
1

SGMFuzz: State Guided Mutation Protocol Fuzzing
Zhenyu Wen, Senior Member, IEEE, Jianfeng Yu, Zening Huang, Yiming Wu, Zhen Hong, Rajiv Ranjan

Fellow, IEEE

Abstract—Protocol implementations are fundamental compo-
nents in network communication systems, and their security
is crucial to the overall system. Fuzzing is one of the most
popular techniques for detecting vulnerabilities and has been
widely applied to the security evaluation of protocol implemen-
tations. However, due to the lack of machine-understandable
prior knowledge and effective state-guided strategies, existing
protocol fuzzing tools tailored for stateful network protocol
implementations often suffer from shallow state coverage and
generate numerous invalid test cases, thereby impacting the
effectiveness of the testing process.

In this paper, we introduce SGMFuzz, a grey-box fuzzing
tool that combines a state-guided mutation mechanism to detect
security vulnerabilities in protocol implementations. SGMFuzz
uses the feedback collected during fuzzing to construct a finite-
state machine, which aids in a deeper exploration of the program.
Additionally, we design a message-aware module to enhance the
tool’s ability to generate valid test cases. Our evaluation demon-
strates that, compared to the most advanced and widely used
network protocol fuzzing tools, SGMFuzz increases the number
of discovered execution paths by over 15% on average and
improves state transition coverage by over 10%, providing a more
comprehensive security assessment of protocol implementations.

Index Terms—Grey-box Fuzzing, Protocol Security, State-
Guidance, Content-Awareness

I. INTRODUCTION

NEtwork communication protocols define how devices on
the Internet interact with each other. However, flaws in

the implementation of these protocols in software can lead to
security vulnerabilities. For example, the Heartbleed bug in
OpenSSL, a widely used implementation of the TLS protocol,
allows attackers to steal sensitive information from servers [1].
Similarly, weaknesses in Microsoft’s SMB protocol are ex-
ploited by the WannaCry ransomware attack that affected
millions of computers around the world [2].

Grey-box fuzzing has become one of the most popular
methods for vulnerability discovery, efficiently generating
test cases through mutation-based techniques, characterized
by rapid detection capabilities and low false positives. The
tools developed based on this technique [3] have success-
fully uncovered numerous vulnerabilities in various software

This work was supported by the Key R&D Program of Zhejiang under
Grant No.2024C03288, National Natural Science Foundation of China under
Grants No.62302454 and 62302454, Zhejiang Provincial Science Fund for
Distinguished Young Scholars under Grant LR24F020004, and Zhejiang
Provincial Natural Science Foundation of Major Program (Youth Original
Project) under Grant LDQ24F020001.

Zhenyu Wen, Jianfeng Yu, Zening Huang, Yiming Wu, Zhen Hong are
with the Institute of Cyberspace Security, and College of Information En-
gineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
(e-mail: wenluke427@gmail.com; {211122120007, 221122030311, wyiming,
zhong1983}@zjut.edu.cn).

Rajiv Ranjan is with School of Computing, Newcastle University, NE4
5TG, UK (e-mail: raj.ranjan@newcastle.ac.uk).

and hardware testing domains. However, traditional grey-box
fuzzing tools face challenges when fuzzing protocol imple-
mentation programs, as these programs cannot directly read
test cases from files and rely on network interfaces to receive
client requests. Moreover, protocol implementation programs
are stateful, requiring continuous updates to internal pro-
gram states during client interaction. Consequently, traditional
fuzzing tools that lack network interfaces and rely solely on
code coverage metrics are not applicable for testing protocol
implementation programs.

In recent years, several research efforts have emerged to
develop grey-box fuzzing tools specifically designed for proto-
col implementations. AFLNET [4], the first grey-box protocol
fuzzing tool, extracts status codes from protocol implemen-
tation response messages via network interface calls to track
internal states and constructs a state model to guide the fuzzing
process. However, due to the significant volume of network
interactions during the fuzzing process, AFLNET’s testing
efficiency is greatly affected. Therefore, SNPSFuzzer [5],
based on the AFLNET framework, attempts to introduce
process-level snapshot technology to reduce the time spent
handling network interaction messages during fuzzing tests.
When conducting fuzzing tests on specific states, SNPS-
Fuzzer directly restores the program to the corresponding state
from the snapshot file, thereby enhancing fuzzing efficiency.
NSFUZZ [6] detects server states through instrumentation
statements of state variables and rebuilds network interfaces
to optimize data processing, reducing ineffective waiting time
during fuzzing and improving overall fuzzing efficiency.

Current research on grey-box protocol fuzzing tools pri-
marily focuses on improving interaction speed and expanding
state coverage. Yet several limitations remain (1) test case
generation: recent fuzzing tools typically employ message
mutation techniques to create new test cases. However, this
approach often generates numerous instances that violate pro-
tocol structure specifications. The tested server cannot parse
these instances, leading to a significant waste of fuzzing
resources; (2) state transition coverage: most fuzzing tools
aim to cover individual states rather than program state
transitions. As a result, these tools prioritize simple test
cases to expedite interaction speed, neglecting the interaction
information embedded in runtime state transitions. Given that
protocol implementations involve numerous state transitions,
which may harbor errors, conducting a comprehensive security
assessment of these transitions is crucial [7].

In this paper, we introduce SGMFuzz, a state-guided pro-
tocol fuzzing approach that utilizes a comprehensive under-
standing of protocol structures and their complex program
state transitions to enhance the fuzzing process. First, we
construct a state transition guidance dictionary based on RFC

2

documentation, specifically tailored to the relevant protocol.
This dictionary serves as a knowledge base for the fuzzing
tool. Second, we optimize existing fuzzing strategies and
develop a state-guided mutation (SGM) module using this
knowledge base, which improves the exploration of deep
program states. Additionally, we introduce a message content
awareness module to verify the legality of the mutation-
generated test cases, minimizing unnecessary resource wastage
during the fuzzing process. to enhance the exploration of
deep program states. Finally, we refine the grey-box fuzzing
algorithm and integrate these advanced modules into existing
fuzzing tools to deliver our optimized solution—SGMFuzz.
This integration results in a significantly enhance fuzzing tool
capable of providing superior results through strategic, state-
guided testing. In summary, this paper makes the following
contributions:

• Our study takes a detailed look at the key characteristics
of protocol implementations and explores the significant
challenges they present for testing. At the same time,
we examine the common weaknesses in current fuzzing
methods and how these flaws negatively affect the overall
efficiency of the fuzzing process.

• We have devised the enhanced SGMFuzz. This advanced
tool includes both a message content-aware module and a
state-guided mutation module, significantly improving the
capability of traditional fuzzing tools to detect protocol
vulnerabilities. SGMFuzz achieves this improvement by
increasing the likelihood of generating test cases that
adhere to protocol standards and by guiding the mutation
process with great precision.

• We conducted a preliminary evaluation of SGMFuzz. The
results indicate that, compared to other state-of-the-art
grey-box network protocol fuzzers, SGMFuzz excels in
path coverage, state space exploration, and vulnerability
detection capabilities.

II. MOTIVATION AND PROBLEM DEFINITION

In this section, we introduce the primary technical concepts
of protocol fuzzing and clarify the main challenges we aim to
address in this paper. Subsequently, we model the system using
a finite-state machine and define our optimization objectives.

A. Protocol Fuzzing

To ensure effective and reliable information sharing on
the Internet, the Internet Engineering Task Force (IETF) and
published as Requests for Comments (RFCs). For example,
the File Transfer Protocol (FTP) is based on RFC 959.
These protocols outline the general structure and sequence
of message exchanges. As shown in Fig. 1, an FTP message
consists of a message command type, key-value pairs, and
carriage return and line feed characters (CRLF). The required
sequence of FTP messages is depicted in Fig. 2: the protocol
implementation begins in the INIT state to the AUTH state
upon receiving USER and PASS-type messages. From the
INIT state to the TRAN state, the protocol must receive at
least one more specific type and structure of message besides
the USER and PASS messages.

Fuzzing tools automatically generate message sequences
and send them to the protocol implementation. Ideally, these
message sequences should adhere to the required structure and
order of the protocol. However, even the most advanced grey-
box fuzzing tools face several challenges:

Command
Type

S
P Value CRLFS

P

USER demo <CRLF>

PASS demo_passwd <CRLF>

CWD /path/dir <CRLF>

STOR test.txt <CRLF>

Fig. 1. FTP command structure and an example of FTP request from Lightftp.

Challenge 1 (C1): Random mutations often fail to
produce test cases that conform to the protocol message
structure. Fuzzing tools generate new test cases by perform-
ing byte- or file-level mutations [3] on message sequences.
Due to a lack of prior knowledge about the target protocol,
these tools handle the contents of message sequences indis-
criminately, mutating any part of the message command type,
the command’s key-value pairs, or the carriage return and line
feed characters. For instance, consider the Lightftp interaction
commands shown in Fig. 1. If a fuzzing tool mutates the
command type of the third CWD command by reversing it
to DWC and sending this mutated command to the protocol
implementation, this mutation directly changes the command’s
semantics. Consequently, the protocol implementation will be
unable to parse the command, disrupting subsequent protocol
state transitions, impeding the fuzzing process, and wasting
significant fuzzing resources.

Challenge 2 (C2): Short-sighted fuzzing strategies hin-
der the exploration of deep program state paths. The
fundamental approach of fuzzing tools involves selecting a
target protocol state for fuzzing and then choosing a message
sequence from the queue that can reach this target state. In this
scenario, multiple different test cases might lead the protocol
implementation to the same program state. Specifically, as
shown in Fig. 2, instances that bring the protocol implementa-
tion to the TRAN state can include different command groups
such as [PASS, USER, STOR], [PASS, USER, LIST, STOR],
or [PASS, USER, CWD, LIST, MKD, STOR]. Each additional
command increases the fuzzing resources consumed by that
command group. Consequently, to cover program states, most
existing protocol fuzzing tools based on AFL will prefer the
message sequence that reaches the target state faster, thereby
reducing the number of message interactions to enhance
fuzzing performance. However, protocol implementations are
stateful software systems, and each valid command affects
its state. In the example mentioned, the command group
[PASS, USER, CWD, LIST, MKD, STOR] includes an extra
MKD command, which creates an additional directory on the
server. In subsequent fuzzing processes, when the fuzzing tool
sends commands involving directory operations, it will obtain
different results. For each type of message command, every
directed edge from state A to state B increases the out-degree
of state A and the in-degree of state B. As recorded in Fig.
3, the state transitions from AUTH to TRAN are much more

3

extensive than those from INIT to AUTH, resulting in more
state transition paths. Therefore, fuzzing strategies that only
aim to cover states are suboptimal, as they discard complex
instances and ultimately make it difficult to explore deep paths
and uncover vulnerabilities.

INIT TRANAUTH

USER

/PASS

USER

PASS

MKD/RMD/LIST

PWD/CWD/DELE STOR/RETR/PORT

MKD/RMD/LIST

PWD/CWD/DELE
STOR/RETR/PORT

Fig. 2. FTP state model.

INIT AUTH TRAN

2 1 0

0 6 3

0 6 3

INIT

AUTH

TRAN

Fig. 3. FTP state transition out-degree and in-degree matrix diagram.

B. Problem Definition

During the fuzzing of protocols, each state transition may
correspond to the occurrence of an event. Finite State Ma-
chines (FSMs) describe the potential behavior of a system
through states and the transitions between them, making FSMs
particularly suitable for modeling event-driven systems. By
using FSMs to model protocol implementations, it is possible
to construct mappings between inputs and protocol state tran-
sitions. This mapping aids fuzzing tools in generating inputs to
check the security of deep program states and their transitions.
The main parameters used in this section are listed in Table I.

A Mealy FSM is a six-tuple :

A = (Q, q0,Σ,Λ, δ, λ) (1)

where Q = {q1, q2, . . . , qn} is a finite set of states, q0 rep-
resents the initial state of the system, Σ = {σ1, σ2, . . . , σm}
is the input alphabet, and Λ = {o1, o2, . . . , on} is the output
alphabet; δ : Q×Σ→ Q denotes the state transition function
and can be expressed as δ = {(q, σ, q′) : δ(q, σ) = q′} .
λ : Q × Σ → Λ represents the set of potential outputs or
observations for this transition.

Meanwhile, let Σ∗ (excluding ϵ) represents the set of
finite-length sequences on Σ, and let Λ∗ represents the state
transition outputs over Λ. In this regard, by successive it-
erations, for any q0 ∈ Q , δ can be extended over a k-
length string sk = σi1σi2 . . . σik ∈ Σ∗ by δ(q0, sk) :=
δ(δ(. . . δ(δ(q0, σi1), σi2) . . .), σik). Also the output function λ
can be extended over a k-length string pk = oj1oj2 . . . ojk ∈
Λ∗ by pk = λ(q0, sk) := λ(λ(. . . λ(λ(q0, σi1), σi2) . . .), σik).

Therefore, given a Mealy FSM A, there exist differ-
ent input-output pairs (∆i, Oj) composed of sequences
(σi1 , oj1)(σi2 , oj2) . . . (σik , ojk), where the state transition
function δ(q0, sk) and the output function λ(q0, sk) are defined
over different existing sequences of events sk = σi1σi2 . . . σik ,
ensuring that |δ(q0, sk)| > 0 and |λ(q0, sk)| > 0, respectively.

For any protocol implementation, a corresponding Mealy
FSM A can be constructed. Let F be the fuzzing tool that

TABLE I
MAIN PARAMETERS

Parameter Sign Content
Finite Set of States Q q1, q2, . . . , qn

Initial State of The System q0 /
Input Alphabet Σ σ1, σ2, . . . , σm

Output Alphabet Λ o1, o2, . . . , on
State Transition Function δ δ(q, σ) = q′

Set of Outputs for State Transition λ Q× Σ → Λ
Generates instances C c1, c2, . . . , cn

generates instances C = {c1, c2, . . . , cn}. If the protocol
implementation receives an instance that triggers a series of
state transitions resulting in previously unobserved results Oj ,
it indicates that the instance has explored and covered a new
input-output pair (∆i, Oj). We record instances that produce
such results as M = {M1,M2, . . . ,MN}. As mentioned
above, the size of the set M can reflect the completeness of
the test. To enhance the overall effectiveness of the fuzzing,
we establish the following optimization objective:

argmaxM1, ..,MN δ(q0,Mn)→ On ∀Mn ∈ {M1, ..,MN}
s.t. δ(q0,Mn)→ On ̸= δ(q0,M

′
n)→ O′

n

∀Mn ∈ C
(2)

As described in Equation 2, during each round of fuzzing,
each element in M represents a unique exploration path
that leads the protocol implementation to produce previously
unobserved results. Therefore, our objective is to maximize the
set M . Additionally, the elements in M are generated by the
fuzzing tool F based on the information collected at runtime.

III. DESIGN AND IMPLEMENTATION

In this section, we address the optimization problem posed
in Section II. In the SGMFuzz fuzzing tool, we have designed
a content-aware module that conserves fuzzing resources by
performing validity checks on the mutated sequences, aiming
to minimize invalid inputs without compromising the optimal
solution. Furthermore, we have developed a state-guided mu-
tation module that directs the fuzzing tool to employ different
fuzzing strategies based on the state of the protocol’s program
and the current fuzzing depth to maximize the size of M
described in Equation 2.

The Algorithm 1 outlines the SGMFuzz workflow. The
inputs include the target protocol implementation Pt, an initial
seed sequence q0, a protocol knowledge base d, and the
fuzzing depth D. The outputs comprise the final set of seed
sequences Q and the set of seed sequences Qc that cause
the target server to crash. In each fuzzing iteration, SGMFuzz
selects a target state s (line 3) and a sequence M from the seed
sequences (line 4) to help the fuzzer explore the target server.
The sequence M is divided into three subsequences: M1, M2,
and M3 (line 5). M1 drives Pt to state s, M2 is selected
for mutation, and M3 represents the remaining subsequence.
Fuzzing resources are allocated for the state s and the sequence
M (line 6). SGMFuzz employs different fuzzing strategies
based on the protocol’s program state and the current fuzzing

4

Algorithm 1: State Guided Protocol Fuzzing
Input: Pt: Protocol Implementation, q0: Initial Seed

Queue, d: Dictionary Corpus and D: Current
Fuzzing Depth

Output: Q: Seed Queue and Qc: Crashing Queue
1 Initialize FSM S and Seed Queue Q with q0
2 repeat
3 State s← Choosestate(S)
4 Messages M , Response R← ChooseQuece(Q, s)
5 ⟨M1,M

′
2,M3⟩ ←M ′;

6 for i from 1 to AssignEnergy(M) do
7 INIT← CalculateDepth(D,R);
8 if NotINIT then
9 M ′

2 ← StateGudiedMutate(M2, d, s);
10 else
11 M ′

2 ← RandMutate(M2, s);
12 end
13 M ′ ← ⟨M1,M

′
2,M3⟩;

14 if ContextAware(M ′
2, d) then

15 Qc ← Qc ∪ {M ′};
16 end
17 R′ ← SendToServer(Pt,M

′);
18 if IsCrashes(M ′, Pt) then
19 Qc ← Qc ∪ {M ′};
20 else if IsIntersting(M ′, Pt, S) then
21 Q← Q ∪ {M ′};
22 S ← UpdateFSM(S,R′);
23 end
24 end
25 until timeout T reached or abort-signal;

depth (line 7) to mutate M2 (lines 9, 11). After mutation,
SGMFuzz reassembles the subsequences into a new message
sequence M ′, which undergoes validity checks by the content-
aware module (line 14) and then sends it to Pt (line 17). The
fuzzer retains the sequences M ′ that cause Pt to crash or
increase code and state coverage. In the latter case, the fuzzer
also updates the FSM. This process continues until the fuzzing
resources for the current round are exhausted, at which point
the next state s and sequence M are selected.

To address the challenge (C1), we executed the protocol
implementation and conducted a series of interactions with
test endpoints. We capture and analyze network packets ex-
changed during these interactions, focusing on fields related to
protocol interaction commands, protocol states, and abnormal
behaviors. Referring to the protocol’s RFC documentation,
we constructed mappings of protocol state transitions and
interaction commands, using these mappings as input from
prior knowledge for the fuzzing tool. Using these inputs, we
developed a content-aware module. This module employs a
filtering method to screen mutated samples. At a high level,
this approach safely discards a large number of invalid samples
without affecting the optimal solution. Specifically, the fuzzer
drives the protocol implementation through state transitions
by providing protocol commands (events) to detect potential
vulnerabilities. Based on the FSM modeling results of the

protocol, all interpretable protocol command types can be
abstracted into an input set Σ. As described in Algorithm 2,
when the fuzzer mutates command types of protocol within
Σ to generate new instances, if the mutated instance cannot
be interpreted by the protocol implementation (i.e., it does not
belong to Σ), it will not be added to the message queue Q for
transmission to the target server, but instead is placed in the
crash queue Qc, thus reducing the waste of fuzzing resources.

Algorithm 2: Content-Awareness Module

1 ∀M2 ∈ Σ from d: Dictionary Corpus;
2 If M ′

2 /∈ Σ then Qc ←M ′ = (M1,M
′
2,M3);

3 Return Q←M ′;

During each fuzzing iteration, the fuzzer receives feedback
from the target server, which are the results of the server
interpreting the message sequence contents. To leverage this
information to address the challenge (C2), we designed a
state transition dictionary d based on prior fuzzer knowledge.
This dictionary stores message sequences that transition the
protocol server from the current state A to the target state
B. Additionally, the current program states S and its depth
in the state chain D as parameters for the fuzzer. We then
adjust the fuzzing strategy based on two scenarios: (1) if
the depth of the selected fuzzing state S in the loop is less
than the minimum initialization state length, and (2) if a state
repeatedly appears in the state chain without causing a crash
(e.g., the same state information appears at different depths
in the state chain). When the fuzzing iteration encounters
these situations, SGMFuzz invokes our state-guided mutation
module. The module reads a message sequence σi from d
based on the current state S, which transitions the target server
to a new state S′, forming a new message sequence M ′,
described as follows:

∃δ(S, σi)→ S′ σi ∈ d M ′ = (M1, σi,M3) (3)

By triggering state changes in the target server, we expand the
exploration scope of the fuzzing iterations, thereby enhancing
the tool’s ability to test deeper program state paths.

IV. EVALUATION

Metrics Selection. We design a prototype of SGMFuzz.We
select three metrics to assess the performance of the fuzzing
tools: new paths discovered, newly detected program state
transitions, and observed crashes. To mitigate the impact of
randomness, each experiment is conducted for 24 hours and
repeated ten times, with the average taken as the final result.

Experimental Setup. Our benchmark testing includes three
network protocol implementations that cover three widely used
protocols: RTSP, FTP, and SIP. These protocols span a wide
range of applications, including streaming media, file transfer,
and session control. For each protocol, we select implementa-
tions that are commonly used in practice, as vulnerabilities in
these implementations can have significant consequences.

We chose AFLNET [4], NSFUZZ-v [6], and Chatafl [8]
as our benchmark tools. AFLNET is the first open-source,

5

state-of-the-art, and widely utilized protocol fuzzer. NSFUZZ-
v extends AFLNET by incorporating static analysis to identify
state variables and using this information as feedback to
maximize state space coverage. Chatafl is the first grey-box
protocol fuzzer that integrates AI technology with AFLNET,
modifying test instances through online interaction with large
language models to generate the next instance. Other fuzzing
tools either have limited performance or are not open-source,
making them unsuitable for comparison with our selected
benchmark tools.

All our experiments are conducted on a machine equipped
with an Intel(R) Core(TM) i5-8300H CPU running at
2.30GHz, 32GB of main memory, and Ubuntu 18.04 LTS.

A. Research Questions

Through comparative experiments with other network pro-
tocol fuzzing tools, we address the following questions:

RQ1. Fuzzing Capability of SGMFuzz: Can SGMFuzz
explore a greater number of program execution paths?

RQ2. State Space Exploration Capability of SGMFuzz: Can
SGMFuzz explore more state transitions than other methods?

RQ3. Bug Detection Capability of SGMFuzz: How does
SGMFuzz’s bug detection performance compare with previous
grey-box fuzzing results for network protocols?

TABLE II
AVERAGE NUMBER OF TOTAL PATHS COVERED BY EACH FUZZER

Subject SGMFuzz AFLNET NSFUZZ-V CHATAFL
Live555 1460 1095(33.3%) 1273(14.1%) 1394(4.5%)
Lightftp 784 635(23.4%) 720(8.9%) 790(-0.8%)
Kamailio 4540 3978(14.1%) 4360(4.1%) 4538(0%)

AVG(IMP) / 19.3% 7.7% 1.2%

B. Results

SGMFuzz reduces the number of non-compliant test cases
by examining mutated test cases and enhances the exploration
of deeper protocol state spaces through its state-guided fuzzing
strategy, thereby improving the effectiveness of fuzzing.

Answer to RQ1: Table II displays the path coverage results
for each fuzzer when testing three different protocols and
their implementations. The results indicate that SGMFuzz
significantly outperforms AFLNET and NSFuzz, achieving ap-
proximately 19% more detected paths than AFLNET, 7% more
than NSFuzz and 1.2% more than Chatafl. By introducing a
state-guided fuzzing algorithm, SGMFuzz can cover more new
paths than AFLNET and NSFuzz. Although Chatafl shows
slightly lower overall performance, its efficiency is influenced
by the prompts used during its interactions with large language
models. The effectiveness of SGMFuzz varies across different
protocols compared to Chatafl, but considering that Chatafl
relies on online interactions and requires more resources, its
overall gains remain within an acceptable range. This suggests
that the state-guided fuzzing strategy is beneficial in covering
a richer set of execution paths in the fuzzing of the network
protocol.

Answer to RQ2: Table III lists the number of state
transitions detected by each fuzzer when testing the same

TABLE III
AVERAGE NUMBER OF STATE TRANSITIONS FOR EACH FUZZER

Subject SGMFuzz AFLNET NSFUZZ-V CHATAFL
Live555 142 113(25.6%) 121(17.3%) 136(4.4%)
Lightftp 342 316(8.2%) 336(1.8%) 347(-2.9%)
Kamailio 142 123(12.1%) 132(4.5%) 140(0.7%)

AVG(IMP) / 16.3% 7% 0.7%

three protocols. The results clearly demonstrate that SGMFuzz
outperforms both AFLNET and NSFuzz and slightly exceeds
Chatafl, with approximately 16% more state transitions de-
tected than AFLNET, 7% more than NSFuzz, and 0.7% more
than Chatafl. This finding aligns with SGMFuzz’s ability to
cover a broader range of program execution paths, indicating
its superior capacity for exploring program state space.

TABLE IV
AVERAGE NUMBER OF UNIQUE CRASHS FOUND BY EACH FUZZER

Subject SGMFuzz AFLNET NSFUZZ-V CHATAFL
Live555 155 140 152 155
Kamailio 3 1 2 3

Answer to RQ3: Table IV presents the number of crashes
discovered by each fuzzer within the same testing time frame.
SGMFuzz results in more crashes in the same period. Notably,
none of the three fuzzing tools triggered crashes in the FTP
protocol implementation, which may be attributed to the rel-
atively simple program states of these protocols. This further
underscores the importance of exploring deeper program states
for effective protocol security testing.

V. CONCLUSION

In summary, our design for state-guided mutation involves
collecting and dynamically inferring information during the
fuzzing process, using events to drive state transitions in the
program to explore a larger state space. Additionally, we check
mutation-based fuzzing instances to minimize the generation
of invalid seeds, thereby conserving fuzzing resources and
enhancing overall system efficiency.

REFERENCES

[1] “The heartbleed bug,” 2014. [Online]. Available: https://heartbleed.com/
[2] (2021) Wannacry ransomware attack. Accessed on 2022-04-25. [Online].

Available: https://en.wikipedia.org/wiki/WannaCry ransomware attack
[3] Google, “American fuzzy lop - a security-oriented fuzzer,” https://github.

com/google/AFL, 2023.
[4] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Aflnet: a greybox fuzzer

for network protocols,” in 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). IEEE, 2020, pp.
460–465.

[5] J. Li, S. Li, G. Sun, T. Chen, and H. Yu, “Snpsfuzzer: A fast greybox
fuzzer for stateful network protocols using snapshots,” IEEE Transactions
on Information Forensics and Security, vol. 17, pp. 2673–2687, 2022.

[6] S. Qin, F. Hu, Z. Ma, B. Zhao, T. Yin, and C. Zhang, “Nsfuzz: Towards
efficient and state-aware network service fuzzing,” ACM Transactions on
Software Engineering and Methodology, vol. 32, no. 6, pp. 1–26, 2023.

[7] Y.-H. Zou, J.-J. Bai, J. Zhou, J. Tan, C. Qin, and S.-M. Hu, “{TCP-Fuzz}:
Detecting memory and semantic bugs in {TCP} stacks with fuzzing,” in
2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021,
pp. 489–502.

[8] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large
language model guided protocol fuzzing,” Proceedings 2024 Network
and Distributed System Security Symposium, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:265296188

https://heartbleed.com/
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://github.com/google/AFL
https://github.com/google/AFL
https://api.semanticscholar.org/CorpusID:265296188

	Introduction
	Motivation and Problem Definition
	Protocol Fuzzing
	Problem Definition

	Design and Implementation
	Evaluation
	Research Questions
	Results

	Conclusion
	References

