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Abstract—Load balancers (LBs) are crucial in cloud environ-
ments, ensuring workload scalability. They route packets destined
for a service (identified by a virtual IP address, or VIP) to a
group of servers designated to deliver that service, each with its
direct IP address (DIP). Consequently, LBs significantly impact
the performance of cloud services and the experience of tenants.
Many academic studies focus on specific issues such as designing
new load balancing algorithms and developing hardware load
balancing devices to enhance the LB’s performance, reliability,
and scalability. However, we believe this approach is not ideal for
cloud data centers for the following reasons: (i) the increasing
demands of users and the variety of cloud service types turn the
LB into a bottleneck; and (ii) continually adding machines or
upgrading hardware devices can incur substantial costs.

In this paper, we propose the Next Generation Load Balancer
(NGLB), designed to bypass the TCP connection datapath from
the LB, thereby eliminating latency overheads and scalability
bottlenecks of traditional cloud LBs. The LB only participates in
the TCP connection establishment phase. The three key features
of our design are: (i) the introduction of an active address learning
model to redirect traffic and bypass the LB, (ii) a multi-tenant
isolation mechanism for deployment within multi-tenant Virtual
Private Cloud networks, and (iii) a distributed flow control
method, known as hierarchical connection cleaner, designed to
ensure the availability of backend resources. The evaluation
results demonstrate that NGLB reduces latency by 16% and
increases nearly 3x throughput. With the same LB resources,
NGLB improves 10x rate of new connection establishment. More
importantly, five years of operational experience has proven
NGLB’s stability for high-bandwidth services.

Index Terms—Cloud Computing, Load Balancer

I. INTRODUCTION

The Load Balancer (LB) is an essential component of
cloud service infrastructure, as indicated by numerous studies
[1]-[8]. It efficiently allocates client requests across backend
servers, ensuring optimal resource use and balanced processing
of requests [9]-[12]. The role of LB as the intermediary in
Application-Cloud network interactions critically influences
the quality of cloud services [13]-[15]. As cloud applications
scale and the demand for network resources grows, the per-
formance requirements for LBs are increasingly stringent [15].
Concurrently, advancements in application microservices and
the consolidation of computing resources in cloud networks
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Fig. 1: A Single Cluster Traffic Growth

significantly heighten the demands on LBs. Previous research
reports that LBs manage nearly half of all data center traffic
(51, [16].

Most studies have primarily concentrated on enhancing
scheduling algorithms [17]-[22] or improving the hardware
performance of LBs [12], [13]. Several innovative studies
have introduced the Direct Server Return (DSR) mode [23],
utilizing Full Network Address Translation (FNAT). For in-
stance, Maglev [1], developed by Google, employs DSR to
send packets directly back to routers, thereby bypassing the
need for Maglev to handle the returning packets and effectively
halving the load on the LB. DSR remains insufficient for
services that require high bidirectional bandwidth, such as
storage solutions, or latency-sensitive applications, such as
online gaming. Moreover, the centralized nature of current
load balancing solutions tends to have traffic bottlenecks,
rendering them unsuitable for applications demanding high
throughput and low latency.

The crux in cloud services is the commitment to stability
and real-time responsiveness. Based on our experience, the
prevailing centralized traffic control strategy has turned the
LB into a significant bottleneck within the traffic of cloud
data centers, resulting in the following issues.

Problem 1: Excessive resource consumption and delay
caused by high traffic passing through LB. This problem
arises from the ongoing expansion of Alibaba Cloud’s opera-
tions, which results in a steady increase in north-south traffic.
Figure 1 shows the traffic dynamics within a single Alibaba
Cloud cluster over 30 days, where the average throughput
surpasses 1.8 Tbps and has been consistently increasing at a



rate of about 2% per month. Under the current centralized load
balancing approach, all data packets are required to go through
the LB for processing and forwarding. This setup significantly
intensifies the issues during periods of high data traffic, leading
to a sharp increase in resource usage.

Given the limitations imposed by the breakdown of Moore’s
Law, simply boosting LB hardware performance or refining
scheduling algorithms offers only temporary solutions. There-
fore, cloud service providers must reduce the volume of traffic
passing through LBs, possibly by bypassing them in the traffic
flow.

Problem 2: Poor availability of LB in cloud services. The
LB serves as an essential link within the traffic network, with
its performance significantly impacting the accessibility of all
operational cloud services. Any disruptions or modifications
to the LB may lead to interruptions in newly established
connections, owing to delays in session synchronization [24].

To reduce the impact of LB disruptions on cloud services,
Alibaba Cloud employs a dual-zone strategy that incorporates
both a primary and a backup availability zone. In the event
of a failure in the primary zone, the system smoothly tran-
sitions to the backup zone, maintaining uninterrupted service
through a reliable fail-safe mechanism. Furthermore, Alibaba
Cloud implements a master-standby setup, where the primary
availability zone for one device also serves as the backup for
another. It’s crucial to keep the resource utilization of each
LB below 50% to ensure smooth service continuation after
a switch. However, this approach necessitates a doubling of
resource use and costs associated with the LBs, leading to
decreased resource efficiency and adding complexity to the
cloud service architecture.

Problem 3: The bottleneck of LB scalability. To manage
the surge in traffic effectively, LBs must scale rapidly to meet
changing service demands. However, creating a responsive
and precise auto-scaling system poses significant challenges.
Scaling rules need to be established based on application
performance metrics. Rules that are too sensitive can lead to
frequent scaling actions, incurring unnecessary costs and po-
tentially destabilizing the system [25], [26]. On the other hand,
rules that lack sensitivity may result in delayed responses,
failing to address demand promptly [27], [28].

Additionally, within data centers, LBs encounter scaling
limitations due to Per-Connection Consistency (PCC) rules
[12], [22]. These rules mandate that traffic from the same user
must be directed to the same server, requiring a mechanism
for session synchronization. This increases system complexity,
consumes substantial network bandwidth, and can ultimately
restrict LB scalability.

The aforementioned issues stem from centralized traffic
management strategies. To address this, Alibaba Cloud has
introduced Next Generation Load Balancer (NGLB), which is
designed to support high-bandwidth, low-latency, and scalable
cloud solutions. This system minimizes the LB’s role to only
handling initial connection requests (SYN packets) and staying
out of the ongoing data path. NGLB’s innovative approach
involves semi-distributed traffic management to overcome tra-
ditional challenges. Next, we will outline the three key designs

of the NGLB.

First, to address the challenges associated with cross-plane
communication after decoupling the LB from the data path, we
introduce an innovative address learning technique that enables
traffic to bypass the LB effectively. This approach fosters
seamless, direct interactions between clients and servers by
refining an active address learning mechanism, distinctively
functioning across clients, LB, and servers. The client assim-
ilates the destination address from direct traffic and updates
its session table accordingly. Utilizing TCP options provided
by the LB, the server identifies client details and updates the
server-side session table accordingly (see §IV).

Secondly, to adapt to the inherently multi-tenant nature
of cloud services, we have developed an address translation
method. Recognizing that different users function within sepa-
rate address spaces, it is crucial for cloud service providers to
prevent address overlaps during user access. To this end, we
utilize Virtual eXtensible Local Area Network (VXLAN) [29]
technology to separate various tenants, while transferring the
address translation responsibilities from the LB to the server.
This strategy efficiently prevents address conflicts that could
occur when multiple tenants access cloud services using the
same addresses (see §V).

Third, to optimize backend server resource utilization, we
devise an innovative flow management strategy. Considering
that NGLB is designed for high-bandwidth applications, max-
imizing backend resource efficiency is of utmost importance.
Our approach circumvents the occupation of these resources
by vast idle flows. By distributing the flow management
function from the LB to the servers, we deploy a simplified
version of the TCP protocol stack on each server. Terminating
idle connections prevents an excessive number of idle con-
nections from occupying backend servers and thus averting
performance degradation.

Experiments demonstrate that NGLB outperforms a
product-level LB currently in use in our data center, by de-
livering a throughput that’s 3 times greater and reducing 16%
latency. Finally, we summarize our experience in deploying
NGLB (§VIII) and raise several open research questions on
the design of a more mature NGLB.

Therefore, this paper makes the following contributions:

« We introduce NGLB, an L4 software LB specifically
designed for cloud networks. With the innovative proac-
tive address learning mechanism, it bypasses LB at the
data level, reducing latency by 16% and increasing 3 x
throughput.

e We design a new multi-tenant access mechanism that
does not depend on LB, ensuring that multiple tenants
can maintain access to cloud services simultaneously.
This mechanism ensures that different tenants can have
independent address spaces on the client side, and using
any address within this space to access cloud services
will not result in address conflicts.

« We introduce a new traffic clean-up method to ensure
the stability of high-traffic services using NGLB. Fine-
grained timeout settings and a bidirectional active discon-
nection scheme allow idle traffic to be cleaned quickly,
freeing up backend resources.
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Fig. 2: The Evolution of L4 Load Balancer

II. MOTIVATION AND BACKGROUND

Alibaba Cloud Load Balancer (ALB) was initially designed
for layer-4 load balancing within the Alibaba Cloud ecosys-
tem, accessible through both traditional and Virtual Private
Cloud (VPC) networks. Leveraging FNAT, ALB provides a
solid foundation for traffic distribution. However, as cloud
service scale has evolved, expectations for load balancing
solutions have grown. To address this, Alibaba Cloud intro-
duced ALB Destination Network Address Translation (ALB-
DNAT), an optimized forwarding mode based on DSR. This
enhanced the capabilities of the original ALB. With the
ongoing expansion and increasing diversity of cloud services,
continuous optimization has become essential, especially for
managing bidirectional traffic within VPC networks. This need
led to the development of NGLB, the latest advancement
in Alibaba Cloud’s VPC network load balancing solutions.
This work explores the evolution of Alibaba Cloud’s load
balancing modes, highlighting the addressed challenges and
the innovations introduced in NGLB.

A. The role of LB in Alibaba Cloud

Alibaba Cloud data centers employ the LB to support a
variety of services, such as the Cloud Relational Database
Service (RDS), SQL Server, and the Cloud Object Storage Ser-
vice (OSS). By deploying across multiple availability zones,
the LB ensures the uptime of LB instances exceeds 99.95%.
The LB improves the efficiency and availability of backend
services by virtualizing multiple cloud servers within the
same region into a robust service pool. It distributes client
requests to these servers based on predefined forwarding rules.
Simultaneously, the LB monitors the health of the servers
in the pool and automatically isolates those with abnormal
statuses, thereby mitigating single-point failures and enhancing
overall application performance. Moreover, the LB is fortified
against DDoS attacks, significantly enhancing the security of
application services.

B. The evolution of Alibaba cloud LB

As shown in Figure 2, current load balancing modes can be
divided into three schemes: FNAT [30]-[32], DSR [5], [33],
[34], and Full Bypassing [35], [36].

ALB was introduced over ten years ago. This FNAT-based
LB was designed to evenly distribute network traffic evenly,

marking the beginning of rapid development in cloud network-
ing. However, ALB faces significant issues in high-download
scenarios such as OSS. To address this, we optimized the
ALB forwarding mode, creating an ALB-DNAT forwarding
mode based on DSR. Unlike ALB, ALB-DNAT directs server
response traffic straight to the client, bypassing the LB. This
approach alleviates the bandwidth strain on the LB and allows
around 80% of the traffic to bypass it.

Despite these improvements, ALB-DNAT still has several
issues similar to those in ALB. First, the benefits of DSR are
limited to server-originated outbound traffic, which enhances
performance in download scenarios but not in upload scenar-
ios, such as data backups and live streaming. Second, the LB
remains on the data path, so special events on the LB, such as
upgrades or failures, can potentially disrupt ongoing services.
Lastly, different LBs may route flows from the same session
to different servers, leading to inconsistencies in session state.
LB in DSR still cannot prevent violations of PCC, which can
cause data loss, performance issues, and a compromised user
experience. Consequently, session synchronization remains a
bottleneck for LB scalability.

For services that demand high performance, these bottle-
necks become more pronounced. To achieve peak perfor-
mance, it is crucial to bypass the LB from the data path of the
connection. For example, Alibaba Cloud’s RDS often requires
bandwidth exceeding the terabyte level, while a single LB
cluster has a secure bandwidth threshold of only 320 Gb. Using
traditional ALB or ALB-DNAT modes would require multiple
clusters to collectively provide service for RDS. To thoroughly
address these issues and meet the needs of new products,
we propose allowing traffic to bypass the LB, enabling a
direct connection between clients and servers. This approach
frees the network bandwidth and connection count from the
constraints of the LB, improving network latency and stability.

C. Challenges of Bypassing LB

Compared to the FNAT forwarding mode, bypassing the LB
to route traffic within a VPC network presents the following
challenges.

Challenge 1: Direct communications between clients and
servers bypassing LB. In the classical FNAT mode, com-
munications between servers and the LB occur within the
underlying network infrastructure, while in the VPC network
client is deployed in an overlay network. Transition to the
underlay network is facilitated through the LB, which serves
as an interface for backend server access. Furthermore, the
LB is responsible for central management of the entire traffic
flow, session information retention across various flows, and
application of user-specific address translations to orchestrate
the data routing pathways.

Nevertheless, in scenarios where bypassing the LB is de-
sired for direct client-server interaction, ensuring them on the
same network layer is essential in communication. Within the
constraints of the conventional FNAT mode, the migration
of backend servers to the overlay network poses significant
challenges.



Challenge 2: Flow conflict caused by multi-tenant access
to cloud services. Currently, data centers construct VPC net-
works using various tunneling technologies [37]. For example,
in a VXLAN network, tenants can manage their own subnet
structure, IP address ranges, and allocation methods [38]. This
can result in two clients having the same virtual IP address
and simultaneously accessing the same server. Consequently,
two SYN packets with the same quintuple can reach the
same server. When these SYN packets undergo VXLAN
decapsulation by the LB, they are restored to their original
Ethernet frame format. Such packets with the same quintuple
reaching the server will cause competition between the two
clients and the server, allowing only one client to maintain a
connection with the server at a time [39].

To address this issue, the current approach is to perform
VXLAN decapsulation at the LB and use the LB’s IP address
as the source IP for NAT. However, using the LB’s IP address
as the source IP results in the loss of the client’s IP address,
making direct replies to the client impossible. Therefore, the
key to achieving traffic bypass is to implement VXLAN de-
capsulation and Network Address Translation (NAT) without
relying on the LB.

Challenge 3: Flow management in high-bandwidth appli-
cations. A server may need to maintain millions of concurrent
connections, potentially resulting in tens or even hundreds of
millions of connections over time. This can lead to many idle
connections, as configuring TCP timeouts adaptively for var-
ious services is challenging. Improper timeout configurations
can impact network performance [40]. Also, a million idle
TCP connections could use approximately 4GB of memory,
potentially affecting server connection speed and throughput
[41].

To manage flows, current data centers use LBs to orchestrate
bidirectional TCP connections, accommodating connection
timeouts for various application flows. However, when by-
passing the LB, clients connect directly with servers, lacking
a centralized component to manage all flows. In high-traffic
scenarios where NGLB is used, it is essential to release the
resources of idle connections promptly.

D. Goals for NGLB

We believe that in order to accommodate the continuously
increasing traffic and provide high-performance, low-latency
services, it is necessary to design an LB with Full Bypassing.
The NGLB must meet the following three requirements:

o The LB should be as removed from the data path as
possible to reduce latency by direct packet transmission
between the clients and the servers.

o The NGLB must be capable of managing a large number
of tenants in virtualized networks while ensuring reliable
connection quality.

¢ In high-bandwidth scenarios, the NGLB should manage
millions of flows and promptly release idle connections
to protect the availability of backend resources.

III. DESIGN OVERVIEW

A detailed diagram of NGLB architecture is presented in
Figure 3. The Alibaba Virtual Switch (AVS) is a customized

Client Physical Machine

Server Physical Machine

Fig. 3: The Overview of NGLB Architecture. The solid arrows
illustrate the packet flow direction in NGLB, where only the
initial SYN packet from the client to the server traverses the
LB. The dashed arrows represent the FNAT data path, where
the bidirectional traffic passes through LB.

Open vSwitch that manages the incoming and outgoing traffic
of a node. In other words, the traffic from the Virtual Machines
(VMs) deployed on the same physical node is managed by
the AVS hosted on that node. Next, we implement a Virtual
Connections Tracking Kit (VCTK) module in the kernel of
the server’s physical machine to manage communications with
the Real Servers (RS) on that machine. AVS provides high
flexibility and automatic configuration for managing VMs.
Therefore, in response to dynamic user VMs, AVS has become
the primary solution for managing VMs in data centers. We
add new rules to facilitate the forwarding of NGLB traffic.
In contrast, the deployment of RS is more stable and seldom
requires dynamic adjustments. Meanwhile, VCTK, serving as
a module for NGLB, minimizes its impact on servers by being
mounted in the kernel.

Workflow. Connection information is transferred through
TCP’s three-way handshake process. As shown in Figure 3,
the processing procedures are as follows: 1) The first packet
path mirrors the FNAT mode: the client initiates a connection
by sending a SYN packet to the LB. 2) The LB, following its
load balancing strategy, selects a backend server and forwards
the SYN packet. 3) The backend server, equipped with VCTK,
decodes the SYN packet to extract client information and es-
tablishes a session. The server then sends a SYN-ACK packet
back to the client. 4) AVS subsequently updates the flow table
after extracting the server information. When the client’s ACK
packet passes through AVS, it is directly forwarded to the
server, thereby completing the TCP three-way handshake and
establishing a direct connection path between the client and
server.

To facilitate direct communications (§1V) between clients
and servers within the VPC network (§V), and also cater to
the demands of high-bandwidth services (§VI), the following
foundational design is proposed.

Active address learning. To enable direct communications
between clients and servers within the VPC network, we have
designed a proactive address learning mechanism in NGLB.
This mechanism allows the AVS and VCTK to actively gather
information from data packets and maintain a session table.
By doing so, it equalizes the network plane for clients and



servers, removing the LB from the data path. As a result, the
LB only needs to perform load-balancing tasks and does not
need to act as a bridge for address translation or maintain
session information for each connection.

Multi-tenant isolation mechanism. To prevent TCP/IP ad-
dress conflicts when multiple VPCs connect to the same server,
we introduce a multi-tenant isolation mechanism in the server
control plane. Servers manage a local IP table for NGLB flows,
reallocating source addresses upon arrival to avoid conflicts.
This mechanism allows users from different VPCs to access
the same backend server, ensuring NGLB remains functional
within VPC networks.

Hierarchical connections cleaner. In order to ensure the
availability of backend resources when facing high-traffic ser-
vices, we designed a method for managing NGLB traffic that
does not rely on LB, named hierarchical connection cleaner. It
operates within the server’s kernel, tracking TCP connection
data and setting fine-grained TCP timeout intervals to timely
terminate idle TCP connections. This strategy considerably
heightens server resource efficiency and fortifies the reliability
of backend servers, particularly in high-bandwidth scenarios.

IV. ACTIVE ADDRESS LEARNING

To overcome the first challenge, we design forwarding
modules for both clients and servers and a new LB forwarding
mechanism for NGLB to ensure the direct data path. We
use a layer-2 VXLAN tunnel and an active address learning
mechanism to gather destination addresses and connectivity
data, enabling direct client-server communication without af-
fecting existing services. For traffic received by client and
server virtual machines, the LB remains the intermediate
communication point, ensuring full compatibility with diverse
network architectures.

Address learning overview. We employ TCP’s three-way
handshake to enable traffic bypassing the LB. Initially, the
client sends a SYN packet to initiate a new connection, with
a half-connection record saved in the client’s AVS. As the
SYN packet passes through the LB, a Fast Bypass TCP Option
(FBT) is inserted to convey information such as the client’s
IP. Upon reaching the server, the SYN packet enables the
establishment of a complete session entry by parsing the FBT
through VCTK. Following this, the server sends a SYN-ACK
packet directly to the client. By parsing this packet, the client
obtains the server’s address and completes the half-connection
record in the AVS. Finally, the client sends an ACK packet to
the server, thereby completing the TCP three-way handshake
and establishing a direct communication path between the
client and server.

A. First Packet Processing on LB

The processing of the first packet is the most crucial step
in establishing a connection with NGLB. We do not rely on
additional packets to transmit information but instead achieve
the goal of exchanging the addresses of the client and server
by inserting TCP options in the first packet through the LB.

Figure 4 illustrates the four primary steps involved in the
LB processing of the first packet. Step 1: The LB begins by
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Fig. 4: First packet processing in LB

decapsulating the VXLAN header to access the inner TCP
information. Step 2: It queries the LB’s pre-configured VIP
table. To ensure compatibility with different forwarding modes
like NGLB and FNAT, this table stores mode configurations
for various VIP interfaces. Step 3: Insert the FBT. For NGLB
traffic, the LB stops performing NAT at the internal packet
layer. Instead, it inserts specific information into the FBT,
which is used to forward details like the client’s physical
IP to the backend server. The FBT includes a 16-byte block
containing essential information like the backend server’s ad-
dress and port, the physical machine’s source address, and the
VXLAN Network Identifier (VNI). This streamlined structure
ensures that backend servers can access client data without the
traditional NAT process. Introducing FBT serves two purposes.
First, with connection redirection enabled, servers need to
respond directly to client requests and identify which physical
machine and VPC network the client belongs to. Thus, it’s
crucial to log the client’s host IP and corresponding VXLAN
tunnel identifier. Second, FBT records the server’s IP and port
number specified by the LB, as the packet’s internal destination
IP is virtual, representing a class of cloud services mapped to
multiple backend servers. It doesn’t point to a specific server,
so translating the virtual IP and port to the actual server IP and
port delivering the services is essential. Step 4: Encapsulate
the VXLAN header. The LB encapsulates the data packet
with a new VXLAN header, specifying the client’s physical
machine address as the source and the selected backend
server’s physical machine address as the destination. Finally, it
dispatches the packet to the server’s physical machine based on
the predetermined load-balancing strategy, ensuring efficient
routing while adhering to the load-balancing plan.

B. Packets Redirection

AVS enable learning server addresses from data packets.
The AVS is implemented on the kernel of the physical machine
and manages dozens of virtual machines, which are rented by
different tenants. Figure 5 illustrates the operational workflow
of the AVS module. When a client initiates a connection to
the cloud service, AVS consults the routing table to determine
whether it is a new connection. Then, AVS encapsulates the
message within a VXLAN header and forwards it to the
LB, triggering a new connection request. The LB processes
this incoming traffic and forwards it to the designated server.
Subsequently, the server, upon processing the traffic and
identifying the client’s address, returns the traffic directly to
the client via the VXLAN tunnel, thus circumventing the LB.
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Since the client only has the address of the LB, it is
unable to communicate directly with the server. For this, we
implement a flow-based address resolution mechanism within
AVS, enabling destination address learning. Upon receiving
a response from the server, AVS matches it with the routing
table to locate the corresponding half-connection record. Once
a successful match is made, AVS strips away the VXLAN
header to reveal the server’s actual address and proceeds to
update the session table by replacing the initial destination
address (the LB’s address) with the new address (the server’s
address). This active address learning process ensures that
all subsequent connection traffic passing through AVS is
encapsulated with the updated VXLAN destination address
(the server’s address), thus maintaining a bidirectional traffic
flow independent of the LB.

VCTK module. The VCTK module is deployed on the server
side in NGLB and achieves packet redirection through three
core functions: processing of VXLAN header, processing of
TCP options, and logging of session information. Figure 6
depicts the VCTK module’s functionality within the server.
The VCTK module first decapsulates the VXLAN header,
recording the inner TCP source and destination addresses. It
then analyzes the FBT options to obtain the client physical
machine’s VXLAN IP, VNI, and the RS address allocated
by the LB. This information is logged into the session table
to form a complete session entry. Finally, after executing the
address translation, the packet is forwarded to the RS.

As the server response packets pass the VCTK module,
they match with the established connection entries within the
session table. Then, VCTK encapsulates the VXLAN header,
which designates the server’s physical machine address as
the source and the client’s physical machine address as the
destination. Subsequently, the response is forwarded straight
to the client via the VXLAN tunnel, effectively circumventing
the LB and streamlining the communication process.

V. MULTI-TENANT ISOLATION MECHANISM

In this section, in order to solve the second challenge
in §II-C, we detail the connection mechanism for multi-
tenant service scenarios in data centers, called multi-tenant
communication mechanism.
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The most straightforward solution to address multi-tenancy
issues is to maintain a global flow table and reallocate ad-
dresses when flow conflicts occur. However, in a single cluster
in Alibaba Cloud, the number of concurrent connections can
reach up to 170 million, making the query latency significant.
Therefore, we develop a distributed and lightweight layer-4
address isolation mechanism in NGLB.

A. Isolation Mechanism

In FNAT, packets leave the VXLAN tunnel at the LB, and
NAT is performed here to prevent flow conflicts. Therefore,
we have integrated this mechanism into VCTK, where packets
leavethe VXLAN tunnel, ensuring that all flows accessing the
current server do not conflict by isolating them before the
packet completely loses its VNI information.

When the flow enters the server, VCTK records the flow
information, which is detailed in §IV-B. Before forwarding
to RS, VCTK first performs an address translation on the
packet, changing the destination address to the RS address
extracted from FBT. As shown in Figure 7, due to the absence
of VNI information, 5-tuple conflicts may occur at this time.
In the figure, we only show the scenario of source address
conflicts. However, actual conflicts occur when the entire 5-
tuple in the TCP packet is identical. Therefore, we perform
an additional address translation to eliminate flow conflicts. In
VCTK, we assign a local address to each flow, the scope of
which is only for the current physical machine. This address
is maintained in the VCTK session table and is associated
with the flow’s 5-tuple and VNI, ensuring non-conflicting
allocation. Theoretically, an individual VCTK is capable of
holding up to 4 million sessions, but in the actual environment
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Fig. 8: Active termination mechanism on VCTK

of the Alibaba data center, the average per physical machine
is approximately 0.3 million sessions. Each session entry
is composed of two flow pointers along with the pertinent
session data. Employing a hash table for storage achieves
microsecond-level query responses, which satisfy the demand
for low latency.

By an additional source address translation, converting the
source address to the locally assigned address, the issue of
flow conflicts is solved. Later, when RS completes processing
and answers the request, the data packet passes through the
VCTK module again, hitting the corresponding session entry,
and restores the locally assigned address to the original VM
address, thus achieving isolation of multi-tenant traffic without
effect on the original communication.

VI. HIERARCHICAL CONNECTION CLEANER

In this section, we address the third challenge outlined
in §II-C. We present a flow management scheme designed
for NGLB, called the hierarchical connection cleaner, which
enables us to manage flows for NGLB using VCTK instead
of the LB.

As the LB functionality is offloaded to VCTK, the timeout
termination of connections on the LB becomes invalid. Unlike
LB, VCTK is a lightweight module that lacks the capability
to maintain TCP connections, as it will occupy significant
memory. Additionally, the backend servers are designed to
handle a diverse range of traffic, servicing not only NGLB
traffic. A simplistic adjustment of the TCP timeout settings
within RS would result in premature termination of all traffic,
undermining the universality of RS.

Therefore, we design a traffic management mechanism in
VCTK, capable of specifically managing the traffic of NGLB
without modifying global TCP parameters, such as TCP
timeout. This method offers refined control and optimization
of traffic, ensuring that NGLB can efficiently maintain its
stability amidst the constant rise in network traffic.

A. Active Termination Mechanism

We achieve the management of connections in VCTK by
recording partial information of TCP connections, including

the VM addresses, RS addresses, and the bidirectional TCP
sequence numbers etc. Consequently, VCTK has the capability
to communicate separately with both VM and RS without
the necessity of establishing actual TCP connections. This
design grants VCTK a level of control over the traffic, ensuring
efficient resource utilization without significant consumption.

Traffic hierarchy. We propose a traffic hierarchy strategy
that can apply different control schemes to different traffic.
Figure 8 demonstrates VCTK’s hierarchical strategy towards
managing distinct traffic types. (1) Non-NGLB traffic: The LB
controls the traffic, so VCTK does not need to interfere with
this traffic. It simply forwards it directly to RS for processing.
(2) NGLB traffic: VCTK records key information such as the
TCP source, destination addresses, and the sequence numbers.
Based on predetermined settings, it assigns varying timeout
durations for flows serving different services. When a flow re-
mains idle beyond its timeout threshold, the active connection
termination will be activated to disconnect the connection.

Active connection termination. We designate the communi-
cation direction from client VM to server RS as incoming.
Ilustrated in Figure 8, when a flow’s idle period surpasses
a predetermined threshold, it triggers the generation of ter-
mination packets. To guarantee that both connection ends can
properly receive these packets, VCTK generates two legitimate
packets using the 5-tuples and sequence numbers logged in the
session table. These packets are of the TCP RST type. VCTK
sends these packets to both the client VM and the server’s
RS. Upon their reception of the RST packet, the connection is
swiftly terminated, thereby freeing up the associated resources.

Therefore, in VCTK, we have greater flexibility in setting
the connection keep-alive times for different flows. This means
we can assign appropriate timeout periods for each TCP
connection based on different service needs. As a result, when
a connection becomes inactive, it can promptly release the
resources it occupies. This not only improves the utilization
of server resources but also optimizes the overall network
performance, ensuring that our services remain efficient and
stable even when faced with a large number of concurrent
connections.

B. Running example

NGLB was implemented in a distributed manner, where the
VCTK module was implemented in the kernel with ~200 lines
of C code, AVS with ~100 lines of C code, and LB with ~100
lines of C code. To illustrate the design of NGLB, we use the
following running example.

Running example. Figure 9 illustrates operations on the
packets as they pass through three modules during the TCP
three-way handshake in NGLB. First, the client (CIP) initiates
a service request to the LB (VIP). AVS receives the SYN
packet and adds the “route flag” in the VXLAN header. The
outer source IP is set as the client NIC address (HIP), and
the outer destination IP is set as the LB cluster NIC address
(LIP) (step b). After receiving SYN packets, the LB cluster
allocates them to specific LBs based on the VIP carried by the
packets. LB leverages the conditions of the back-end servers
while making the scheduling decisions to a server (RIP) and
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Fig. 10: The session table in VCTK

recognizes the “route flag” and adds FBT in the TCP header
(detailed in the description of LB §IV-A). Finally, LB sets the
outer source IP and the outer destination IP of the VXLAN
header to LIP and RIP (step c).

Upon receiving the SYN packet, VCTK creates a new ses-
sion in the tables (see figure 10). Then, a series of operations is
performed to fill each field. Firstly, it takes out HIP, RIP in the
VXLAN header, and inserts these three pieces of information
into the Outer Src IP, Outer Dst IP, and VNI field (See
Figure 10 step (D). Secondly, VCTK extracts CIP:CPORT,
VIP:VPORT from the inner TCP header of SYN packets, as
well as HIP, RIP:RPORT, and client tunnel identifier VID from
FBT, and inserts them into the session table (See Figure 10
step @). Thirdly, utilizing VID and CIP:CPORT from the
session table, VCTK allocates a unique NIP:NPORT for this
connection and inserts it into the session table (See Figure 10
step ). Finally, based on the session table, VCTK translates
the source and destination IP:PORT from CIP:CPORT and
VIP:VPORT to NIP:NPORT and RIP:RPORT within the inner
data frames of the SYN packet (step d).

The server responds with a SYN+ACK packet, including
the packet’s source address (RIP and RPORT) and destina-
tion address (NIP and NPORT) respectively (step e). Then
VCTK converts the inner source and destination address of
the SYN+ACK packet from RIP:RPORT and NIP:NPORT to
VIP:VPORT and CIP:CPORT based on the session table. It
then encapsulates the packet with VXLAN and sets the outer
source IP and destination IP as RIP and HIP. Finally, the packet
can be directly sent to the client host (step f).

AVS, upon receiving the SYN+ACK packet, decapsulates
the VXLAN header, updates the outer destination address

of the connection in the session table from LIP to RIP,
and forwards the packet to the client (step g). The client
replies with an ACK packet (step h). AVS forwards the ACK
packet to the server while setting the outer destination IP
and source IP as RIP and HIP (step i). VCTK matches
the connection, decapsulates the VXLAN header, executes
NAT from CIP:CPORT and VIP:VPORT to NIP:NPORT and
RIP:RPORT, and sends the ACK packet to the server (step j).
The subsequent transmission of data packets follows the same
steps from e to j.

VII. EVALUATION

In this section, we use two types of setups to evaluate the
performance of NGLB. The first, Large Scale Benchmarking,
examines the request latency of NGLB compared to another
LB (i.e., in FNAT mode), both of which provide L4 load
balancing services for the applications in Alibaba Cloud. Next,
we create an isolated environment to benchmark the perfor-
mance of each component of NGLB, including throughput and
resource utilization, such as CPU overhead.

A. Large scale benchmarking

We first present the evaluation of the OSS service currently
running on Alibaba Cloud. Figure 11 illustrates the request
latency for uploading (PUT) and downloading (GET) 100 KB
files via Alibaba Cloud’s Object Storage Service (OSS). In
the production environment, NGLB reduces average upload
latency by 18% and 12% compared to FNAT and DSR,
respectively. For downloads, it achieves a 10% reduction in
average latency.

We collected data on NGLB and FNAT from a cluster
consisting of 475 physical machines with 26 cores each. The
analysis reveals that NGLB supports a substantial 8 Tbps
of data traffic using only 100,000 listeners, which monitor
and forward client traffic to the backend servers. In contrast,
FNAT required 300,000 listeners to handle 10 Tbps of traffic.
While these results include additional bandwidth set aside for
redundancy to ensure service reliability, it is clear that NGLB
is more efficient in its utilization of load-balancing resources
when handling equivalent amounts of bandwidth.

B. Mirobenchmark experiments

Experimental setup. To thoroughly evaluate the performance
of each component, we establish an isolated network environ-
ment that separates our test bed from other cloud services. The
test bed consists of 10 VMs, each equipped with a 2.50GHz
CPU and a single core, to host the clients. The cloud services
are deployed on a physical machine featuring an Xeon ES5-
2630 CPU at 2.30GHz with 10 cores. The LBs are installed
on another physical machine with an Xeon E5-2630 CPU at
2.30GHz and 12 cores; however, we restrict the LB operation
to just one core to test the upper performance limits of the
LB. In the performance of NGLB, we consider the latency,
throughput, and CPU overhead. To better saturate the system,
we do not possess a full TCP client. Alternatively, we build a
DPDK-based client that sends SYN and ACK packets to stress
test the LB and server.
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Fig. 14: Experiments measure the connections maintained by LB and VCTK. Figure (a) shows the number of NGLB connections
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CPS. Figure (c) shows the number of FNAT connections maintained by LB under different CPS.

1) Effectiveness of NGLB:

RTT. Figure 12 shows the RTT of NGLB when packets
request backend services under different configurations of
PPS. We assess latency by measuring the average RTT and
the 99th-percentile RTT. NGLB substantially reduces RTT by
circumventing LB. Within the threshold of 100K packets per
second (PPS), both NGLB and FNAT maintain low-latency
services, yet NGLB achieves a latency reduction of around
40%. Furthermore, NGLB doubles the number of packets
handled per second by eliminating traffic bottlenecks caused
by the LB. Due to the LB bottleneck, the RTT increases at
110K PPS for FNAT. In contrast, NGLB maintains low latency
until it reaches 210K PPS, at which point latency increases due
to backend server saturation.

Throughput. Figure 13 illustrates the throughput of FNAT
and NGLB under various PPS configurations. We conduct
this test with 128-byte packets, collecting data on both the
receive (RX) and transmit (TX) throughput on the server’s
Network Interface Card (NIC). Here, receiving refers to the
direction from the client to the server, and transmitting refers
to the direction from the server to the client. The throughput
bottleneck occurs at 110K PPS with a total throughput of 17
Mbps. However, NGLB encounters the throughput bottleneck
under a higher load of 290K PPS, and the total throughput
reaches up to 60 Mbps, bringing nearly a 3 x performance im-
provement. Furthermore, the throughput bottleneck of NGLB
exceeds the point where RTT starts to increase, which means
that even at 210K PPS when RTT begins to rise, the system
has not yet reached the backend server’s loading limit. This
phenomenon indicates that NGLB leaves extra bandwidth
redundancy for the server, allowing it to effectively handle
abnormal fluctuations or surges in network traffic, enhancing

network resilience and stability.

2) Effectiveness of handling TCP connection:

Our objective is to assess the effect of deploying NGLB
on the establishment and maintenance of TCP connections.
We initiate a large volume of TCP connections by generating
numerous SYN packets. The test lasts for 60 seconds, which is
sufficient to bring both the LB and the server to a state of full
load. We stop establishing new connections at the 30th second
and continue to collect data for an additional 30 seconds to
record the process of connection resource release.

Created connections per second. NGLB significantly reduces
the complexity of LB and enhances the capacity of LB
to establish new connections. Figure 14 shows the number
of TCP connections that NGLB and FNAT can maintain,
reflecting the system’s capacity in session maintenance. The
data reveals that NGLB can maintain a stable high-speed rate
of 50K new connections per second, however, FNAT can only
maintain 5K per second.

For FNAT, the CPS are configured to 5K, 10K, and 50K,
while for NGLB, the settings are 10K, 50K, and 100K, respec-
tively. The LB of NGLB is able to timely release completed
connection resources to provide space for new connection
requests, a feature attributed to the mechanism in NGLB
design, where LB does not need to maintain connection states.
However, the LB of FNAT needs to maintain every connection,
and when the connection resources of LB are exhausted, it
can not continue to establish new connections. To test the
performance of the LB of FNAT, we set the connections per
second (CPS) to 5K, 10K, and 50K, respectively. For NGLB,
the CPS is set to 10K, 50K, and 100K. As shown in Figure
l4c, the LB of FNAT can only handle 5K CPS. When the
CPS increases to 10K, LB hits the bottleneck. In contrast,
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under the configuration of 50K CPS, the LB of NGLB can
handle all connection requests, with the ability to process
new connections over 10x higher than the LB of FNAT.
However, when CPS increased to 100K, as shown in Figure
14a, the LB reached the bottleneck in just 4 seconds. This
is because a large number of connection requests blocked the
LB in a short period of time, making it impossible for the
LB to timely release the expired connections and accept new
ones. Eventually, the LB only successfully established 180K
connections, far fewer than the other two configurations.

3) The overheads of each component:

We use server processing latency, memory usage, and CPU
usage to evaluate the resource overhead of the VCTK module
and LB.

The latency of VCTK. We test the processing latency of
servers deployed with VCTK by measuring the time taken for
data packets to traverse from entry to exit through the server’s
NIC. Figure 15a shows the processing latency of servers while
VCTK sustains different numbers of connections, with the
dashed line representing the latency of servers not deployed
with VCTK, providing a baseline for comparison. The result
illustrates that the processing time does not increase sub-
stantially as the number of VCTK-maintained connections
grows, demonstrating that an abundance of connections does
not markedly deteriorate performance. Additionally, NGLB
exhibits a modest latency increase of 10 to 20 microseconds
over the baseline, which is justified by the need for additional
handling of data packets. Nonetheless, these added time ex-
penses pale in comparison to the decrease in RTT, rendering
them insignificant.

The memory usage of VCTK. Figure 15b shows the memory
usage of VCTK while maintaining different numbers of con-
nections. According to the design of VCTK’s session table,
each connection occupies about 60 bytes of space to store
session information, which is consistent with the experimental
results. The memory usage of VCTK increases linearly with
the number of connections, with the data indicating that 1
million session entries occupy 490 Mbits of memory.
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The resource consumption of LB. We evaluate the perfor-
mance of the LB by conducting CPS testing and measuring its
efficiency through the monitoring of the LB’s CPU utilization
under various CPS configurations. A sharp increase to 100%
CPU usage indicates significant stress on the LB, signifying
its incapacity to handle additional requests.

NGLB significantly reduces the CPU utilization of LB
and greatly improves the resource utilization rate of LB.
Comparison between Figure 16a and 16b, under the same
10K CPS configuration, the LB based on FNAT is overloaded,
while the LB based on NGLB only uses 15% of the CPU to
handle all connection requests. When the connection requests
increase to 50K CPS, the LB of FNAT becomes overloaded
within just 4 seconds, whereas NGLB operates stably with
about 88% CPU utilization.

The results indicate that the LB of FNAT can only handle
5K CPS; although the CPU utilization seems low, once the
connection resources of the LB are fully occupied, it will
lead to a sharp increase in CPU utilization, resulting in a
significant waste of CPU computational resources. In contrast,
the LB of NGLB is able to fully utilize the CPU for connection
processing, which enables it to handle connections up to 10x
higher than that of the LB with FNAT architecture.

VIII. EXPERIENCES

NGLB has been implemented across our extensive VPC
for several years, significantly enhancing the robustness of
Alibaba’s cloud network. Despite challenges such as growing
network sizes, fluctuating traffic, and cyber threats, NGLB
consistently delivers superior performance to our users. We
are confident in our strategic initiatives. In addition to the
strategies outlined in this document, our extensive experience
in research and development for cloud networks has greatly
contributed to our expertise, which we are eager to share in
this section.

A. The benefit of using distributed load balancing in cloud
data centers

Improved Resource Management. Distributed design is set
to play a pivotal role in enhancing the performance of cloud
services. As the pace of hardware performance gains deceler-
ates, it is becoming increasingly difficult to improve the ser-
vice quality through optimization of isolated components. Take



NGLB as an instance, without offloading traffic, an individual
heavy-traffic service would occupy multiple LB instances. By
the coordination between VCTK and AVS components, al-
though the approach does not reduce the resources needed for
traffic maintenance, it leverages a distributed control strategy
to significantly minimize the complexity of maintaining LB
clusters.

Rapid Service Deployment. The modularized deployment
significantly enhances the system’s flexibility, while the in-
tegrated approach to functionalities minimizes inter-module
coupling. In traditional data centers, integrating all packet
header processing in the LB necessitates session synchroniza-
tion functionality, one of the reasons why data center LBs
cannot be infinitely scaled. In NGLB, by decoupling the LB
and integrating similar functionalities on the same side, the
restrictions on LB scaling are lifted, while also laying the
groundwork for rapid module iteration.

B. Issues caused by state sinking

Offloading the data path from the LB to the client and server

makes the LB unaware of the state of the connections. This
will give rise to the following issues for discussion, and can
serve as directions for future research.
Can NGLB deploy outside Alibaba Cloud? To promote
broader adoption beyond Alibaba Cloud, NGLB is designed
to be platform-agnostic and free from dependencies on pro-
prietary hardware or software. This design choice ensures
compatibility with a wide range of cloud environments. In
typical data center settings, each physical client host runs
multiple VMs, which are uniformly managed through Open
Virtual Switch (OVS). The client-side active address learning
algorithm is built on top of standard OVS functionality and
does not rely on specialized hardware. On the LB side,
packet encapsulation is performed using TCP options at the
protocol stack level, maintaining full compliance with stan-
dard networking protocols. On the server side, the VCTK
is entirely implemented within the Linux kernel’s packet
processing pipeline. This enables efficient in-kernel execution
while avoiding the need for dedicated hardware or modifi-
cations beyond standard Linux interfaces. Consequently, all
components of NGLB are inherently portable and can be
deployed in diverse data center environments using commodity
infrastructure.

This architecture provides two primary advantages: (1) high
adaptability to various cloud architectures, and (2) simplified
deployment across heterogeneous infrastructures without re-
quiring hardware changes to existing platforms.

How does NGLB ensure safety? A primary risk of di-
rect client-to-server connections is the exposure of server IP
addresses, potentially enabling targeted attacks. In NGLB,
this risk is mitigated by the client-side AVS, a component
fully managed by the cloud provider. Server addresses are
only accessible within AVS and remain hidden from user-
space processes and end users, effectively preventing address
leakage. Another concern is vulnerability to connection-based
DDoS attacks, such as SYN floods. To address this, NGLB
integrates a lightweight SYN-proxy mechanism at the LB,

which monitors SYN packets and applies rate limiting. The LB
also collaborates with backend servers to detect TCP backlog
saturation. When saturation occurs, the system activates SYN-
proxy mode, temporarily reverting to a centralized LB path to
absorb and filter malicious traffic. While effective against SYN
floods, this mechanism does not address application-layer or
large-scale volumetric attacks, which require complementary
solutions such as WAFs or application-level rate limiting. This
limitation, compared to centralized LB designs, is acknowl-
edged and targeted for future improvement.

How does NGLB handle failures? NGLB incorporates
mechanisms to maintain service continuity in the presence of
component failures. When a VCTK or server instance fails,
the LB detects the issue via periodic health checks and stops
routing new connections to the affected node. Established
connections rely on standard TCP timeouts for recovery, or
a recovered VCTK can send TCP RST packets to reconnect.
While such failures are rare, they are expected at scale and
are handled gracefully. In the case of AVS failure, packet for-
warding is disrupted, and traffic automatically falls back to the
load balancer in FNAT mode, preserving session continuity.
These mechanisms together enhance the fault tolerance of the
system while retaining the performance advantages of direct
connection handling.

Can the design of NGLB collect the network statistics in
real time? Currently, as NGLB offloads traffic and bypasses
the traditional LB, the network monitoring functions on the
LB are no longer applicable. We use its extensive bandwidth
to support high-traffic services with NGLB, eliminating the
need for traditional network monitoring to prevent conges-
tion. However, as services grow, network monitoring will
still be needed for NGLB. Most LB functions have been
moved to the server-sidle VCTK module in NGLB. In future
work, we can add a network monitoring module to VCTK.
Moreover, Alibaba Cloud already possesses a well-established
network monitoring system and abundant experience, which
will greatly assist in the deployment of distributed network
monitoring on VCTK.

Can the design of NGLB support live migration? Live
migration is a common phenomenon in cloud services, which
increases flexibility [42]. The VM does not rely on a single
physical server and allows for the migration of VMs to
available physical servers before upgrades or other changes
to the physical machine environment occur. In FNAT and
DSR, clients are only required to send packets to the LB,
which can effortlessly find the corresponding backend servers
and return the response to the right clients. However, with
NGLB, when a virtual machine migrates to a new physical
machine, a lack of shared information between the new client’s
physical machine and the server’s physical machine interrupts
direct communication. To enable a live migration, we can
simultaneously migrate the flow tables pertinent to the virtual
machine to the AVS on the new physical machine. This method
preserves the status of all active flows, ensuring connections
are re-established after the migration.



IX. RELATED WORK

At present, many researchers have reduced the load of LB
by changing the transmission path of data packets, thereby
reducing service latency and avoiding LB from becoming
bottleneck to improve data center performance.

Direct Server Return. Ananta [5] uses Multiplexer (Mux)
and Host Agent (HA) to implement DSR. It sets up a VIP in
Mux and deploys a load balancing algorithm for scheduling,
while the HA on the server side is responsible for NAT
and redirection to achieve Mux is responsible for forwarding
all inbound packets, and all outbound traffic bypasses Mux.
Maglev implements DSR through Mux and the server. Com-
pared with Ananta, Maglev’s Mux [1] adds General Routing
Encapsulation (GRE), while the server performs decapsulation
and response redirection. Although the LB in DSR mode is
involved only in the forwarding of inbound packets, if the LB
fails, it still affects established TCP connections, which is a
structural flaw in the DSR architecture. NGLB significantly
reduces the impact of LB on connections by bidirectional
traffic bypassing the LB.

Bypassing. Another structure was also first proposed by
Ananta [5], which is that Mux only participates in the es-
tablishment of TCP connections, and subsequent TCP com-
munication will completely bypass Mux. However, Fastpath
in Ananta still requires Mux to participate in the complete
TCP connection establishment. CHEETAH [16], [22] bypasses
the state matching in the LB by inserting a cookie encoded
with the server ID into the packets. However, the packets of
CHEETAH still require forwarding through the LB.

The most relevant works to us are as follows. R2P2 [43]
exposes the RPC abstraction to the endpoints and the network,
enabling servers to bypass routers and directly respond to the
RPC. It achieves load balancing in the router by allowing
servers to proactively report their own load conditions. The
work most closely aligned with our research is CRAB [35],
where the authors propose leveraging TCP options to con-
vey client information, thereby facilitating traffic bypass of
load balancers. Nevertheless, CRAB is limited to local area
network (LAN) communications, rendering it impractical for
deployment in large-scale network environments. To address
this limitation, we integrate VXLAN technology through coor-
dinated module interactions, such as VCTK. This integration
enables NGLB to achieve seamless deployment in expansive,
data center-scale networks.

X. CONCLUSION

As the demand for cloud computing continues to grow, data
center interfaces must handle millions of new connections and
nearly 1TB of traffic per second. This immense load chal-
lenges the processing speed and stability of these interfaces.
To address this, we propose the NGLB architecture, which
offloads a significant amount of traffic to the Alibaba Cloud
load balancing interface. This approach significantly reduces
the complexity of the LB and lowers the latency for users
accessing cloud services.

In this paper, we introduce the establishment of direct
communication between clients and servers through active

address learning. We also proposed a multi-tenant isolation
scheme to resolve conflicts arising from multiple tenants ac-
cessing cloud services in data centers, making the architecture
suitable for deployment in cloud environments. To ensure
NGLB meets the demands of high-bandwidth applications,
we designed a lightweight connection cleanup mechanism in
VCTK that quickly releases backend service resources. Finally,
we shared our experience deploying NGLB, hoping it will
benefit other cloud providers facing similar challenges. This
work demonstrates the potential of NGLB to enhance the
efficiency and reliability of cloud data center operations.
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