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ABSTRACT

With the rapid growth of 3D content, there is an increasing need
for intelligent systems that can search for complex 3D shapes us-
ing simple natural language queries. However, existing approaches
face significant limitations. They rely heavily on manually labeled
datasets and use fixed similarity thresholds to determine matches,
which restricts their ability to generalize and accurately retrieve
novel or diverse 3D shapes. To bridge these gaps, this paper intro-
duces Open3DSearch, the first attempt to address the challenge of
open-domain text-to-shape precise retrieval. Our core idea is to
transform 3D shapes into semantically representative 2D views,
thereby enabling the task to be handled by mature large vision-
language models (LVLMs) and allowing for explicit cross-modal
matching judgments. To realize this concept, we design a view
rendering strategy to mitigate potential information degradation
during 3D-to-2D conversion while capturing the maximal amount
of query-relevant information. To evaluate Open3DSearch and ad-
vance research in this field, we present the Uni3D-R benchmark
dataset, designed to simulate precise associations between user
queries and 3D shapes in open-domain contexts. Extensive quanti-
tative and qualitative experiments demonstrate that Open3DSearch
achieves state-of-the-art results.

CCS CONCEPTS

+ Information systems — Multimedia and multimodal re-
trieval.
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1 INTRODUCTION

With the rapid advancement of 3D content creation tools, 3D shapes
have become essential assets in fields such as VR/AR, industrial
design, and digital entertainment. Statistics show that major 3D
shape platforms (e.g., Sketchfab, 3D Warehouse) now host mil-
lions of shapes, with numbers continuing to grow [13]. However,
traditional tag-based retrieval systems struggle to help users find
specific shapes efficiently. For example, a designer might search for
"a modern chair suitable for Nordic-style living rooms, featuring
wooden textures and a curved backrest." Such queries involve style,
material, and structural characteristics, and employ highly flexible
and open vocabulary that far exceeds the range of tags traditional
systems can handle. Users often expend significant effort refining
keywords and filtering through numerous similar results, rendering
the process time-consuming and inefficient.

Figure 1 illustrates our research vision—open-domain text-to-
shape precise retrieval—which enables users to directly acquire
3D shapes matching their needs through free-text descriptions.
Previous approaches [7, 13, 20, 31, 32, 37] focus on learning joint
representations for text and 3D data, mapping both of them into a
shared embedding space and performing retrieval based on similar-
ity. However, these methods exhibit two fundamental limitations:
First, these methods depend on manually annotated fine-grained
paired data for training, which inherently struggles with zero-shot
scenarios. The high cost of such annotation limits the breadth of
data coverage, making it infeasible to represent all object categories
in open-domain contexts. Consequently, these methods often fail
to generalize to unseen categories. Second, these methods rely on
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User Queries

"A pink butterfly with vibrant blue
spots on its wings."

"A snowman adorned with a blue
top hat and a colorful scarf."

"A demon mask with black horns
and tusks."
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Figure 1: A demonstration of 3D Shape Retrieval Based on User-Provided Text Descriptions.

a fixed similarity threshold to determine whether a shape matches
a query. However, in our task, the decision is based on semantic
similarity, which is inherently ambiguous and lacks well-defined
boundaries—particularly when dealing with 3D shapes. Addition-
ally, similarity in the embedding space often lacks a consistent and
transferable structure, making threshold-based decisions unreliable
in zero-shot scenarios.

Our solution. Recent advances in large vision-language models
(LVLMs), such as GPT-4V[43] and Qwen-VL[4], have demonstrated
robust zero-shot image—-text reasoning by leveraging internet-scale
training data, thereby enabling open-domain cross-modal match-
ing. With well-designed prompts, these models can dynamically
attend to query-specific information and conduct explicit matching
analyses, mitigating decision rigidity and uncertainty associated
with fixed similarity thresholds. Our key idea is to render 3D shapes
into 2D views, allowing mature 2D-LVLMs to perform matching
judgments.

The key challenge in realizing this idea is obtaining rendered
views that accurately capture the query-described information de-
spite the complexity of the pose search space and the lack of explicit
objective guidance. Furthermore, retrieving a 3D shape from a large
database can also introduce significant computational overhead.
This arises from two factors: the sheer volume of stored 3D shapes
and the need to render each shape multiple times into 2D represen-
tations from diverse viewing angles.

To address the aforementioned challenge, we introduce
Open3DSearch. To effectively capture informative views for match-
ing decisions, we first apply constraints on the camera’s position
and orientation—based on the principles of perspective projec-
tion—to ensure the entire 3D shape remains visible. Based on this,
we generate a sparse but representative set of candidate poses and
render the corresponding views. We then evaluate the amount of
query-relevant information retained in each view via semantic sim-
ilarity measurements, which guide the selection of images for input
into a 2D-LVLM. To reduce per-query computational overhead and
improve retrieval efficiency, we introduce a two-stage strategy that
limits the number of matching verifications. Upon receiving a query,
repository 3D shapes are first prioritized and then undergo sequen-
tial verification with an early-stopping mechanism, terminating the
process once a sufficient number of matches is found.

Our contributions are summarized as follows:

1) Task & Dataset: To the best of our knowledge, we are the first
to introduce the open-domain text-to-shape precise retrieval task,

which allows users to accurately retrieve a wide range of arbitrary
3D shapes based solely on natural language descriptions, without
being limited to predefined categories or domains. To facilitate this
research, we construct the Uni3D-R benchmark dataset. This dataset
includes 7,855 high-quality 3D shapes and 812 queries representing
diverse matching scenarios.

2) Methodology: We propose Open3DSearch, which pioneers
the integration of LVLMs into 3D shape retrieval, achieving zero-
shot explicit cross-modal matching. By leveraging joint constraints
of geometry and semantics, Open3DSearch can effectively capture
key visual features in queries and generate discriminative rendered
views. Furthermore, an efficient hierarchical retrieval strategy is
implemented to dynamically optimize the matching-validation pro-
cess, thereby significantly reducing computational overhead.

3) Extensive Experiments: To validate the robustness of our
approach, we conduct extensive experimental evaluations. Results
demonstrate that Open3DSearch achieves state-of-the-art retrieval
performance in both target-present and target-absent scenarios,
outperforming all customized baseline methods.

2 RELATED WORK

2.1 Text-3D Retrieval via Joint Embedding
Learning

To support research in text-3D cross-modal retrieval, Chen et al.[7]
constructed the first 3D shape retrieval dataset with natural lan-
guage descriptions based on ShapeNet[6] tables and chairs. They
were also the first to introduce joint embedding learning for this
task. Subsequent studies [13, 31, 32, 37] improved retrieval perfor-
mance within this paradigm but remained constrained in open-
domain scenarios due to insufficient training data. With break-
throughs in vision language pre-trained models like CLIP[30] and
ALIGN[19], some studies [14, 16, 25, 28, 39, 40, 45] attempt to align
the 3D modality to CLIP’s embedding space to inherit its general
representation ability acquired from billion-scale image-text pre-
training data. These methods demonstrate robustness in zero-shot
3D shape classification but remain inadequate for precise retrieval
due to: 1) They focus on global feature embeddings while neglect-
ing the modeling of fine-grained attributes (e.g., part structures,
material textures), making it challenging to differentiate candidate
shapes with similar overall but local differences; 2) The retrieval
process relies on distance metrics in an implicit embedding space,
lacking an explicit interpretable mechanism to support accurate
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matching judgments. In contrast, our work introduces an explicit
matching paradigm that leverages LVLMs for zero-shot reasoning.
By transforming 3D shapes into informative 2D views and enabling
LVLM:s to perform fine-grained semantic verification, we circum-
vent the dependency on large-scale training data and overcome the
limitations of global-embedding-based retrieval.

2.2 Large Vision-Language Models

The breakthrough of Large Language Models[5, 11, 34, 41, 42] has
revolutionized multimodal intelligence systems, particularly in de-
veloping LVLMs [3, 4, 8, 10, 21-23, 26, 43, 44] with open-domain
visual reasoning capabilities. In 2D vision, early works such as BLIP-
2[22] and Flamingo[3] bridged the gap from image understanding
to visual reasoning by connecting visual encoders with LLMs. State-
of-the-art 2D-LVLMs, including GPT-4V[43] and Qwen-VL[4], can
now handle more sophisticated tasks involving spatial relationships
and attribute reasoning through chain-of-thought prompting[35].
In contrast, 3D-LVLM development faces two major obstacles: 1)
The complex topology[2, 17] of 3D data widens the semantic gap,
making fine-grained correlations difficult; 2) The scarcity of large-
scale instruction-following data severely restricts the alignment
quality of the latent space and the model’s adherence to human
intentions. Existing attempts [15, 29, 33, 38] still show notable limi-
tations in 3D semantic understanding, especially in open-domain
dialogue. For cross-modal retrieval, they often fail to decouple and
verify the correspondence between attributes and candidate shapes,
resulting in frequent mismatches. Instead of training a 3D-LVLM,
we bridge the 3D-to-2D gap by generating representative rendered
views, allowing mature 2D-LVLMs to perform zero-shot matching
judgments.

3 METHOD
3.1 Problem Definition

Open-Domain Text-to-Shape Precise Retrieval (OD-T2SPR).
OD-T2SPR can be defined as a multi-modal retrieval problem. Given
alibrary S := {51, S2, ..., SN’} containing N 3D shapes and an arbi-
trary text query g, the objective is to retrieve all shapes that match
the description of query such that the retrieval result Ry € S aligns
with ground truth G4 € S. | §q| can be zero (i.e., no match target),
one, or greater than one (up to N).

3.2 Overview

Figure 2 illustrates the overview of Open3DSearch, which consists
of two stages. First, it prioritizes the 3D shapes from the entire
library. For each shape S; € S, its retrieval priority is determined
by the semantic similarity to the query text g, with higher similar-
ity corresponding to elevated ranking. The semantic embeddings
E(q),.{E (Si)}fil used for this similarity computation are derived
from OpenShape[25], a multimodal embedding model that sup-
ports text, image, and 3D point cloud modalities. The similarity is
computed as follows:

<E(Si),E(q >
1E (S NIE () |l

where < -, - > denotes the inner product, and || - || indicates the
norm. Based on this, the ranked shape list is formalized as C :=

sim (Si,q) = 8
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Figure 2: The overall retrieval process of Open3DSearch is
divided into two stages: a rough ranking based on semantic
embeddings and a fine-grained, instance-by-instance verifi-
cation based on image-text analysis.

{S(l),S(z),...,S(N)}, where sim (S(l),q) > sim (S(z),q) =2

sim (S(N), q),

Second, we conduct fine-grained matching verification for each
selected 3D shape. Using our view rendering strategy (§3.3), each
3D shape S(;) € C is converted into a set of representative 2D views.
These views are then selectively analyzed by a 2D-LVLM, guided
by our tailored prompt (§3.4). To improve efficiency, the retrieval
process includes a dynamic stopping criterion: the system halts
further verification if it encounters u consecutive negative matches.
The stopping index t is formally defined as:

t = min {t € [u,N]| /t\ Match (S(i),q) = No} (2)

i=t—u+1

where Match(-) denotes the binary judgment function.

3.3 Semantic-Aware View Rendering

To meet the input requirements of 2D-LVLMs, we first render the
3D shape into 2D views. The rendering pose—defined by a rotation
matrix R € SO(3) and a position vector o € R3—plays a crucial role
in determining view quality. Poorly chosen poses may cause key
features to be occluded or push the object out of frame, leading to
missing critical information for accurate matching. To overcome
this, our view rendering strategy first applies a physical visibility
constraint (Figure 3(a)) to limit the pose search space. Then, it intro-
duces a semantic consistency constraint (Figure 3(b)) to guide pose
selection. This ensures that the final view not only fully captures
the 3D shape but also aligns semantically with the query, improving
the reliability of matching results.
Physical Visibility Modeling. We meet three key criteria to en-
sure the 3D shape is clearly and fully presented in the rendered
image: 1) The object is centered to draw viewer attention; 2) The
entire object is visible, avoiding any cropping or information loss;
3) The object fills most of the image, maximizing resolution and
detail visibility.

For Condition 1, we constrain the camera optical axis (Z-axis)
to point towards the center ¢ of the shape’s minimum bounding
sphere, as defined below:

min{r [VpeS, ||p—cl<r} (3)
c,r
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(g)mpt 1: [{'image": T*},{'text": Query:"q" Doa
the object show in the image match the given query?|
Please base your judgement based on the object's
category, as well as key characteristics such as
shape, color, and specific details. If you are certain
it matches, reply "1". If you are certain it does not
match, reply "0". If the current view does not
provide enough information to make a confident and|

definitive judgement, and additional views are

. \@uir‘edfbr confirmation, reply "2".}] /
«—
(o} 1
Query 9

“Prompt 2: [{'image": [}, },{'text": This is another
view of the object. Can it help you further confirm
the judgement? If yes, reply directly with the

matching result ("1" or "0"). If no, reply with "2".}]

©

Preferred View

Figure 3: Core technical details of Open3DSearch. (a): Planar projection schematic of camera-to-3D shape spatial relationships.
(b): Standardized workflow for preferred view acquisition. (c) Feedback-enabled hierarchical prompting framework.

where p denotes a point in the shape and r is the radius of the mini-
mum bounding sphere. Here, we employ the Welzl algorithm[36] to
compute the minimum bounding sphere. Next, we adjust the camera
distance d(, ) to satisfy Conditions 2 and 3. Calculating the optimal
distance based on the 3D shape itself is complex and inefficient,
as the irregularity of the shape would necessitate recalculations
whenever the camera pose changes. An efficient alternative is to
use the precomputed minimum bounding sphere as a reference.
The optimal distance is derived via:

d = max r !
(0.0) = sin (0,/2) " sin (0,/2)

where 0, and 6}, denote the camera’s vertical and horizontal field
of view, respectively. In this way, regardless of how the camera
pose changes, the optimal distance d(, () remains consistent, signif-
icantly reducing the computational burden. Ultimately, the search
space for the camera position is confined to a spherical region
centered at the center ¢, with the optimal distance d, ) as the
radius.

Semantic Consistency Constraint. After determining the region
for the camera’s position, the next step is to optimize the specific
position and the rotation angle around the Z-axis to render an im-
age that maximally supports the matching judgment between the
3D shape and the query text. In general, visual systems exhibit a
certain degree of tolerance to changes in viewpoint, and the seman-
tic differences between adjacent viewpoints are almost negligible.
Therefore, we do not perform continuous searches on the sphere
to determine the optimal position. Instead, we discretely sample
multiple positions and select the best one. Specifically, we use the
HEALPix grid[12] to sample the sphere uniformly, ensuring com-
prehensive coverage of the shape’s various directions with fewer
sampled positions. This process can be formalized as follows:

©

®)

where O := {ok eR}1<k< K} denotes the set of coordinates for
the sampled positions, and K := 12 X w? is the number of samples,
determined by the set resolution w € ZZ!. For each candidate

O = HEALPix (¢, (o). K)

position o, € O, we randomly initialize a camera rotation and
render the corresponding image I based on this. The rotation
matrix Ry is obtained through Schmidt orthogonalization to ensure
its rationality, with the calculation defined as follows:

Ry = [og Bro viel T (6)
c—og n=(<nyk>vr)

Yk = Bk = oo =P Ay (7)
llc — okl 7 = (< n.v% > vi)ll

where ay, f and y; denote the unit vectors along the x, y, and z
axes of the camera coordinate system, respectively. A denotes the
cross product, and 5 is a random unit vector that is not collinear with
the z-axis (ie., <,y ># %[|n]lllyll). In theory, the image rendered
from the optimal camera position should be semantically closest to
the query text, and the embedding similarities {sim (I, q) }Ik<:1 can
be computed using Equation 1 to determine this position. However,
the 3D shape may present unnatural orientations (e.g., inverted)
in the rendered images at certain positions due to camera rota-
tion angle issues, which could significantly impact the multimodal
embedding model’s understanding and encoding of semantics. To
mitigate this impact, we capture images at multiple rotation angles
for each camera position and compute the average semantic simi-
larity, thereby robustly selecting the optimal position. Instead of
repeatedly rendering images at different camera rotation angles,
we perform rotation augmentation on the initially rendered image,
thus reducing the number of renderings and improving computa-
tional efficiency. The calculation of the average semantic similarity
for the k-th position can be expressed as follows:

G
simayg (I, q) = é Z sim ([59, q), I]fg = Rotate (Ik, 09) (8)
g=1
where G denotes the number of rotation angles, 6; denotes the g-th
rotation angle, and Rotate (-, -) indicates the rotation operation ap-
plied to the image. The position with the highest average semantic
similarity is determined to be the optimal one. Then, we select the
image with the highest semantic similarity from all rotation angle
images at that position and use it as the preferred view for input to
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the 2D-LVLM. This process is formalized as follows:

I* = argmax sim (Ifg,q), I, = argmax simgpg (I,q) (9)
1% I

3.4 Feedback-Enabled Prompt

Given the selected image I* and query text g, we guide the
2D-LVLM to perform matching judgments through customized
prompts. To support a fully automated retrieval process and im-
prove the reliability of judgment results, the design of prompts
should address two critical requirements: 1) During the retrieval pro-
cess, the 2D-LVLM is required to engage in high-frequency reason-
ing. The prompts should help suppress potential hallucinations[24],
ensuring that it consistently provides effective responses; 2) A sin-
gle view may provide insufficient semantic information, making
accurate judgment difficult. The prompt should guide the 2D-LVLM
in performing an enhanced analysis of inherent uncertainties in
complex cases.

To enhance reliability and reduce output variability in the open-
domain text-to-shape retrieval task, we reformulate the open-ended
response generation into a fixed-option classification problem with
a strict output format. This not only curbs randomness in the 2D-
LVLM'’s outputs but also introduces an essential “uncertain” option
in addition to binary choices like “match” or “non-match” The un-
certainty option is key to our feedback design: when the model
lacks confidence and selects “uncertain,” it triggers a feedback loop
that incorporates additional views of the 3D shape for repeated
analysis. This iterative refinement enables the model to improve
its judgment and converge on a more confident and accurate re-
sult—especially valuable in open-domain settings where inputs can
be highly varied and ambiguous. To maintain efficiency, the feed-
back mechanism draws from a queue of K — 1 basic rendering views
(excluding the primary view I), randomly ordered to ensure diverse
visual perspectives without adding significant computational cost.

4 UNI3D-R DATASET

Table 1 summarizes existing publicly available datasets for 3D shape
retrieval. However, these datasets present two major limitations that
make them insufficient for evaluating open-domain, fine-grained re-
trieval tasks: 1) The 3D shapes cover a narrow range of semantic cat-
egories, limiting diversity; 2) The relationships between query texts
and 3D shapes are either oversimplified or poorly annotated, failing
to capture complex matching scenarios. To address these gaps and
enable robust evaluation, we introduce the Uni3D-R dataset, which
comprises 7,855 3D shapes and 812 carefully curated query texts.
Among these, 195 queries have no correct match, 262 have a single
correct match, and 355 correspond to multiple valid targets. The
dataset construction followed a structured pipeline combining pub-
lic data sources with manual refinement and verification, carried
out in three key steps.

3D Shape Collection. We collect 3D shapes from the Objaverse[9]
dataset. Objaverse[9] provides over 800K 3D shapes primarily sourc-
ed from user uploads, which exhibit a high degree of randomness
and diversity. To ensure data quality, the collection process was
performed by human annotators who were instructed to select
geometrically complete objects with vivid colors. Ultimately, the
3D library consists of 7,855 carefully selected 3D shapes.

MM 25, October 27-31, 2025, Dublin, Ireland.

Query Text Collection. After constructing the shape repository,
we collect query texts using the Cap3D[27] dataset. Cap3D[27]
employs GPT-4[1] to generate descriptive texts for shapes in
Objaverse[9]. We first extract the subset corresponding to the pre-
selected 3D shapes from Cap3D[27], and then human annotators
review and select entries that conform to human descriptive styles.
In the end, 812 texts were chosen to form the final query set.

Matching Relation Annotation. For the collected 3D shapes and
query texts, we employ a two-stage annotation pipeline analogous
to the proposed retrieval framework to establish their matching re-
lationships. For each query, after obtaining the ranked 3D shape list
C, human annotators sequentially verify matching results. The vali-
dation process is terminated when an obvious "stagnation" emerges
(i.e., difficulty in identifying more matches), indicating that the
matching targets for the current query had been essentially de-
termined. Each query could match zero, one, or multiple targets.
To ensure annotation objectivity and consistency, each query is
independently evaluated by at least three annotators, with disputed
cases undergoing final adjudication through majority voting.

5 EXPERIMENTS

5.1 Experimental Setup

Previous text-to-shape retrieval methods[7, 13, 31, 32, 37] are typ-
ically trained on closed categories (e.g., tables and chairs), lack-
ing generalization capabilities and thus struggling to handle free
descriptions in open-domain contexts. Moreover, their adopted
evaluation metrics (Recall Rate at k[7] and Normalized Discounted
Cumulative Gain[18]) inherently incorporate two critical assump-
tions incompatible with our task: 1) Each query contains at least
one ground-truth match; 2) The retrieval system only returns a
ranked list without explicitly determining matching relationships.

To enable a fair and meaningful comparison, we redesign the
evaluation metrics and develop adapted baseline methods that bet-
ter align with the nature of our task.

5.1.1  Evaluation Metrics. We adopt a divide-and-conquer evalu-
ation framework that defines differentiated metrics based on the
ground-truth matching status of the query.

Match Absent. When no shapes in the library semantically match
the query, the system should refrain from returning irrelevant re-
sults. To evaluate this behavior, we introduce two metrics: False
Positive Rate (FPR) and Average False Positives (AFP). FPR mea-
sures the likelihood of the system returning incorrect results, while
AFP captures the average number of such irrelevant returns. The
corresponding calculation formulas are as follows:

Oo| .
FPR:||Q—3||, Op ={q|Rq #0.q € Qp} (10)
AFP = ﬁ > IRl an

q<0o
where Qg and R, denote the set of queries with zero matches and
the retrieval results of query g, respectively.
Match Present. When at least one matching shape exists in the
library, the system should return all relevant results and avoid
misjudgments and omissions. We quantify the retrieval accuracy
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Table 1: Comparison with Existing 3D shape Retrieval Datasets.

Dataset 3D Shapes Query Texts
Number Scope Source  Number Match-Distribution [0 match/1 match/>1 matches]
Text2Shape[7] 15058 Chair,Table ~ Synthetic 75344 [0/75344/0]
TextANIMAR[20] 186 Animals Real 150 [0/150/0]
Uni3D-R 7855 Not Specified ~ Hybrid 812 [195/262/355]

through modified precision, recall, and F1-score metrics, as shown
below:

- ) |Rq N Gyl
. 1 RgNGq| (12)
recision |05l qEZQ:H max (e, |RQ|)
Recall = — Z w "
|03 qe03 |gq|

Fl—S B Precision X Recall

~ dcore =2x Precision + Recall (1)
where Q3 and G, denote the set of queries with matches and the
ground-truth matching results of query g, respectively. € is a small

positive constant ensuring non-zero denominators.

5.1.2  Baselines. To demonstrate the advantages of our proposed
pipeline, we construct the following two baseline methods as com-
petitors.

Similarity Threshold-based Retrieval (ST-R). This method uti-
lizes a multi-modal embedding model (i.e., OpenShape[25]) to com-
pute the semantic similarity between the query text and each shape
in the 3D shape library, determining matching objects based on a
set similarity threshold. Those with similarity scores exceeding this
threshold are considered matches, while the rest are non-matches.
Our observations indicate that the similarity scores for matched
pairs predominantly fall between 0.12 to 0.22. Consequently, we
uniformly sample five equally spaced thresholds within this inter-
val for testing. Furthermore, we employ a small number of queries
to identify an optimal threshold. Specifically, we randomly select 50
queries with ground-truth matches and then evaluate F1 scores by
setting thresholds from 0.12 to 0.22 in increments of 0.001. The op-
timal threshold (¢ = 0.164) was identified as the value that yielded
the highest F1 score.

3D LVLM-based Retrieval (3D-LVLM-R). This method employs
a representative 3D-LVLM (e.g., PointLLM[38], ShapeLLM[29],
MiniGPT-3D[33]) to verify the matching relationship between the
3D shapes and the queries. To ensure a fair comparison, this method
follows the same two-stage retrieval process as Open3DSearch,
where matching decisions are made sequentially after an initial
ranking, and the retrieval stopping condition remains identical.
These models can directly process complete 3D shapes (provided in
point cloud format). Hence, we use a simple prompt: [{’point cloud’:
Si}.{’text’: Query:"q" Does this 3D object match the given query? Please
reply "Yes" or "No".}]

5.1.3 Implementation Details. All experiments are conducted on
an Ubuntu server equipped with an NVIDIA L20 GPU. In the exper-
iments, we use the Trimesh library provided by Python to load 3D
shapes and perform rendering based on predefined camera poses.
The resolution of the rendered images is set to 800 X 600. The

2D-LVLM employs the Qwen-VL[4] Max version, performing on-
line inference via API. OpenShape[25] and MiniGPT-3D[33] are
deployed and executed locally using open-source code. The param-
eter u for terminating retrieval and the resolution w for HEALPix
grid sampling are set to 5 and 1, respectively.

5.2 Experimental Results

5.2.1 Quantitative Results. Table 2 summarizes the quantitative
evaluation results comparing Open3DSearch with baseline meth-
ods. Overall, Open3DSearch demonstrates the most comprehensive
performance across all metrics. When ground-truth matches are ab-
sent, our method achieves only an FPR of 0.262 and an AFP of 1.706,
indicating its exceptional capability in rejecting incorrect matches.
In contrast, while ST-R gains some advantages by adopting high
thresholds (e.g., £ = 0.220), this comes at the expense of significant
losses in precision and recall. These results reveal the inherent
limitation of ST-R in balancing diverse query scenarios through a
fixed threshold. For 3D-LVLM-R, all three variants yield an FPR
of 1 and AFP values in the thousands, suggesting severe halluci-
nations in shape-text matching, where numerous incompatible 3D
shapes are mistakenly identified as matches. When ground-truth
matches exist, Open3DSearch outperforms ST-R(¢ = 0.164) with 26
and 18.5 percentage point improvements in precision and recall, re-
spectively, while achieving a better balance between these metrics.
This further validates its adaptive capability in addressing heteroge-
neous queries. Although 3D-LVLM-R attains a near-perfect recall,
its near-zero precision and F1-score severely compromise overall
performance.

5.2.2 Qualitative Results. To more clearly illustrate the strengths
and limitations of each method, we provide several query exam-
ples in Figure 4. For 3D-LVLM-R, the system exhibits near-total
failure in rejecting non-matching shapes, with a particularly pro-
nounced prevalence of false matches among top-ranked targets.
This observation aligns with the hallucination issues revealed in
quantitative evaluations. For ST-R, qualitative results clearly expose
its inadequacy in handling distractors. In most cases (e.g., cases
2-6), matching and non-matching targets interleave in the ranked
list, making them inherently indistinguishable through a single
threshold. Furthermore, cases 6 highlight ST-R’s risk of missing
correct matches. In contrast, by integrating the powerful visual
discrimination capabilities of the 2D-LVLM, Open3DSearch enables
the precise identification of all matching targets from similar can-
didates, showcasing higher robustness.

5.3 Parameter Sensitivity Evaluation

To provide theoretical support and guidance for parameter tuning
in the practical deployment of Open3DSearch, we assess whether its
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Query Text Ranked 3D Shape List C (Top 8) Predicted Matches GT Matches
3D-LVLM-R ST-R  Open3DSearch

white baseball bat. / / / \’ / |/ , [1-8] [1-2] [None] [None]

a green and blue pot s o : \

with a face design, | v . : [1-8] [1-4] [5] [5]

resembling a vase. | ¢ i :_ ——
""""""""""""""""""""""""""""""" '___\I
wooden shield with ! 1
a red dragon emblem. , . , , :': [1-8] [1-8] [5] [5]

]
A vintage black and : 8 |' :
white camera model || ) ., AN [1-8] [1-5] [1,5] [1, 5]
on a tripod. TNCU S o

_________________________________________ '_

a man wearing a / ‘ - ,

white suit 41 ;1 . [1-8]  [1-3]  [3] 3]
" L
'''' a smauglass--,
. . 1 1/
lclonlAamer with blue |, : & . 1 4» [1—8] [None] [1’ 6] [1, 6]
iquid on a wooden | f \ / 1 .
base. i

Figure 4: Qualitative comparison of retrieval performance with baseline methods. 3D-LVLM-R employs MiniGPT-3D[33], and

the ST-R threshold is set to 0.164.

Table 2: Quantitative comparison of retrieval performance
with baseline methods. * denotes the pre-defined optimal

setting.

Method Match Absent Match Present

FPR| AFP| PrecisionT RecallT F17
Similarity Threshold-based Retrieval (ST-R)
£=0.120 1.000 32.133 0.110 0.932 0.197
£=10.145 0.933 7.890 0.303 0.818 0.442
*E=10.164 0.687 3.433 0.433 0.609 0.506
£=10.170 0.579 2.761 0.443 0.534 0.485
£=10.195 0.205 1.475 0.300 0.257 0.277
£=10.220 0.041 1.250 0.116 0.091 0.102
3D LVLM-based Retrieval (3D-LVLM-R)

PointLLM[38] 1.000  7568.554 0.001 1.000 0.001
ShapeLLM[29] 1.000 7820.610 0.000 1.000 0.001
MiniGPT-3D[33] 1.000  4475.667 0.005 1.000 0.011
Ours 0.262 1.706 0.693 0.794 0.740

retrieval performance remains consistent under different parameter
configurations. We focus on two key parameters: the HEALPix grid
sampling resolution (parameter w) and the retrieval termination
parameter (parameter u).

5.3.1 The Impact of HEALPix Grid Sampling Resolution. We set
the HEALPix resolution w to {1, 2, 3}, corresponding to 12, 48, and
108 uniformly distributed camera viewpoints, respectively, and

Table 3: Performance under different parameter settings. *

denotes the default setting.

Match Absent Match Present
Param
FPR| AFP| PrecisionT RecallT F17
HEALPix Grid Sampling Resolution (w)
w=1 0.262 1.706 0.693 0.794 0.740
w=2 0.287 1.714 0.666 0.763 0.711
w=3 0.251 1.878 0.703 0.744 0.723
Retrieval Stopping Parameter (u)
u=3 0.190 1.162 0.730 0.658 0.692
*u=5 0.262 1.706 0.693 0.794 0.740
u=7 0.297 1.793 0.671 0.798 0.729
u=9 0.405 2.316 0.601 0.807 0.689

collected the retrieval performance under each setting (see Table
3). The experimental results show that as w increases from 1 to
3, the variations in all metrics are within 15%, without any sig-
nificant trend of performance improvement. This indicates that
even at lower sampling densities, the proposed HEALPix-based
view rendering strategy consistently captures text-relevant critical
information, exhibiting strong robustness. Therefore, considering
rendering costs and efficiency requirements in practical applica-
tions, setting w to 1 suffices for meeting retrieval accuracy demands
and represents a more pragmatic choice.
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Table 4: Ablation studies on our Open3DSearch. VRS and PFM
refer to the view rendering strategy and the prompt feedback
mechanism, respectively.

Abl Match Absent Match Present
FPR| AFP| Precision] RecallT F17
w/o VRS 0.169 1.515 0.590 0.540 0.564
w/o PFM 0.133 1.269 0.687 0.649 0.667
w/o VRS & PFM  0.056 1.182 0.504 0.354 0.416
Full 0.262 1.706 0.693 0.794 0.740

5.3.2  The Impact of Retrieval Stopping Parameter. To analyze the
impact of the retrieval termination parameter u on system perfor-
mance, we conduct tests under u € {3,5,7,9}, with results sum-
marized in Table 3. In scenarios where ground-truth matches are
absent, we found that a smaller u helps reduce the FPR and MFP,
exhibiting a linear trend. For scenarios with ground-truth matches,
the system achieved the highest F1 score at u = 5, indicating a
good balance between precision and recall. An overly small u (e.g.,
u = 3) tends to cause premature termination of the retrieval pro-
cess, resulting in a significant decrease in recall by missing correct
matches. Conversely, setting u too high (e.g., u = 9) may improve
recall but also introduces more false positives, thereby reducing
precision. In summary, we believe that the parameter u should be
adjusted flexibly to meet different user interaction requirements.

5.4 Ablation Study

We investigate the contributions of key components to the overall
pipeline through ablation experiments, including the view ren-
dering strategy and the prompt feedback mechanism. Following
the principle of controlled variables, we remove or simplify these
components and measure performance changes to analyze their
importance.
View Rendering Strategy. To verify the effectiveness of the view
rendering strategy, we design a simplified version for comparison.
In this version, the preferred view I * is rendered from a camera
pose not constrained by semantics. First, the camera position is
randomly sampled from the spherical region determined by the 3D
shape center ¢ and distance d(, ). Second, for camera orientation,
only the optical axis (i.e., Z-axis) is constrained to point toward the
3D shape center, while the other two axes are randomly computed
using Equation 7. When the preferred view I is insufficient for the
2D-LVLM to make a definitive judgment (i.e., returning "1’ or ’0’),
the above steps are repeated to obtain additional views for auxiliary
decision-making.
Prompt Feedback Mechanism. We assess the contribution of the
prompt feedback mechanism to accurate retrieval by removing it.
This is achieved by modifying the prompt. Specifically, the ending
of the primary prompt (see Figure 3(c)) is changed to: If it matches,
reply "1"; otherwise, reply "0"” The pipeline makes a definitive judg-
ment based solely on the preferred view I* without performing
multi-round interaction.

The experimental results are shown in Table 4. It can be observed
that these two components significantly improve performance in
terms of precision, recall, and F1-score, especially the view selection

Xiong Li et al.

strategy (which caused the F1-score to increase by 31.2%). It is note-
worthy that although the FPR experienced adverse effects—rising
by 9.3 and 12.9 percentage points, respectively—in the absence of
ground-truth matches, the maximum MFP of 1.706 indicates that
the risk of mismatches remains within an acceptable range.

5.5 Visualization Analysis

The effectiveness of Open3DSearch hinges on the determination of
rendered views, which directly impacts the accuracy of matching
judgments performed by the 2D-LVLM. To better understand this
process, we present an intuitive case study. As shown in Figure
5, we visualize the candidate camera positions {o}kK:1 on the con-
strained spherical region, along with some rendered views. The
color of each position depends on its average semantic similar-
ity {simavg (I, q)}le. It can be observed that the positional con-
straints significantly enhance the 3D shape details in the rendered
views (e.g., the clearly visible "Nescafe" text). Additionally, rendered
views from the highest similarity position tend to convey the se-
mantic information described in the query more completely and
clearly. This demonstrates that selecting the primary view from this
position in Open3DSearch effectively reduces matching ambiguity,
thereby improving the judgment accuracy of the 2D-LVLM.

Al

"A red and white Nescafe cofe mug with a handle.'

High I
—
—
Low I o

Figure 5: A visualization case of the proposed view rendering
strategy. The points denote candidate camera positions, and
their colors indicate the corresponding average semantic
similarity (computed by Equation 8).

6 CONCLUSION

This paper proposes the Open3DSearch to address the demand for
open-domain text-to-shape precise retrieval, pioneering the inte-
gration of LVLMs into 3D cross-modal retrieval tasks. By trans-
forming implicit semantic matching on 3D shapes into explicit
visual-language reasoning on 2D images, our approach overcomes
the inherent limitations of traditional embedding-based methods in
zero-shot generalization and decision ambiguity. Supported by the
constructed Uni3D-R benchmark dataset, Open3DSearch demon-
strates superior performance across diverse matching scenarios
through comprehensive experiments.
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