fusion [8] and Co-SLAM [5]. NICE-SLAM
and Co-SLAM require scene boundary information as prior,
while Vox-Fusion and our method perform incremental mapping
without any prior. We reproduce the results of Vox-Fusion
using their official implementation and report the results as
Vox-Fusion*.

Metrics. Following previous work [3], [5], we use both
2D and 3D metrics to evaluate the reconstruction quality,
including Depth LI [cm], Accuracy [cm], Completion [cm],
and Completion Ratio [<5 cm %]. Following Co-SLAM [5],
we conduct mesh culling. This process eliminates regions not
visible within any camera’s field of view and also removes
noisy points that, although within the camera’s field of view, are
situated outside the target scene. In addition, camera tracking
accuracy is evaluated by ATE RMSE [46]. Without special
instructions, we report the average results of 5 runs.
Implementation Details. Our experiments are conducted on
a Ubuntu server equipped with an NVIDIA RTX 3090 GPU.
Across all experiments, the iteration number of initialization
is fixed to 1500, the window size W of initialization is set to
10, and mapping is set to be performed every 5 frames. We
partition the grid into L = 6 levels ranging from z,,;, = 2cm
t0 Zmaxr = 32cm, with the latent embedding dimensions set
to 3 for all levels. During the tracking process, the number
of randomly selected rays per iteration was set to () = 1024.
For mapping, K = 2048 rays were used. Note that for the
ray sampling, we disregard rays that do not have valid depth
measurements. Under the default setting (for Replica [43]), we
sample along each ray with Np,s. = 36 regular points and
Ngyr = 12 near-surface points within the truncation distance
T, = 6cm. The coefficient 7 is set to 1. The weights during
mapping are set to A\, = 5, A\g = 0.1, Ays = 10, and Agyr =
1000. During tracking, the weight is set to A.; = 0.001. For
additional detailed settings regarding all datasets, please refer
to the supplementary materials.

B. Experimental Results

Evaluation of Tracking. To demonstrate that our frame-
work can handle real-world scenes, we evaluate 9 real-world
sequences, 6 from the ScanNet dataset [44] and 3 from
the TUM-RGBD dataset [46]. As shown in Table I, our
method significantly outperforms Vox-Fusion and even shows
competitiveness with closed-bound methods like NICE-SLAM
and Co-SLAM. In addition, we report the quantitative analysis
of the tracking results on eight synthetic scenes of the Replica
dataset [43] in Table II. Despite the significant improvement in
tracking performance for all methods, our overall performance
demonstrates an advantage(see Avg column).

Evaluation of Mapping. Table III shows the quantitative results
of the reconstruction of our method on the Replica dataset [43].
Our method outperforms the baseline approaches on almost
all metrics. Qualitatively, Fig 2 shows that our neural hash
representation produces more complete scene geometry than
Vox-Fusion, and is comparable to the closed-bound methods.
Fig 3 further illustrates the reconstruction comparison for the
real-world sequences. We find that Vox-Fusion even leads to
severely distorted reconstructions, like the carpet in the first
scene and the dining table in the third scene. In contrast, our
method is able to reconstruct all scene sequences incrementally
and accurately. We attribute this to our tracking method and
global BA strategy, which lead to more stable pose tracking
without large drift even if subject to motion blur or noisy depth
detection.
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TABLE I
TRACKING RESULTS ON SCANNET [44] AND TUM-RGBD [46]. ATE RMSE [cM] (]) IS USED AS THE EVALUATION METRIC. FOR NICE-SLAM [3]
AND CO-SLAM [5], WE TAKE THE RESULTS FROM THE RESPECTIVE ORIGINAL PAPERS. VOX-FUSION* INDICATES OUR REPRODUCED RESULTS OF
VOX-FUSION [8]. OUR APPROACH OUTPERFORMS ALL BASELINES IN TRACKING FOR THE MAJORITY OF SCENES.

closed-  open- ScanNet TUM-RGBD

bound  bound ; 0000 0059 0106 0169 0181 0207  Avg. ; frl/desk  fr2/xyz  fr3/office = Avg.
NICE-SLAM 4 I 864 1225 809 1028 1293 559 9.63 I 27 1.8 3.0 2.5
Co-SLAM 4 718 1229 957 6.62 1343 7.3 937 1+ 27 1.9 2.6 2.4
Vox-Fusion* v 11599 9.6 802 9.85 1630 7.73 11.18 I N/A N/A N/A N/A
Ours v ! 694 8.71 842 735 1044 9.18 851 I 28 1.7 24 2.3

NICE-SLAM
Closed-Bound

Co-SLAM

Vox-Fusion*

SNH-SLAM (Ours)
Open-Bound

Fig. 2. Qualitative Reconstruction Results on Replica [43]. All NERF-based SLAM methods except Vox-Fusion restore relatively complete rooms closer to
GT. We mark Vox-Fusion missing regions with red boxes, and green boxes correspond to improvements achieved by our method.

TABLE 11
TRACKING RESULTS ON REPLICA [43]. ATE RMSE [cM] ({) IS USED AS
THE EVALUATION METRIC. OUR METHOD ROBUSTLY HANDLES EACH
SYNTHETIC SEQUENCE, AND ON AVERAGE, ITS TRACKING PERFORMANCE
CONSISTENTLY REMAINS OPTIMAL.

oft-0
0.96

off-1
0.87

off-2
1.70

rm-2

1.90

rm-0

NICE-SLAM 1.88
CoSLAM 062 082 117 054 058 206 156 0.66 100

Vox-Fusion* 0.58
Ours 0.54

C. Runtime and Memory Analysis

Besides the evaluation of scene reconstruction and camera
tracking, we further analyze the efficiency of the proposed
pipeline. We perform runtime and memory tests on Replica [43]
and ScanNet [44] datasets to do this. The results are reported
in Table IV. The FPS of our method achieves 3 and 12 times
the open-bound baseline (i.e. VoxFusion) on Replica [43] and
ScanNet [44]. Compared with the closed-bound methods, our
method requires extra time on the map expansion before each

TABLE III
QUANTIFIED RECONSTRUCTION RESULTS ON REPLICA [43] (AVERAGE
OVER 8 SCENES). THE RESULTS OF NICE-SLAM [3] ARE REPORTED IN
Co0-SLAM [5]. OUR METHOD OUTPERFORMS ALL OTHER APPROACHES,
REGARDLESS OF WHETHER THEY PRE-ALLOCATE FEATURE GRIDS BASED
ON BOUNDARY PRIORS.

Closed-Bound Open-Bound
NICE-SLAM  Co-SLAM  Vox-Fusion* Ours
Depth L1 | 1.90 1.51 3.19 1.23
Acc. | 2.37 2.10 3.26 2.18
Comp. | 2.64 2.08 2.64 1.87
Comp. Ratio 1 91.13 93.44 90.86 95.71

mapping. The execution time of our method is still less than that
of NICE-SLAM and only more than that of Co-SLAM. In terms
of memory usage, it is apparent that SNH-SLAM significantly
outperforms the closed-bound baselines that allocate feature
embeddings over the entire space. Vox-Fusion achieves the
best performance by creating feature embeddings only at the
surface, but it results in maps with holes. In contrast, our
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NICE-SLAM
Closed-Bound

Co-SLAM

Vox-Fusion*

SNH-SLAM (Ours)
Open-Bound

Fig. 3. Qualitative Reconstruction Results on ScanNet [44]. Our approach enables the recovery of scene geometry with greater detail and global consistency
from noisy real-world depth measurements. Furthermore, the holes within the scene are filled through our neural hash representation.

TABLE IV
RUNTIME AND MEMORY USAGE ON REPLICA [43] AND SCANNET [44].
IN PARENTHESIS WE REPORT THE NUMBER OF ITERATIONS. NOTE THAT
VOX-FUSION* PERFORMS MAPPING ON EVERY FRAME TO MAINTAIN THE
GLOBAL CONSISTENCY OF THE MAP. IN CONTRAST, SIMILAR TO
CLOSED-BOUND METHODS, WE PERFORM MAPPING EVERY 5 FRAMES,
ENABLING OUR FRAME PROCESSING SPEED TO SIGNIFICANTLY EXCEED
THAT OF VOX-FUSION*,

Closed-Bound Open-Boud

NICE-SLAM Co-SLAM Vox-Fusion* Ours
< Track [ms]J 145(10) 64(10) 552(30)  139(15)
S | Map. [ms] & 4146(60)  102(10)  454(10)  524(15)
5| Fest 0.95 10.15 0.85 2.82

Mem. [MB] | 4875 5.43 117 223
= [ Track. [ms] 1 855(50) T4(10) 80530)  97®)
Z | Map. [ms] ,  4570(60)  222(10)  691(15)  607(15)
8| Fps 1 0.47 7.29 031 373
% | Mem. [MB] | 36.53 8.46 1.09 2.14

approach achieves more accurate reconstructions and supports

hole-filling with only a minor increase in memory consumption.

D. Ablation Study

Tracking scheme. To validate the advantage of the proposed
novel tracking scheme in terms of accuracy and efficiency,
we compared it with the standard scheme recommended by
Co-SLAM [5] and Vox-Fusion [8]. Their tracking follows the
rule closely aligned with mapping, concurrently considering
TSDF loss and RGB-D re-rendering loss. Additionally, we
investigate the tracking performance of our scheme with only
surface TSDF constraint. All results are shown in Table V.
It is observed that the introduction of inter-frame appearance
constraint significantly improves the average ATE RMSE on

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT TRACKING SCHEMES ON
REPLICA [43]. WE REPORT AVERAGES ACROSS 8 SCENES. CONSIDERING
BOTH ACCURACY AND SPEED, OUR METHOD EXHIBITS THE BEST

PERFORMANCE.

Std. w/o Inter-frame const.  Ours
ATE RMSE | 0.77 0.91 0.75
FPS 1 2.43 3.03 2.82

the Replica [43] dataset. Furthermore, compared to the standard
tracking scheme, our scheme achieves an approximate 16%
increase in FPS and even holds an advantage in tracking
precision.

Bundle Adjustment Policy. We test the performance of our
method using different BA strategies and report the results in
Table VI. (1) LBA: Referring to NICE-SLAM, select 10 local
keyframes, and sample an equal amount of rays for each frame.
(2) GBA-Vox: Referring to Vox-Fusion, randomly select 10
frames from all the keyframes and sample an equal amount
of rays for each frame. (3) GBA-Co: Reference Co-SLAM to
perform random sampling from rays of all keyframes. GBA-Co
emphasizes globally consistent mapping, the decay of local
mapping power during system running causes a degradation in
overall reconstruction performance, which also leads to poorer
camera tracking. Meanwhile, both LBA and GBA-Vox suffer
from the negative effects of insufficient global constraint. In
contrast, our strategy consistently maintains a balance between
local and global mapping. Under an equal amount of ray
sampling, our strategy exhibits optimal performance.
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TABLE VI
ABLATION OF BA STRATEGIES ON THE REPLICA DATASET [43]. WE
REPORT AVERAGES ACROSS 8 SCENES. TO ENSURE FAIRNESS, THE NUMBER
OF RAYS SAMPLED PER ITERATION IS FIXED AND CONSISTENT ACROSS ALL
STRATEGIES (I.E. 2048). OUR PROPOSED STRATEGY PROMOTES THE BEST
PERFORMANCE IN BOTH CAMERA TRACKING AND MAP RECONSTRUCTION.

LBA GBA-Vox GBA-Co Ours
ATE RMSE | 0.91 0.83 0.98 0.75
Depth L1 | 1.35 1.39 1.58 1.23
Acc. | 2.59 2.33 242 2.18
Comp. | 2.13 2.05 2.34 1.87
Comp. Ratio 1+ 92.73 93.55 92.14 95.71

V. CONCLUSION

We introduce SNH-SLAM, an innovative dense SLAM
technique leveraging neural scene representation. This system
dynamically constructs a neural map from real-time observa-
tions, making it highly effective for scenes without prior data.
Our method utilizes instantaneous deep weak supervision to
foster the development of planar feature units. In conjunction
with implicit decoders, this strategy results in highly precise
and comprehensive map reconstructions. To enhance system
efficiency, SNH-SLAM employs a singular hash table for all
feature unit insertion and lookup operations. Additionally, our
approach focuses on rapid camera tracking without relying
on re-rendering supervision and incorporates an inter-frame
constraint to bolster robustness. Compared to existing open-
bound neural SLAM methods, SNH-SLAM shows marked
improvements in filling gaps and processing frames more
rapidly. Moreover, extensive experimental evaluations reveal
that our method outperforms the latest closed-bound solutions
in terms of tracking accuracy and reconstruction completeness.
Limitations. Our SLAM approach presents some areas for
refinement. Firstly, it currently lacks an explicit loop closure
feature, which is useful for correcting cumulative errors
over time. Additionally, compared to other neural SLAM
methods our method achieves significant runtime improvements,
but there is a challenge for use in systems with limited
computational capacity, such as embedded devices or mobile
robots. This could potentially affect the system’s real-time re-
sponsiveness, necessitating a careful balance between precision
and operational efficiency. To adapt neural SLAM methods
for real-time applications in limited computational devices, we
will leave it as future work.
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