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Abstract—In recent years, deep learning (DL) techniques have
been extensively utilized for specific emitter identification through
the extraction of RF fingerprints. A significant challenge that DL
models face in real-world scenarios is the continuous emergence
of new wireless devices, such as unknown drones that suddenly
appear in the sky. In these situations, the radio monitoring
system must be capable of detecting these unknown devices
(open-set recognition) and incrementally updating the DL model’s
knowledge using only a few captured samples. This requirement
presents two main challenges: 1) Incremental updates from few-
shot samples can lead to catastrophic forgetting and overfitting
in DL models; 2) Constructing reliable open-set thresholds for
new devices with few-shot samples is difficult.

To address these challenges, we propose a novel few-shot open-
set incremental learning (FSOSIL) framework through meta-
learning for RF fingerprint recognition, named Meta–RFF. The
core idea of Meta–RFF is to simulate few-shot incremental
learning and open-set recognition scenarios by constructing
numerous pseudo-FSOSIL tasks and meta-training them. To
enhance the open-set recognition capability, we design RF feature
augmentation, open loss, and adaptive open-set thresholding
modules. The algorithm’s effectiveness is validated on the large-
scale aircraft recognition dataset (ADS-B), showing an improve-
ment in closed-set accuracy and open-set AUROC of the new
class by approximately 10-20% compared to other algorithms
with 1-shot. We also demonstrate the algorithm’s effectiveness in
a real-world test bed.

Index Terms—Deep Learning, RF Fingerprints, Open-Set
Recognition, Few-Shot Incremental Learning.
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Fig. 1. Aircraft classifier system deployed in ground BS not only needs
to accurately recognize known aircraft (base classes) but also needs to
recognize unknown aircraft (new classes). This classifier is equipped with
continuous few-shot class incremental learning (FSCIL) capability to achieve
co-recognition of new and old classes. At the same time, the few-shot OSR
capability (FSOSR) also needs to be improved in the continuous increment.

I. INTRODUCTION

IN recent years, the openness of wireless networks has
significantly enhanced the convenience of communication

between wireless devices [1]. However, this openness has
made it challenging to ensure data confidentiality, thereby
exposing wireless systems to potential security threats [2].
For instance, in automatic identification systems (AIS), the
maritime mobile service identity (MMSI) can be easily
spoofed, posing significant security risks to maritime traf-
fic [3], [4]. Similarly, in automatic dependent surveillance-
broadcast (ADS-B) systems, aircraft identification information
is susceptible to imitation and tampering, leading to potential
security hazards [5]. Fortunately, the physical characteristics
of terminal devices offer a unique RF fingerprint for specific
emitter identification (SEI) [6]–[8]. RF fingerprinting leverages
the stable, non-tampering physical properties of hardware
components, such as I-Q imbalance [6], loop filter variations
[9], and clock jitter [10], to ensure reliable identification. SEI
technology is now extensively utilized in both civilian and
military domains, including modulation recognition [11]–[13],
IoT device authentication [14], [15], spectrum monitoring [16],
and aviation management [17], [18].

For achieving automated SEI, deep learning (DL) tech-



IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. X, NO. X, JULY 2025 2

Old 

classes
New

classes
Decision 

boundary
Training on new class

Decision 

boundary

Traditional incremental Few-shot incremental

(a) Base class classifier

Where is the 

boundary?

(b) Catastrophic forgetting (c) Unknown class distribution shift (d) Unknown open set threshold

Fig. 2. Existing DL technology bottlenecks: (a)The decision boundary (solid line) of the base class classifier can accurately classify old classes, but not
classify the new classes (red); (b)By training the classifier directly on the new class, the model is biased towards fitting the new class (dotted line), forgetting
the knowledge of the old class; (c)Uncertain new class distributions are shifted to the vicinity of old classes, resulting in limited classification performance;
(d)Difficulty in determining the OSR threshold (red dotted line) for the new class due to its few-shot limitation.

niques have recently been widely used for RF fingerprint-
ing. Utilizing the powerful feature extraction capability of
the DL model to achieve intelligent communication device
management has important application prospects [19], [20].
However, previous studies have explored a variety of DL-
based RF fingerprinting techniques [14], [15], [18], [21]–[24]
to enhance the recognition efficiency of wireless devices and
do not consider the following deployment challenges.

Autonomous radio monitoring system. Fig. 1 shows that
the aircraft identification system deployed ground base station
(BS) will utilize the DL model for aircraft classification by
extracting RF fingerprints (RFF) of IQ signal. The recog-
nition system must be equipped to meet various practical
environmental demands [25], including (1) the capacity for
open-set recognition (OSR) to identify sudden appearances of
unfamiliar aerial objects [18], (2) the ability to update and
recognize new categories using a limited number of samples
from these newly emerged classes [26], and (3) the flexibility
to continually evolve, accommodating an increasing range of
categories and adapting to unforeseen environments in the
future [27], [28].

However, building such a generalized evolutionary model
that combines few-shot class increment learning (FSCIL), few-
shot OSR (FSOSR), and multi-stage continuous increment
learning needs to overcome the following challenges.
• Catastrophic Forgetting and Overfitting. As shown in Fig.

2a, since the base class classifier cannot correctly classify
the new class, we need to add the new knowledge to
the base model, and the updated model performs well
for both newly added classes and original classes. As
the model updates its parameters through the optimizer
to fit the new task, these updated parameters are not
necessarily applicable to the old task. As shown in Fig.
2b, it inevitably causes the model to forget knowledge
[29] and over-fitting effects on the new task with few-
shot samples [30], [31].

• Unknown Class Distribution Shift. As shown in Fig.
2c, the distribution of unknown classes is difficult to
determine, and they may appear in the vicinity of known
classes, which inevitably leads to a degradation of the
model’s classification performance [29], [32].

• Unknown Open Set Threshold. As shown in Fig. 2d,
existing FSCIL [27], [33]algorithms seem to solve the
above challenges, but it is still difficult to determine the

open-set boundary for few-shot samples. The lack of
samples makes us unable to see the true class distribution,
which hinders the accurate estimation of the open set
boundaries.

• Continuous Incremental Learning Challenges. The multi-
stage continuous incremental process aggravates the
above challenges and leads to a drastic decrease in
efficiency. In this scenario, the number of new classes
continues to increase the density of feature space, which
inevitably leads to overlapping decision boundaries and
raises the risk of overlapping feature distributions of
unknown classes. It will result in a decrease in the
model’s open-set and OSR capabilities.

To address the above practical challenges, existing algo-
rithms like incremental learning [29], iCARL [32], OSR [34],
[35], and FSCIL [27], [33] address only a single level of
the problem. Our task mainly involves FSCIL as well as
FSOSR, and it can be seen that improving few-shot learning
capability is the key to solving the problem. To address the
above practical challenges, we have rethought human learning
patterns. As we know, a normal 6-year-old child cannot only
quickly recognize the unknown but also learns from 1-shot
images of new things without forgetting. Human capabilities
derive from long-term adaptation to complex environments,
i.e., learning how to learn in meta-learning [36]. Motivated
by this, we expect the DL model to become a generalized
evolution model with both FSCIL, FSOSR, and lifelong learn-
ing capabilities like humans through continuous environment
simulation. Benefiting from the leapfrog development that
meta-learning has brought to the field of few-shot learning in
recent years [31], [36], [37], we mainly employ meta-learning
to simulate the environment for the multiple tasks defined in
this paper and prompt the model to gradually adapt.

In this paper, we propose a meta-learning-based few-shot
open-set incremental learning (FSOSIL) for RF fingerprint
recognition (Meta–RFF) framework. To address the problems
of the RFF recognition system, we first propose a signal
augmentation scheme for few-shot samples. Second, based on
the meta-learning idea, we define the FSOSIL meta-tasks and
sampled a large number of pseudo-tasks from the training set
to realize environment simulation. Further, we utilize the meta-
learning technique for multi-task training to make the neural
network adaptive in such an environment. Finally, to solve
the FSOSR problem, we incorporate open loss in the meta-



IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. X, NO. X, JULY 2025 3

task and propose an open-set threshold-free mechanism. This
mechanism is adaptable to the continuous incremental process
and automatically generates open-set thresholds for few-shot
classes. Our contributions can be summarized as follows:
• To the best of our knowledge, we are the first to formulate

an FSOSIL framework for RFF recognition and realize a
generalized RFF continuous learning real system.

• We define the FSOSIL meta-tasks and design a multi-task
training mechanism based on a prototype network.

• We propose a soft orthogonalization loss and an open loss
to calibrate prototype points and OSR automatically.

• To solve the problem of auto-tuning the FSOSR algo-
rithm in continuous increments, we propose an open-
set threshold-free mechanism based on reciprocal point
synthesis.

Organization. In Section II, we review the existing work on
RFF recognition, FSCIL, and FSOSR. The basic definition
of RFF recognition and FSOSIL tasks are given in Section
III. We propose the details of Meta–RFF in Section IV. The
setups and discussion of experiments are given in Section V.
In Section VII, we conclude our paper and describe future
work.

II. RELATED WORK

In the following, we briefly discuss the most relevant
approaches related to our work.

A. RF-Fingerprinting (RFF)

RF fingerprinting has become an effective solution for
authenticating wireless devices. It has been observed that there
are certain obvious imperfections in the analog circuits of
RF transmitters [14]. RFF is a permanent imperfection that
is extracted on the receiving side. Traditional RF fingerprint
identification methods use an intuitive understanding of de-
vice fingerprints such as I-Q imbalance [6], power amplifier
nonlinearity [7], [8], loop filter variations [9], clock jitter [10].
Earlier studies were performed in controlled environments [7],
[8], which led to poor robustness and practicality of earlier
fingerprint recognition methods. Recently, modern methods
for RF fingerprinting employ deep learning algorithms and
residual connectivity [14], [15], [18], [21], [22], [38] such as
ResNet-50, GoogleNet and AlexNet to mine RFF features.
Residual connectivity in deep learning networks can dramat-
ically improve RFF performance. However, the catastrophic
forgetting and overfitting problems of deep learning models
when performing incremental updates with few-shot samples
have led to the gap still existing with the real environment.

B. Few-Shot Class Incremental Learning

Few-Shot Class Incremental Learning (FSCIL) represents
a special case of conventional incremental learning, where
models are required to adapt to new classes using only a
limited number of examples while preserving their ability
to recognize previously learned classes. There has been sig-
nificant research interest in developing FSCIL methods and
effectively learning new classes without catastrophic forgetting

or overfitting [39]–[43]. Inspired by the Regularized Lottery
Ticket Hypothesis, [44] proposes that a subnet can perform on
par with or better than the whole network. The soft subnetwork
jointly and partially updates the model weights and adaptive
soft masks to minimize catastrophic forgetting and avoid
overfitting novel samples. [45] proposes fixing a learnable
classifier as a geometric structure for few-shot incremental
learning. By using predetermined prototype vectors instead of
unconstrained learned vectors, the approach alleviates perplex-
ity and collapse that arise from training with limited samples
for newly introduced classes. Later, the Continually Evolved
Classifier (CEC) [33] is proposed, employing a graph model
to propagate context information between classifiers learned
in individual incremental sessions. Further, Zhou [27] et al.
proposed a few-shot incremental learning scheme by sampling
multi-stage tasks, i.e., LIMIT, which can improve the classi-
fication performance under continuous increments relative to
CEC. However, related methods have limited effectiveness in
solving the OSR problem.

C. Few-Shot Open-Set Recognition

Few-Shot Open-Set Recognition (FSOSR) has emerged as a
promising direction in recent deep learning research. Its goal
is to efficiently recognize and classify instances from known
few-shot classes, given very few labeled samples, while also
detecting and rejecting instances from unknown or undisclosed
classes. Recently, [46] presents a meta-learning-based solution
for FSOSR, introducing an open-set loss in the meta-training
process to calibrate a few-shot prototype-based classifier. [47]
improves the limitation of negative sampling by imposing a
transformation consistency regularization on few-shot sam-
ples. Later, [48] proposes the Task-Adaptive Negative class
Envision (TANE) framework to avoid the manual threshold
selection procedure by dynamically estimating the rejection
boundaries concerning few-shot classes. However, the related
methods cannot adapt to the problem of OSR under continuous
increment. The method of our paper achieves for the first time
the harmonization of FSCIL and FSOSR.

III. PROBLEM DEFINITION

In wireless communication systems, the messages of wire-
less devices will be modulated into a radio signal for wireless
transmission. In-ground BS, a received time-series modulation
signal 𝑟 (𝑡) can be illustrated as

𝑟 (𝑡) = 𝑠(𝑡) ∗ ℎ(𝑡) exp[ 𝑗2𝜋Δ 𝑓 𝑡 + Δ𝜑] + 𝑤𝑔𝑛(𝑡), (1)

where 𝑠(𝑡) denotes the modulated signal, ∗ denotes the convo-
lution operation, ℎ(𝑡) denotes the wireless channel response,
Δ 𝑓 denotes the frequency offset, Δ𝜑 denotes the phase offset,
𝑤𝑔𝑛(𝑡) denotes the white Gaussian noise in wireless envi-
ronment. To facilitate signal information extraction and sig-
nal recovery, in-phase signals Re[𝑟 (𝑡)] and quadrature-phase
signals Im[𝑟 (𝑡)] are used to jointly characterize the relevant
modulation information, i.e. I-Q data [49]. For calculation
purposes, the system will sample the I-Q data and convert it
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Fig. 3. The workflow of Meta–RFF framework. Our framework consists of 3 phases: (1) the feature pre-training stage focuses on extracting features and
constructing class prototypes; (2) the meta-task sampling stage constructs pseudo-FSOCIL tasks; and (3) the meta-incremental training stage performs few-shot
incremental training and open-set training.

into a discrete complex signal 𝑥𝐼𝑄 (𝑛) = {𝑥𝐼 (𝑛), 𝑥𝑄 (𝑛)}, which
can be calculated by

{𝑥𝐼 (𝑛), 𝑥𝑄 (𝑛)} = 𝑠𝑎𝑚𝑝𝑙𝑒{Re[𝑟 (𝑡)], Im[𝑟 (𝑡)]}. (2)

RFF Recognition. In a traditional DL-based RFF recognition
setting, the RF receiver (𝑅𝑥) will get a series of signals 𝑥𝐼𝑄 (𝑛)
from a set of RF transmitters (𝑇𝑥 = 𝑇𝑥1, 𝑇𝑥2, ..., 𝑇𝑥𝑘). We
define the base session (0-𝑡ℎ session) dataset consisting of
𝑘 transmitters as D0 = {𝑥𝑖 , 𝑦𝑖}𝑛0

𝑖=0 with sufficient instances,
where 𝑥𝑖 = 𝑥𝐼𝑄 represents the training sample from class
𝑦𝑖 ∈ Y0, and Y0 is the corresponding label space. In RFF
recognition, an algorithm will fits a DL model 𝑓 0

𝜃
(·) to

minimize the expected risk over instance distribution D0:

arg min
𝜃
E{𝑥𝑖 ,𝑦𝑖 }∼D0 [ℓ( 𝑓 0

𝜃 (𝑥𝑖), 𝑦𝑖)] (3)

where ℓ(·, ·) measures the discrepancy between the prediction
and the ground-truth label. The model 𝑓 0

𝜃
(𝑥) comprises a

embedding function 𝜓(·) : 𝑥 → R𝑑 and a linear classifier
𝑊0 = {𝑤𝑖}𝑖= |Y0 |

𝑖=0 , i.e., 𝑓 0
𝜃
(𝑥) = 𝑊𝑇

0 𝜓(𝑥) and R𝑑 denotes the
𝑑-dimensional feature space. Each category 𝑦𝑖 corresponds to
a weight vector 𝑤𝑖 . With parameter optimization by Eq. 3, the
DL model 𝑓 0

𝜃
(·) can predict the category of the test sample 𝑥

in D0.
Few-Shot Open-Set Incremental Learning for RFF Recog-
nition. In an autonomous radio monitoring system, the preva-
lence of emerging unknown source signals necessitates that DL
models be updated quickly for adaptation. Our FSOSIL task
setup is first to have the model perform OSR for unknown
source signals, i.e., D𝑜 = {(𝑥𝑖 , 𝑦𝑖) |𝑦𝑖 ∈ Y𝑜}𝑛

𝑜

𝑖=1, where the
Y𝑜 is the label space. If the classes are known, we will
perform closed-set classification. Once the result is unknown,
manual research and labeling of sample labels are required.
Here, to reduce the cost of manual labeling, only a small
number of samples are labeled. In this case, the new training
sets (i.e., {D1, ...,D𝑏}) often arrive incrementally with limited
instances, i.e., D𝑏 = {(𝑥𝑖 , 𝑦𝑖) |𝑦𝑖 ∈ {Y1, ...,Y𝑏}}𝑛

𝑏

𝑖=1. The Y𝑏

is the label space of task 𝑏, and Y𝑏∩Y𝑜 = ∅. Then the 𝑛𝑏 and
𝑛𝑜 denote the number of samples in D𝑏 and D𝑜, respectively.
When facing a new dataset D𝑏, a model should learn new
classes while maintaining performance on old classes and
rejecting unknown classes.

For the FSCIL phase in FSOSIL, it can be formalized as the
minimization of the expected risk overall on the base session
and new session data:

min
𝜃
E{𝑥𝑖 ,𝑦𝑖 }∼{D0 ,...,D𝑏 } [ℓ( 𝑓 𝑏𝜃 (𝑥𝑖;D𝑏, 𝜓𝑏−1,𝑊𝑏−1), 𝑦𝑖)] . (4)

By Eq. 4, the model 𝑓 𝑏−1
𝜃
(•) should construct the new

model based on the new dataset D𝑏 and the current model
𝑊𝑏−1, 𝜓𝑏−1. Then in real-world testing, we expect that the
newly constructed model 𝑓 𝑏

𝜃
(•) to minimize the loss over all

base and new test datasets.
For the FSOSR phase in FSOSIL, it can be formalized as

the minimization of the expected risk overall on the known
and unknown tested data:

min
𝜃
E{𝑥𝑖 ,𝑦𝑖 }∼{D0 ,...,D𝑏 ,D𝑜 } [ℓ( 𝑓 𝑏𝜃 (𝑥𝑖;𝜓𝑏,𝑊𝑏), 𝑦̃𝑖)], (5)

where 𝑦̃ ∈ {Y1, ...,Y𝑏,Y𝑜}𝑛
𝑏

𝑖=1 denotes the open-set prediction
label.

IV. METHODOLOGY

Design Idea. Motivated by the success of meta-learning in
the field of few-shot recognition, our idea is to leverage a
large number of meta-incremental open-set tasks to simulate
realistic FSOSIL scenarios. We will simulate a few-shot open-
set incremental scenario, fine-tune the model by utilizing the
few-shot sample as a support set, and test it on a many-shot
query set. Through gradient optimization, the neural network
will gradually adapt to the few-shot open-set incremental
scenario.

Fig. 3 shows the pipeline of Meta–RFF framework for
solving the FSOSIL task. Specifically, the proposed Meta–RFF
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framework can be separated into three stages: 1) Feature Pre-
training stage, 2)Meta-Task sampling stage, and 3) Meta-
Incremental training stage. In the feature pre-training stage,
the feature embedding networks and classifier weights (i.e.,
prototype points) are obtained using base session data. Sub-
sequently, we will construct few-shot incremental recognition
scenarios and perform task sampling. In the training phase,
a prototype network is utilized for few-shot learning, and a
Transformer is used to calibrate the distribution of new and
old class prototype points in an orthogonality prototype space.
Finally, a dynamic threshold-selecting mechanism is employed
that calculates the reciprocal point of the rectified prototype
points, generating an optimal threshold for OSR. The Table I
shows the important symbol notation in the next paragraph.

A. Feature Pre-training Stage

Prior incremental learning approaches [32], [33], [50], [51]
have demonstrated that fine-tuning the network with new class
data from a subsequent session can result in catastrophic
forgetting [29], wherein previously acquired knowledge is lost
and overfitting transpires with the introduction of new data.
Recent advances in incremental learning [50], [51] suggest that
decoupling the feature embedding network from the classifier
can largely reduce the effect of catastrophic forgetting. Thus,
we follow the previous work and additionally employ the
classic prototype network [31] (widely used under the few-
shot learning scenario) to alleviate the catastrophic forgetting
and overfitting problems under the few-shot sample condition.
Feature Extraction. To improve the recognition efficiency of
I-Q data with few-shot, we need extract more signal modal
information. In wireless communication, IQ signals are usually
defined by using amplitude, frequency, and phase [12]. There-
fore, we follow the setting of Zheng et al. [11] and mainly
extract the instantaneous amplitude 𝐴(𝑛), instantaneous phase
𝜑(𝑛), and instantaneous frequency 𝐹 (𝑛) information of the
signal. The relevant calculations are shown below

𝐴(𝑛) =
√︃
𝑥𝐼 (𝑛)2 + 𝑥𝑄 (𝑛)2,

𝜑(𝑛) ∝ arctan(𝑥𝑄 (𝑛)/𝑥𝐼 (𝑛)),
𝐹 (𝑛) = 𝜑(𝑛) − 𝜑(𝑛 − 1), 𝑛 = 1, 2, ..., 𝑁 − 1,
F (𝑛) = 𝐹 (𝑛) − 1

𝑁

∑𝑁
𝑛=1 𝐹 (𝑛),

(6)

where F (𝑛) denotes the centered instantaneous frequency, and
the details of 𝜑(𝑛) refer to [11]. For easier representation, we
redefine the sample symbols as

𝑥(𝑛) = 𝑐𝑜𝑛𝑐𝑎𝑡{𝑥𝐼𝑄 (𝑛), 𝐴(𝑛), 𝜑(𝑛), F (𝑛)}. (7)

Model Pre-training. Specifically, we first train the feature
embedding network 𝜓(•) and classifier 𝑊0 in the base session.
The classifier weights 𝑤𝑖 are represented by the average
embedding of each new class 𝑐𝑖 (i.e., the class prototype or the
most representative feature of the class). The class prototype
𝑤 𝑗 in D0 can be calculated by:

𝑤 𝑗 =







 1
|D0 |

|D0 |∑︁
𝑖=1

𝐼 (𝑦𝑖 = 𝑗)𝜓(𝑥𝑖)








2

, (8)

where ∥•∥2 denotes the 𝑙2 normalization and 𝐼 (·) denotes the
indicator function. With the class prototype points 𝑤𝑖 , we can

TABLE I
IMPORTANT SYMBOL NOTATIONS

Notations Description

𝜓 (•) Feature embedding network
𝑤𝑖 Classifier weight
D0 Base dataset
𝑤 𝑗 Class prototype in D0

𝑆𝑚 Support set
𝑄𝑠

𝑚 Query set
𝑄𝑜

𝑚 Many-shot query set
𝑄∗𝑚 Open set of 𝑚-th task
T(·) Adaptation function to carry out the calibration process
𝑀 Mask matrix
𝐺𝜃 Generative network
R Reciprocal point
𝑃𝑖 Prototype point

calculate the class probability 𝑝 𝑗 for each base session sample
as

𝑝(𝑦 = 𝑗 |𝑥;𝜓0) =
exp(𝑠𝑖𝑚(𝜓(𝑥), 𝑤 𝑗 ))∑
𝑗∈𝑌0 exp(𝑠𝑖𝑚(𝜓(𝑥), 𝑤 𝑗 ))

, (9)

where 𝑠𝑖𝑚(•) denotes the cosine similarity function. The Eq. 9
suggests that the similarity of the sample to the class prototype
point determines the sample prediction category. Finally, we
using the cross-entropy loss function ℓ𝑐𝑒 [33] to perform with
training on the base session samples:

ℓ𝑐𝑒 = −
1
|D0 |

∑︁
𝑖

∑︁𝑌0

𝑗=1
𝑦𝑖 𝑗 log(𝑝𝑖 𝑗 ), (10)

where 𝑦𝑖 𝑗 denotes that the label of the 𝑖-th sample, log(𝑝𝑖 𝑗 )
denotes the logarithmic probability of class 𝑗 .

During the base session pre-training, a network with robust
feature extraction capabilities is obtained by leveraging a
substantial amount of available sample data. Then, when a new
task arrives, the parameters of the feature embedding network
are frozen to prevent knowledge forgetting, and the prototype
points of the new class are computed to update the classifier.

B. Multi-phase Meta Task Sampling

The generalization ability of the learned features largely
affects the performance of the incremental session [52]. Under
the FSOSIL task, this effect is magnified, as the model
must generalize to new classes with a limited number while
maintaining the ability to reject unknown classes. However,
the model does not have direct access to new class data and
unknown class data in the incoming incremental sessions,
making it challenging to evaluate the generalization ability
of learned features for future tasks. Thus, motivated by the
idea of meta-learning, we propose to sample a large number
of “fake” FSOSIL tasks from the base session data to simulate
the procedure of real FSOSIL tasks. The sampled “fake"
FSOSIL tasks aim to provide a way for the neural network
to learn generalizable embeddings. In the fake task, the model
is first fine-tuned using few-shot samples, at which point the
parameters of the model have changed. To motivate the model
to accurately recognize the old, new, and unknown classes, we
create these three data and then have the model test and update
them based on the loss. Through multiple iterations of the
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Fig. 4. The workflow of adaptive RFF open set recognition mechanism framework. In each incremental task, our generation module will generate corresponding
reciprocal points for the prototype points to be used as decision thresholds for OSR.

meta-task, the model can be gradually adapted to the FSOSIL
scenario. Due to the similarity between the test data and the
training data distribution, the model obtained by training on
the fake task is effectively generalizable to the test data.

To make the “fake” FSOSIL tasks share the same data
format as the “real” FSOSIL task, we first divide the
base dataset D0 into three non-overlapping sets: 𝑇 =

{𝑆, 𝑄𝑠 , 𝑄∗, 𝑄𝑜 |𝐶𝑠 , 𝐶∗, 𝐶𝑜}, where 𝑆 = {𝑥𝑖 , 𝑦𝑖}𝑁𝐾𝑖=1 denotes
support set with 𝑁-way 𝐾-shot and the label is 𝐶𝑠 , 𝑄𝑠 denotes
the query set, 𝑄∗ = {𝑥𝑖 , 𝑦𝑖} |𝑌0 |𝐾

𝑖=1 denotes the many-shot query
set with |𝑌0 |-way 𝐾-shot and the label is 𝐶∗, 𝑄𝑜 denotes the
open set with 𝑁-way 𝐾-shot. Also, the label spaces of 𝑄𝑜

and 𝑄∗ are non-overlapping, i.e., 𝐶∗∩𝐶𝑜 = ∅, 𝐶𝑠 ⊂ 𝐶∗. After
the “fake” FSOSIL task sampling, the training objects can be
formulated as the minimization of the empirical risk on the
𝑚-th task 𝑇𝑚:

min
𝜃
E{𝑥𝑖 ,𝑦𝑖 }∼{𝑄𝑠

𝑚 ,𝑄
𝑜
𝑚 ,𝑄

∗
𝑚 } [ℓ((𝑥𝑖; 𝑆𝑚, 𝜓𝑚−1,𝑊𝑚−1), 𝑦𝑖)], (11)

where 𝑆𝑚, 𝑄
𝑠
𝑚, 𝑄

𝑜
𝑚, 𝑄

∗
𝑚 denote the support set. query set,

many-shot query set, and open set of 𝑚-th task, respectively.

C. Meta-Training for FSOSIL

To facilitate the training process of the established “fake”
FSOSIL tasks, we propose an optimization strategy that si-
multaneously trains the network to extract robust features for
both incremental recognition and OSR tasks.
Optimization for few-shot incremental recognition. During
the incremental session, the classification model will continu-
ously receive new session tasks, which require the network to
generalize across both new and old class samples. To emulate
the incremental session, we utilize the support set 𝑆, and the
all class query set 𝑄∗ from the base session to represent new
class incremental samples, and all class samples, respectively.
During the optimization process, the network first generates
new prototypes 𝑐𝑖 for the few-shot support set in the incoming
task using Eq. 9, and then directly employs the pre-trained

old class weights 𝑤𝑖 to recognize the old classes. Thus, the
classifier weights 𝑊𝑇𝑚 for task 𝑚 will be updated by:

𝑊𝑇𝑚 =

{
𝑐𝑖 ,∀𝑖 ∈ 𝐶𝑠
𝑤𝑖 ,∀𝑖 ∉ 𝐶𝑠 , 𝑖 ∈ 𝐶∗

. (12)

By jointly constructing new prototype points and optimiz-
ing through the similarity-based cross-entropy loss function,
we can obtain the optimization function for the incremental
session:

𝐿𝑇𝑚 = ℓ𝑐𝑒 (𝑠𝑖𝑚( 𝑓 (𝑄∗𝑚),𝑊)). (13)

Finally, based on idea of meta-learning, we need to optimize
for a large number of “fake” few-shot incremental tasks at the
same time. So that the neural network can learn how to adapt
to this context. This meta-learning optimization loss can be
shown by the following

min
𝜃

1
𝑇𝑚

∑︁𝑇𝑚

𝑚=1
𝐿𝑇𝑚 (𝑄𝑚 |𝑆𝑚, 𝑓𝜃 ,𝑊𝑚). (14)

Meta-calibration module. The incremental optimization is
based on the many-shot old classes, which is tailored to depict
old class features. To calibrate the semantic gap between new
and old class prototypes (i.e., updating the relative spatial dis-
tribution), we design a transformer-based calibration module
capable of extracting inductive bias during meta-training and
generalizing to subsequent incremental sessions.

A good calibration module should reflect the contextual
relationship between the old and new classes. For example, if
the query instance is a ’tiger’ then the classifier and prototype
should be tuned to highlight distinguishing features such as
beard and stride length. The calibration process can therefore
be seen as performing ’co-adaptation’ - we need to transform
query embedding and classifiers to highlight the discriminative
features of specific instances. The transformer [53] with its
self-attentive mechanism has been proven to effectively extract
discriminative features and incorporate contextual information.
Hence, we define the adaptation function T (·) by using the
transformer to carry out the calibration process.

The transformer utilizes a triplet of information (query Q,
key K, and value V) and learns through the attention mech-
anism. First, the query sample (𝜓(𝑥𝑚) ∈ R𝑑×|M| , 𝑚 ∈ M) is
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projected linearly using weights 𝑊𝑞 , 𝑊𝑘 , and 𝑊𝑣 respectively.
Next, the attention coefficients 𝛼𝑞𝑘 are computed using Q, K,
and softmax functions. Finally, the attention coefficients are
applied to weight V, obtaining the final attention result in
𝜓(𝑥𝑚)′. This process can be expressed as:

Q = 𝑊𝑇
𝑞 𝜓(𝑥𝑚),K = 𝑊𝑇

𝑘
𝜓(𝑥𝑚),V = 𝑊𝑇

𝑣 𝜓(𝑥𝑚),
𝛼𝑞𝑘 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥( K

𝑇Q√
𝑑
),

𝜓(𝑥𝑚)′ = 𝜓(𝑥𝑚) +
∑
𝑚 𝛼𝑞𝑘V:𝑚 .

(15)

In our framework, we drop query samples into T (·) for
adaptive optimization along with prototype points, i.e.,

Q = K = V = [𝑤, 𝑐] . (16)

The calibrated prototype point are then defined as (𝑤̂, 𝑐) =
T (𝑤, 𝑐).
Optimization for few-shot open-set recognition. While the
aforementioned approach enables the recognition of seen
classes, Eq. 13 fails to effectively constrain the open space,
resulting in limited open-set recognition capabilities. To ad-
dress this issue, we propose simulating the open-set scenario
in the meta-task to optimize open-set recognition ability.

In previous approaches to OSR [12], [34], [35], the main
idea is to increase the inter-class gap and decrease the intra-
class gap, which will effectively reduce the overlap between
known and unknown data. However, previous methods focus
on a fixed closed-set space, making incremental expansion dif-
ficult. For this reason, we hope each new class prototype adapts
its open space distribution concerning the old class prototypes.
To fairly control the distance between class prototypes, we in-
troduce an orthogonalization loss in the inner product space. In
orthogonal space, all prototypes are orthogonalized vectors the
cosine similarity is 0, i.e., | |𝑤𝑖 | |𝑇 | |𝑤 𝑗 | | = 0, 𝑖 ≠ 𝑗 ,∀𝑖, 𝑗 ∈ 𝐶.
Then, to make the prototype points of the new class orthogonal
to the old class, we impose the orthogonalization loss ℓ𝑜𝑟 in
the meta task, i.e.,

ℓ𝑜𝑟 (𝑊̂) = 𝑀 ⊙ ||𝑊̂ | |𝑇 | |𝑊̂ | |,

𝑀𝑖 𝑗 =

{
0, 𝑖 = 𝑗

1, 𝑖 ≠ 𝑗
,

(17)

where 𝑀 ∈ R |𝑌0 |× |𝑌0 | denotes the mask matrix, ⊙ denotes
the element-wise multiplication, | | • | | denotes the ℓ2-norm.
In each meta-task, the updated prototype point 𝑊̂ will be
orthogonalized by the meta-calibrator T , which guarantees a
similarity of 0 between different classes of prototype points.

After controlling inter-class distances, we need to further
control intra-class distances. We use the idea of clustering
samples with their class prototype points to progressively
reduce the differences. This process can be implemented by
the following equation

ℓ𝑑 ( 𝑓𝜃 (𝑥(𝑛)), 𝑊̂) = ℓ𝑒 ( 𝑓𝜃 (𝑥(𝑛)), 𝑊̂) − ℓ𝑐 ( 𝑓𝜃 (𝑥(𝑛)), 𝑊̂),
ℓ𝑒 ( 𝑓𝜃 (𝑥(𝑛)), 𝑊̂) = 1

𝑑
| | 𝑓𝜃 (𝑥(𝑛)) − 𝑊̂ | |22,

ℓ𝑐 ( 𝑓𝜃 (𝑥(𝑛)), 𝑊̂) = | | 𝑓𝜃 (𝑥(𝑛)) | |𝑇 | |𝑊̂ | |,
(18)

where ℓ𝑒 denotes the euclidean distance, ℓ𝑐 denotes the cosine
similarity. We combine the Eq. 13, 17, 18 and the final meta-
task loss is

𝐿𝑇𝑚 = ℓ𝑐𝑒 ( 𝑓 (𝑄∗𝑚, 𝑊̂)) + 𝛼ℓ𝑜𝑟 (𝑊̂) + 𝛽ℓ𝑑 ( 𝑓𝜃 (𝑄∗𝑚), 𝑊̂), (19)

Decision Boundary

Many-shot Base Class Few-shot New Class

Decision Boundary 

Unknown

95%

Fig. 5. Differences between many-shot and few-shot OSR. Obviously, with
finite samples, it is difficult to estimate the true sample boundary.

where 𝛼 and 𝛽 denote the hyper-parameters.

D. Adaptive RFF Open Set Recognition Mechanism

In traditional OSR, the most discussed problem is how to
determine the open-set decision threshold. This is explored
in detail in previous approaches, such as the extreme value
theory (EVT) model used by Openmax [54], the three-sigma
rule [13], and the probability value of 0.95 by softmax
function. Current OSR methods typically require calibrated
prediction scores or synthetic negative queries to learn open-
set classifiers. They rely on a large amount of data to make a
correct estimation of the distribution. However, this isn’t easy
to achieve if there are only a few shot-labeled instances. For
example, as shown in Fig. 5, relying on the prototype points
and many-shot samples, we can easily find a reliable open-set
boundary threshold, i.e., at the manually defined 95% position.
In the few-shot case, due to the lack of samples, it is almost
impossible for us to determine the open-set boundary. For this
purpose, this paper will propose a threshold-free adaptive OSR
mechanism for the few-shot problem.

As mentioned before, the prototype point is a high-level
summary of the class features, i.e. "which samples are similar
to it". So, is there a point in the defined inner product space
that opposes the prototype point? This point indicates the
target class samples that are not similar to it, but the other
classes are similar to it. Once this point has been computed,
we can use this as a threshold for OSR, creating a threshold-
free mechanism. Motivated by the notion of Reciprocal point
[34], we believe that neural networks can be utilized to
automatically synthesize Reciprocal points by powerful meta-
learning techniques.

To accommodate the continuous incremental few-shot set-
ting, we added a generative network 𝐺 𝜃 and trained it with
a large number of meta-tasks to learn how to synthesize
Reciprocal point R. In the previous meta-task setup in 𝑇 , the
many-shot query set 𝑄∗ and open set 𝑄𝑜 are divided. For 𝑄∗,
we extract its corresponding prototype point 𝑃𝑖 of 𝑖-th class
and generate the Reciprocal point R𝑖 using the generator 𝐺 𝜃 .
The generator network structure mainly employs the standard
multi-head self-attentional (MHSA) mechanism, which can
mine the relationships between prototype points efficiently. We
apply the attention block between 𝑃𝑖 and 𝑊 to generate the
Reciprocal point R, i.e.,

Q′ = 𝐺𝑇𝑞𝑃𝑖 ,K ′ = 𝐺𝑇𝑘 𝑊̂,V
′ = 𝐺𝑇𝑣 𝑊̂,

𝛼′
𝑞𝑘

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥( K′𝑇Q′√
𝑑
),

R𝑖 = 𝑃𝑖 +
∑
𝑚 𝛼
′
𝑞𝑘
V′:𝑚 ,

(20)
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where 𝐺𝑞 , 𝐺𝑘 , 𝐺𝑣 denote the parameters of MHSA, R𝑖 de-
notes the Reciprocal point of 𝑖-th class.

Once we have obtained the Reciprocal point R𝑖 of the
target class, we can optimize it using the binary cross-entropy
function 𝑙𝑏𝑐𝑒:

𝑙𝑟 𝑝𝑖 =
1
|𝑄∗ |

∑
𝑥∈𝑄∗

𝑖
𝑙𝑏𝑐𝑒 (1, 𝑠𝑖𝑚( 𝑓𝜃 (𝑥), 𝑃𝑖))

+ 1
|𝑄∗ |

∑
𝑥∈𝑄∗

𝑖
𝑙𝑏𝑐𝑒 (0, 𝑠𝑖𝑚( 𝑓𝜃 (𝑥),R𝑖)).

(21)

Instead, for constructed open set samples 𝑄𝑜, we expect to
possess less similarity to non-target class prototype points 𝑃𝑖
and more similarity to Reciprocal points R𝑖 , which can be
denoted by

𝑙𝑟 𝑝𝑜 = 1
|𝑄𝑜 |

∑
𝑥∈𝑄𝑜

𝑖
𝑙𝑏𝑐𝑒 (0, 𝑠𝑖𝑚( 𝑓𝜃 (𝑥), 𝑃𝑖))

+ 1
|𝑄𝑜 |

∑
𝑥∈𝑄𝑜

𝑖
𝑙𝑏𝑐𝑒 (1, 𝑠𝑖𝑚( 𝑓𝜃 (𝑥),R𝑖)).

(22)

Without loss of generality, for task 𝑇𝑚, we have

ℓ𝑚𝑟 𝑝 = 𝑙𝑚𝑟 𝑝𝑖 (𝑄∗) + 𝑙𝑚𝑟 𝑝𝑜 (𝑄𝑜). (23)

Finally, we combine Eq. 19 and 23 to obtain the final FSOCIL
meta-task loss, i.e.,

𝐿𝑇𝑚 = ℓ𝑐𝑒 ( 𝑓 (𝑄∗𝑚, 𝑊̂)) + 𝛼ℓ𝑜𝑟 (𝑊̂)
+𝛽ℓ𝑑 ( 𝑓𝜃 (𝑄∗𝑚), 𝑊̂) + 𝛾ℓ𝑟 𝑝 (𝑄∗, 𝑄𝑜),

(24)

where 𝛾 denotes the hyper-parameters.

E. Meta–RFF Working Procedure

Our method will be trained on the base session dataset
D0. First, to achieve both few-shot incremental recognition
and OSR, we need to sample few-shot support set samples 𝑆,
query samples 𝑄∗, and open samples 𝑄𝑜 (Line 3) to construct
the corresponding task. Second, the support set samples are
utilized to update the prototype points and calibrate using the
T (Line 4-5). Further, we will compute the Reciprocal point of

Algorithm 1: Meta–RFF algorithm for FSOSIL Task

Input: Base session dataset D0, pre-trained model
𝜓(·) and classifier weights 𝑊0, a randomly
initialized Transformer model T , new few-shot
session dataset D1, ...,D𝑏 and unknown
dataset D𝑢

Output: The prediction results on session
{D0, ...,D𝑏,D𝑢}

1 for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝐸𝑝𝑜𝑐ℎ do
2 for 𝑗 = 1 to 𝑛 do
3 {𝑆 𝑗 , 𝑄∗𝑗 , 𝑄𝑜𝑗 } ← Sample the 𝑗-th support and

query set for base classes from D0 for task 𝑇𝑗
(Sec. IV-B);

4 {𝑊𝑇𝑗 } ← Feed 𝑆 𝑗 into 𝜓(·) and compute
few-shot class prototype points 𝑐𝑖 to update
the classifier 𝑤𝑖;

5 {𝑤̂, 𝑐} ← Feed 𝑤, 𝑐 into T for calibration (Sec.
IV-C);

6 {R} Calculate the Reciprocal point (see in Sec.
IV-D);

7 {𝐿𝑇𝑗 } ← Calculate the loss by Eq. 24 ;
8 end
9 Calculate the average loss for all tasks by

𝐿𝑇𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝐿𝑇𝑗 ((𝑥𝑖; 𝑆 𝑗 , 𝜓 𝑗−1,𝑊 𝑗−1), 𝑦 𝑗 );

10 Update the parameters of the model 𝜓(·) and T by
the SGD optimizer.;

11 end
12 Freeze parameters 𝜓(·), T and make predictions on

new session data D𝑏,D𝑢 to get the labels 𝑌𝑏, 𝑌𝑢;
13 return Current data labels 𝑌𝑏 and unknown data labels

𝑌𝑢;

the prototype point (Line 6). Finally, we will compute the loss
for all pseudo-tasks and perform meta-training (Line 7-10).

In the test phase, as shown in Fig. 6, Our FSOSIL task setup
is first to have the model perform open-set recognition. If the
classes are known, we will perform closed-set classification.
Once the result is unknown, manual research and labeling of
sample labels are required. Here, to reduce the cost of manual
labeling, only a small number of samples are labeled. Finally,
we will be updating the prototype point and Reciprocal point
libraries with new classes for few-shot.

V. EXPERIMENTS AND RESULTS

A. Experiment Setup

Experimental Environment. The Meta–RFF algorithm is
implemented by using Pytorch 1.10.0 and executed on
a computer running Unbantu 18.04.6 LTS, with Intel(R)
Core(TM) i9-10900K CPU@3.70 GHz and 2 NVIDIA
GeForce RTX3090 GPUs. In addition, we mainly use Adam’s
[55] optimizer for the optimization of CNN parameters and
depict the relevant parameters for our Meta–RFF. Then we
use 1D ResNet-18 as the backbone network both for our
algorithms and other baseline algorithms.
Dataset. We use real-world ADS-B signals to verify FSOCIL
methods for wireless device identification. ADS-B signals are
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TABLE II
COMPARISON WITH THE STATE-OF-THE-ART ON ADS-B DATASET. “*” DENOTES THE USE OF A FINE-TUNING OPERATION IN THE ALGORITHM, "†"

DENOTES THE USE OF CATSTLE IN THE ALGORITHM, FR DENOTES THE PERFORMANCE FORGETTING RATE, AND 𝐼𝑡 DENOTES THE INTRANSIGENCE.

Methods Test set Accuracy in each Session with 1-shot (%) ↑ FR↓ I𝑡 (avg.)0 1 2 3 4 5 6 7 8 9 10

New Task
1-shot

Theoretical
Boundary - 89.71 87.91 85.64 86.35 83.76 84.08 82.78 82.48 81.10 81.35 - -

Softmax* Base 98.76 81.44 9.09 8.75 4.53 0.48 1.21 2.57 1.00 0.57 0.09 -98.67% -
Incremental - 0.00 0.00 0.53 1.35 0.35 0.19 0.20 0.59 1.48 0.54 None 83.92%

ARPL* Base 97.32 90.90 27.62 47.03 19.08 27.32 19.79 14.08 9.10 5.42 6.09 -91.23% -
Incremental - 0.00 0.00 0.02 0.36 0.24 0.43 0.69 1.05 1.27 0.71 None 84.04%

PEELER† Base 99.20 93.90 93.82 93.72 93.62 93.53 88.13 88.07 88.02 70.35 70.28 -28.92% -
Incremental - 49.52 42.82 41.90 40.03 38.29 36.20 35.36 34.66 27.87 26.40 -23.12% 42.21%

iCaRL Base 99.86 91.43 90.19 88.89 87.98 86.57 84.43 83.00 80.34 78.15 76.79 -23.07% -
Incremental - 1.51 11.56 5.16 6.28 5.70 6.02 3.83 4.08 3.78 4.35 None 79.62%

CATSTLE Base 99.32 98.32 98.25 98.23 98.20 98.18 98.12 98.10 98.08 97.99 97.96 -1.36% -
Incremental - 55.38 50.30 46.23 44.30 42.35 42.73 42.01 41.27 40.40 40.66 -14.72% 39.94%

CEC Base 98.76 97.04 96.94 96.90 96.85 96.77 96.56 96.52 96.45 96.38 96.34 -2.42% -
Incremental - 58.33 49.77 44.83 44.10 42.95 43.26 42.35 41.98 41.84 42.42 -15.91% 39.33%

LIMIT Base 99.96 98.63 98.15 97.61 97.17 96.84 96.52 96.12 95.88 95.49 95.23 -4.73% -
Incremental - 70.08 67.73 63.82 59.04 57.58 57.95 55.35 54.60 52.92 52.63 -17.45% 25.34%

Meta-RFF
(1-shot)

Base 99.86 99.82 99.79 99.78 99.77 99.76 99.76 99.70 99.68 99.67 99.64 -0.22% -
Incremental - 80.17 79.17 78.20 78.21 76.42 76.62 76.98 77.70 76.92 77.03 -3.14% 6.7%

Meta-RFF
(5-shot)

Base 99.86 99.83 99.76 99.75 99.73 99.72 99.70 99.65 99.60 99.55 99.54 -0.32% -
Incremental - 94.65 92.89 91.10 90.88 89.88 89.95 91.54 91.49 91.22 91.57 -3.08% -

transmitted by commercial aircraft to periodically broadcast
their route information to air traffic control (ATC) centers in
plain text [17]. These signals are easy to receive and decode
but are subject to identity spoofing attacks. We use the first
1024 complex samples. This data set is publicly available at
[56]. For the FSOCIL task setting, we extracted IQ samples for
a total of 893 aircraft in the dataset. Aircraft categories ranging
from 0-237 possess many shots, which can be used as the
base session dataset. 200-437 range has relatively few samples,
which can be used as the few-shot incremental session. The
samples in the range of 437-893 are scarce and not easy to
train, and this paper serves as an open unknown class. Then, to
verify the availability of the relevant algorithms in a realistic
environment, we develop a real-time RF signal recognition
system based on USRP B210 as described in VI.
Models’ Setup and Comparison Baselines. To ensure the
fairness of the comparison, we use a uniform network ar-
chitecture for all baseline methods. As shown in Fig. 4 and
3, we use 1D ResNet-18 as the backbone network both for
our algorithms and other baseline algorithms. In addition, we
use standard transformer as a calibration module and adaptive
generator. To evaluate the effectiveness of our proposed Meta–
RFF on the FSOSIL task, we first compare it to current state-
of-the-art FSOSR algorithms, e.g.,
• Softmax [57]: Supervised learning is used for training and

testing.
• ARPL [34]: Open-set recognition by automatic learning

of Reciprocal points.
• PEELER [46]: Using meta-learning to train open-set

samples for FSOSR task.
Besides, we also compare to current state-of-the-art FSCIL

algorithms,
• iCaRL [32]: Classical incremental learning algorithms

that preserve old data features through distillation.
• CASTLE [50]: A few-shot incremental learning method

based on decoupling.

• CEC [33]: The method mainly updates few-shot samples
of prototype point distributions in a continuous incremen-
tal phase via a graph network.

• LIMIT [27]: The method mainly utilizes the Transformer
calibration to update the distribution gap between the
sample and prototype points for the FSCIL task.

For those FSOSR approaches, we utilize the decoupling mech-
anism from CASTLE to enable the incremental session, with
a superscript “∗". We use identical training splits for every
method for a fair comparison. For those FSCIL approaches, we
follow the training mechanism reported in the relevant papers
and evaluate the open-set recognition performance directly.
Metrics. To quantitatively evaluate the FSOSIL task perfor-
mance, we use Accuracy (𝐴𝑐𝑐) as a metrics

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 , (25)

where 𝑇𝑃,𝑇𝑁, 𝐹𝑃, 𝐹𝑁 denote the true-positives, true-
negatives, false-positives, and false-negatives, respectively. To
measure the effectiveness of continuous learning, we also
defined forgetting rate (𝐹𝑅) and intransigence (𝐼𝑡 ),

𝐹𝑅 = 1
𝑡−1

𝑡−1∑
𝑘=1
(𝐴𝑐𝑐initial

𝑘
− 𝐴𝑐𝑐after𝑡

𝑘
)

𝐼𝑡 = 𝐴𝑐𝑐
upper−bound
𝑡 − 𝐴𝑐𝑐task𝑡

𝑡

(26)

where 𝐴𝑐𝑐initial
𝑘

denote the old task performance, 𝐴𝑐𝑐after
𝑘

𝑡

denotes the performance after task 𝑡, 𝐴𝑐𝑐upper−bound
𝑡 denotes

the upper bound on the theoretical performance of task 𝑡,
𝐴𝑐𝑐taskt

𝑡 denotes the current performance of task 𝑡. In addition,
for open-set recognition, referring to the evaluation index in
[12], [34], we use AUROC as a metric.

B. Benchmark Comparison

Comparison of Closed-Set Performance among Baselines.
As shown in Table II, we compare the accuracy of closed-set
data with mainstream algorithms. We divided the test dataset
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(a) 0-𝑡ℎ session
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(c) 5-𝑡ℎ session
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(d) 10-𝑡ℎ session
Fig. 7. The classification confusion matrix for different incremental sessions is shown using a heat map. The red color represents higher classification accuracy
and the blue color represents low accuracy.

TABLE III
COMPARISON OF FEW-SHOT INCREMENTAL OPEN-SET RECOGNITION PERFORMANCE AND STATE-OF-THE-ART ALGORITHMS. “*” DENOTES THE USE OF

A FINE-TUNING OPERATION IN THE ALGORITHM, "†" DENOTES THE USE OF CATSTLE IN THE ALGORITHM.

Methods FSOSR FSCIL AUROC in each session with 1-shot ↑
0 1 2 3 4 5 6 7 8 9 10

Softmax* - - 0.9546 0.8697 0.6543 0.6116 0.5398 0.5426 0.5881 0.5375 0.4555 0.5569 0.5475
ARPL* ✓ - 0.9564 0.9054 0.7164 0.7593 0.6765 0.6698 0.6848 0.6413 0.6392 0.6057 0.5795

PEELER† ✓ - 0.9414 0.9341 0.9278 0.9229 0.9185 0.9141 0.8918 0.8878 0.8837 0.8330 0.8287
iCaRL - ✓ 0.9090 0.8490 0.8250 0.7940 0.7802 0.7642 0.7422 0.7321 0.7221 0.7071 0.7011

CATSTLE - ✓ 0.7328 0.7308 0.7488 0.7497 0.7629 0.7653 0.7730 0.7807 0.7816 0.7767 0.7652
CEC - ✓ 0.7319 0.7265 0.7940 0.8010 0.8060 0.8073 0.8098 0.8166 0.8165 0.7990 0.7842

LIMIT - ✓ 0.9787 0.9666 0.9534 0.9409 0.9298 0.9174 0.9122 0.9015 0.8984 0.8892 0.8834
Meta-RFF ✓ ✓ 0.9965 0.9921 0.9867 0.9803 0.9755 0.9715 0.9672 0.9645 0.9622 0.9561 0.9529

TABLE IV
ACCURACY COMPARISON OF OPEN SET RECOGNITION WITH STATE-OF-THE-ART ALGORITHMS. "†" DENOTES THE USE OF CATSTLE IN THE

ALGORITHM.

Methods Manual
Thresholds

Adaptive
Thresholds

Average open-set accuracy in each session with 1-shot (%) ↑
0 1 2 3 4 5 6 7 8 9 10

PEELER† ✓ - 85.86 84.81 83.91 83.00 82.22 81.51 79.20 78.55 78.09 73.11 72.78
CEC ✓ - 69.79 86.01 86.44 80.41 67.84 56.35 51.44 50.56 50.26 50.03 50.00

LIMIT ✓ - 87.74 87.38 86.71 86.32 85.45 84.33 84.00 83.38 83.71 82.95 82.48
Meta-RFF - ✓ 92.67 90.82 90.44 89.60 88.98 88.02 87.65 85.79 85.52 84.84 84.56
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(c) Comparison of TNR.
Fig. 8. Performance comparison for open-set recognition.

into base set data and incremental data, where the base set
dataset has a total of 237 classes and the incremental data
has a total of 200 classes. We set 10 incremental sessions and
the number of categories in each session is 20. In traditional
supervised learning algorithms (Softmax, ARPL), we can
see that the lack of incremental learning capability of the
model produces a catastrophic forgetting problem, with test
accuracies for the base set and incremental classes of data
almost approaching 0. In addition, although the classical incre-
mental learning algorithm iCaRL guarantees a certain base set
accuracy, it cannot adapt to few-shot incremental environments
and its performance on incremental data is poor. In contrast,

the rest of the algorithms that impose a few-shot incremental
mechanism not only solve the catastrophic forgetting problem
but also achieve good results on incremental datasets. How-
ever, we can see that the proposed Meta–RFF achieves state-
of-the-art performance on both base and incremental data.
With the 1-shot setting, our Meta–RFF improves performance
over LIMIT by 10% on incremental data and has the lowest
performance forgetting rate on the base class and incremental
data, 3.14%, 0.22%, respectively. In addition, we evaluated the
intransigence rate metrics against the new task, and it can be
seen that the other methods have high recalcitrance rates. In
contrast, the method in this paper has a low recalcitrance rate.
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TABLE V
COMPARISON OF OPEN-SET RECOGNITION EFFICIENCY WITH DIFFERENT TRAINING MODULES.

Prototype Data
Augmentation

Meta
Train

Open
Loss

AUROC in each session with 1-shot (%) ↑
0 1 2 3 4 5 6 7 8 9 10

- - - - 95.46 86.97 65.43 61.16 53.98 54.26 58.81 53.75 45.55 55.69 54.75
✓ - - - 98.85 97.60 96.22 95.43 94.43 93.34 92.33 91.29 90.17 87.76 85.76
✓ ✓ - - 98.73 97.75 96.70 96.07 95.21 94.61 93.95 92.26 91.73 90.81 89.79
✓ ✓ ✓ - 99.03 98.27 97.48 96.84 96.14 95.49 95.13 94.53 94.20 93.68 93.27
✓ ✓ ✓ ✓ 99.65 99.21 98.67 98.03 97.55 97.15 96.72 96.45 96.22 95.61 95.29

TABLE VI
COMPARISON OF ACCURACY EFFICIENCY WITH DIFFERENT TRAINING MODULES.

Prototype Data
Augmentation

Meta
Train

Open
Loss

Accuracy in each session with 1-shot (%) ↑
0 1 2 3 4 5 6 7 8 9 10

- - - - 98.76 82.78 9.09 8.75 4.53 0.48 1.21 2.57 1.00 0.57 0.09
✓ - - - 98.76 82.38 70.01 63.57 63.21 63.23 58.65 50.03 53.13 52.65 44.34
✓ ✓ - - 99.82 82.78 70.47 64.66 66.69 65.27 59.47 51.72 54.82 53.75 45.74
✓ ✓ ✓ - 99.82 88.34 86.22 84.55 82.94 81.53 82.05 79.67 78.87 77.57 77.83
✓ ✓ ✓ ✓ 99.83 88.34 86.23 84.55 82.95 81.53 82.06 79.66 78.88 77.56 77.83

The lower intransigence rate reflects the greater adaptability of
the model to new tasks and demonstrates the degree of reliance
on the model’s old knowledge. With the 5-shot setting, our
algorithm can achieve accuracy beyond 90% for incremental
classes. Fig. 7 illustrates the classification confusion matrix for
several stages of incremental sessions. We can see a clear red
diagonal line and most of the remaining area is blue, indicating
a high classification accuracy and low misclassification rate
for each category. The above results show that our Meta–RFF
can significantly improve few-shot incremental performance
by imposing RF data augmentation, multi-stage meta-task
training, and soft orthogonalization loss.

Comparison of Open-Set Performance among OSR Base-
lines. Table III shows the AUROC performance for the
few-shot incremental open-set recognition task, where higher
AUROC means better open-set recognition performance. We
can see that our algorithm not only achieves state-of-the-
art performance over multiple incremental sessions but also
possesses a low-performance decay rate. This result is mainly
because we impose open-set loss in multi-stage meta-task
training, which reduces the inter-class differences. In addition,
we normalize the distance between prototype points using
soft orthogonalization loss, which allows new prototype points
to be automatically separated from the old ones and adjust
the distribution during a continuous incremental process. This
mechanism allows our algorithm to adapt to multiple incre-
mental processes, yielding a low AUROC decay rate.

We further compare other metrics for OSR. Table IV shows
the open-set recognition accuracy of algorithms. In traditional
methods, we usually set 95% as the open-set sample discrimi-
nation threshold [34]. It can be seen that the adaptive threshold
used by our algorithm can achieve better discriminative perfor-
mance compared to the manual threshold. As mentioned ear-
lier, due to the few-shot limitation, we cannot utilize traditional
methods to obtain a reliable boundary threshold, which leads
to the fact that traditional methods are ineffective in this case.
In contrast, our algorithm avoids this limitation. Reciprocal
points can be generated using only the prototype points of
the target class, solving the limitation that traditional methods
require samples to estimate decision boundaries. Further, due

to the use of meta-learning techniques, our model can be
proficient in the accurate generation of reciprocal points.

Fig. 8 illustrates the results of Recall, F1-score, and True
Negative Rate (TNR) for OSR. In Fig. 8a and 8b, it is obvious
that our method achieves optimal recognition performance
on closed-set compared to existing threshold-based methods.
Then in Fig. 8c, we can observe that CEC and PEERLER
recognize all the unknown samples as open sets. The reason
for this phenomenon is the improper selection of the open-set
threshold, i.e., the threshold is selected too harshly, resulting
in the accuracy of the known-set samples dropping to 0 in Fig.
8a and 8b. It is observed that the adaptive threshold used in
this paper can solve this problem and obtain reliable open-set
accuracy while guaranteeing closed-set accuracy.

C. Ablation Study

Effects of different training modules. As shown in Table
V, we evaluate the efficiency of OSR for different modules.
In multiple incremental sessions, it can be observed that the
prototype network can greatly improve the OSR efficiency,
which is mainly because the prototype points can narrow
down the inter-class distance and reduce the overlapping area
between unknown and known classes. Then the operation of
data augmentation can further improve the effectiveness of
AUROC, which proves that mining relevant signal properties
can be helpful for OSR. Multi-stage training using meta-
learning will be able to reduce performance decay compared
to single-stage training, showing that the use of meta-learning
to adapt the network to the FSOSIL task is necessary. Finally,
the use of open-set loss further reduces the area of overlap
between unknown and known samples, thus improving AU-
ROC. To verify that the improvement in open-set performance
may stem from the advancement in closed-set performance,
we further evaluated the ablation for few-shot increments, as
shown in Table VI. We can see that the few-shot learning
ability of the model is greatly improved after the prototype
network is imposed, by about 50%. Then the multi-feature data
used in this paper can make some contribution to the closed-
set accuracy improvement. But these two models fail to solve
the problem of continuous incremental accuracy decay well.
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Fig. 9. Accuracy and AUROC performance comparison of different parameters.
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Fig. 10. Changes in the distribution of new classes of prototype points during continuous incremental sessions.
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Fig. 11. (a-d) The changes in the distribution of the prototype points over the continuous incremental session. (e-h) The changes in the distribution of
probability values of known class samples and unknown samples over the continuous incremental session.

After introducing the meta-training in this paper, the model
has higher recognition accuracy during continuous increments,
and its decay rate is smaller. Finally, the open-set loss did not
produce a large improvement in closed-set accuracy, because
it is mainly used to improve open-set performance. The above
results illustrate that there is a strong correlation between the
improvement of open-set accuracy and closed-set accuracy
in Table V and Table VI, and better closed-set performance
enables the model to recognize open sets more accurately.

Effects of the number of phases and shots. Fig. 9a illustrates
the performance impact of the number of phases on FSCIL as

well as OSR in a continuous incremental session. In this figure,
the line graph represents AUROC and the bar graph represents
accuracy. We can observe that under 1-phase, the model’s
classification accuracy and open-set performance decline sig-
nificantly in incremental sessions, which implies that adding
more meta-task phases improves the model’s ability. Similarly,
in Fig. 9b, increasing the sample size of the incremental class
will be able to further improve the model classification ability
and open-set recognition ability.

Effect of hyper-parameters. Fig. 9c evaluates the effect of
parameters 𝛼 and 𝛽 in the model regularization term on OSR,
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Fig. 12. Real-time RF Fingerprint recognition system, which consists of
Notebook PC, USRP B210, Wifi access point, and multiple devices.

where 𝛼 denotes the prototype orthogonalization loss and 𝛽

denotes the open loss in Eq. 19. When 𝛼 = 0, 𝛽 = 0, we can
observe clearly that the AUROC of OSR performance drops
drastically in continuous incremental sessions. The AUROC
of the model improves significantly when we apply just 𝛽 =

0.5, indicating that reducing the distance between the samples
and the prototype points can reduce the area of overlap with
the unknown samples. Our model achieved optimal AUROC
performance when we parameterized both regularization terms
𝛼, 𝛽. In particular, modifying the parameter values of 𝛼 and
𝛽 produces AUROC performance that is close.

D. Visualization and Interpretability of Meta–RFF

Visualization of feature space by T-SNE. Fig. 10 illustrates
the changes in the distribution of the prototype points over
the continuous incremental session. First, in Fig. 10a, the base
class prototype points (blue) are distributed in the feature space
with almost no overlap. In Fig. 10b, 10c, and 10d, we can
observe clearly that the new class prototype points (red) have
almost no overlap with the base class prototype points, which
demonstrates that our model can automatically pair-generate
effective few-shot new class prototype points. Then in Fig. 11,
we carve out the distribution of features for samples of known
(blue) and unknown (red) classes at different incremental
sessions. For a more fine-grained representation, we plotted
the similarity distribution as shown in Fig. 11e-11h. The blue
color indicates the similarity between known class samples
and prototype points, and the red color indicates the similarity
between unknown class samples and prototype points. We
can observe that the probability distribution of most of the
known set samples is concentrated around 1, while that of
the unknown class samples is concentrated around 0. In
addition, we can observe clearly that the open-set recognition
performance decays less in continuous incremental sessions.

VI. REAL-WORLD SYSTEM PERFORMANCE ANALYSIS

In this section, we build a test bed and evaluate the
performance of our method in real world scenario.
System Setup. We use USRP to obtain Wifi signals from 20
smartphones with the protocol IEEE 802.11n. Fig. 12 shows
the data collection test-bed, where the devices (smartphones) is
connecting with WiFi router while exchanging data. The USRP
captures the WiFi signals in real time. We intercept the raw I/Q
of the preamble sequence (i.e., the first 320 complex samples)

16 3216 16 16 16 16 16 16 16 16 64 64

Short Training Symbols (STS)
Guard 

Interval 

(GI)

Long Training 

Symbols (LTS)

Preamble of IEEE802.11n

Fig. 13. The preamble of the IEEE 802.11n protocol for WiFi. We use this
preamble to perform the classification task.

TABLE VII
CONTINUOUS INCREMENTAL OPEN-SET RECOGNITION PERFORMANCE

FOR 20 DEVICES BY USING 1-SHOT FINE-TUNING.

Session Base
Accuracy

Incremental
Accuracy

Overall
OSR

Open-set
Accuracy

0 0.9873 0.9869 0.8988 0.8922
1 0.9803 0.9837 0.8914 0.8807
2 0.9790 0.8960 0.8826 0.8658
3 0.9782 0.7432 0.8847 0.8667
4 0.9787 0.7410 0.9079 0.9034
5 0.9771 0.6223 0.8983 0.8849
6 0.9771 0.5457 0.8909 0.8662
7 0.9766 0.5684 0.9456 0.9909
8 0.9559 0.6178 0.9372 0.9865
9 0.9549 0.5862 0.9271 0.9834

as shown in Fig. 13 of each packet as the RF fingerprinting
data, and number the source MAC address of each device as
the data label to build the RF fingerprinting dataset.

Evaluation Procedure. We trained our model with the data
from 10 devices and tested it in real time on the remaining
10 devices. We set 10 incremental sessions and increment one
class at a time. Then, to evaluate the performance of OSR,
the remaining classes, except for the base and incremental
classes, are also identified as unknown. Once our Meta–RFF
first identifies the unknown device, then takes 1 new class
sample for model fine-tuning and continues to perform the
detection.

Results. In Table VII, “base accuracy” and “incremental
accuracy” represent the test accuracy for base class samples
and incremental samples during a continuous incremental
session, respectively. The term “overall OSR” refers to the
open-set recognition accuracy for both known and unknown
classes, while “open-set accuracy” specifically measures the
recognition rate of unknown samples. It is evident that both
"base accuracy" and “incremental accuracy” are high, though
the incremental class experiences significant decay across
multiple increments due to the limitations of few-shot learning.
These results indicate that our algorithm effectively mitigates
the catastrophic forgetting problem in real-world scenarios and
achieves high OSR performance.

Additionally, Fig. 14 illustrates the real-time running latency
of the algorithm on a computer equipped with an RTX3060
and an Intel(R) Core(TM) i7-12650H processor. From the
received signal, data preprocessing takes approximately 3
ms, while the Meta–RFF algorithm requires about 30-35
ms. Although the system’s current latency is relatively high
compared to the 40 ms interval between received packets, we
plan to employ model distillation and fine-tuning techniques in
the future to reduce model parameters and enhance real-time
performance.
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Fig. 14. The runtime delay of the RFF real-time recognition system begins
when the packet is received. The horizontal axis indicates the point in time,
vertical axis indicates delay time (𝑚𝑠).

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a continuous evolutionary algo-
rithm for RFF recognition models that implements FSOSIL
tasks. Our algorithm incorporates a meta-learning technique
that utilizes a large number of FSOSIL tasks constructed
and performs meta-training to gradually adapt to the FSOSIL
scenarios. In particular, to improve the performance of open-
set recognition during a continuous incremental process, we
introduce open loss as well as an adaptive open-set threshold
generation technique based on reciprocal points. In the future,
for the RFF recognition model, we will further construct
the signal large model to realize a more general recognition
system.
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