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Abstract. RF fingerprinting (RFF) is a non-encrypted authentication
technique that provides an additional layer of security for wireless de-
vices, which has a promising application. However, existing RFF recog-
nition techniques that rely on deep learning (DL) are usually available
with limited equipment. In actual application scenarios, new wireless
devices are constantly appearing, such as unknown drones that appear
suddenly in the sky. In such cases, the RF monitoring system should
equip the ability to discover the unknown device (i.e., open-set recogni-
tion (OSR)) and use captured few samples of new devices incrementally
updating knowledge of the system. This requirement brings two chal-
lenges: 1) incremental updates from few-shot samples are prone to lead
to catastrophic forgetting and over-fitting problems; 2) constructing a re-
liable OSR mechanism for new devices with few-shot samples is difficult.
To tackle this challenge, for the first time, we propose a novel few-shot
open-set incremental learning (FSOSIL) framework via meta-learning for
RFF recognition (Meta-RFF ). The core idea of Meta-RFF is to simulate
few-shot RF signal incremental learning by constructing many pseudo-
FSOSIL tasks. In particular, to strengthen the OSR capability, we fur-
ther design RF feature augmentation and open space learning modules.
The algorithm is validated on the large-scale aircraft recognition dataset
(namely ADS-B), which shows that the close-set accuracy and open-set
AUROC of the new class improve the performance by about 10-20%
compared to other algorithms with 1-shot. And in 10 increments, our
algorithm possesses a lower performance decay rate (about 3%).

Keywords: Deep Learning, RF Fingerprints, Few-Shot Incremental Learn-
ing, Open-set Recognition.

1 Introduction
In recent years, the increasing number of wireless devices has led to the openness
of the wireless space [9]. However, it is difficult to guarantee data confidentiality,
leaving wireless systems open to potential security threats. For example, in the
automatic dependent surveillance-broadcast (ADS-B), the aircraft identify infor-
mation is also easily imitated and tampered with, resulting in potential security
risks [17]. To solve the above problems, non-imitated RF fingerprinting (RFF)
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Fig. 1. Aircraft classifier system deployed in ground BS not only needs to accurately
recognize known aircraft (base classes) but also needs to recognize unknown aircraft
(new classes). This classifier is equipped with continuous few-shot class incremental
learning capability to achieve co-recognition of new and old classes. At the same time,
the few-shot OSR capability also needs to be improved in the continuous increment.

techniques have been developed to identify devices by exploiting the hardware
imperfections of the transmitter like I-Q imbalance, nonlinear distortion of power
amplifier (PA), loop filter variations, etc[12]. Nowadays, RFF technologies are
widely applied in military and civilian fields, such as IoT device authentication
[13], spectrum monitoring [1], and aviation management [8], etc.

RFF technologies can be divided into traditional and deep learning-based
(DL-based) methods. The traditional approaches use expert knowledge to ex-
tract statistical, spectral, and transient features of the signal, which are labor-
intensive and time-consuming [12]. Compared with them, the DL-based ap-
proaches can automatically learn RFF features to identify the devices. Relevant
deep-learning methods include convolutional neural networks (CNNs)[19], resid-
ual network (ResNet)[9], long short-term memory (LSTM)[4], etc. However, the
above methods are usually available with limited equipment and do not consider
the following deployment challenges.

Autonomous radio monitoring system. Fig. 1 shows that the aircraft iden-
tification system (AIS) deployed ground base station (BS) will utilize the DL
model for aircraft classification by extracting RF fingerprints (RFF) of IQ sig-
nal. The recognition system must be equipped to meet various practical envi-
ronmental demands, including (1) the capacity for open-set recognition (OSR)
to identify sudden appearances of unfamiliar aerial objects [8], (2) the ability
to update and recognize new categories using a limited number of samples from
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Fig. 2. Existing DL technology bottlenecks: (a)The decision boundary (solid line) of
the base class classifier can accurately classify old classes, but not classify the new
classes (red); (b)By training the classifier directly on the new class, the model is biased
towards fitting the new class (dotted line), forgetting the knowledge of the old class;
(c)Uncertain new class distributions are shifted to the vicinity of old classes, resulting
in limited classification performance; (d)Difficulty in determining the OSR boundary
(red dotted line) for the new class due to its few-shot limitation.

these newly emerged classes [7], and (3) the flexibility to continually evolve,
accommodating an increasing range of categories and adapting to unforeseen
environments in the future.

However, building such a generalized evolutionary model that combines few-
shot class incremental learning (FSCIL), few-shot open-set (FSOSR), and multi-
stage continuous increment needs to overcome the following challenges.

– Catastrophic Forgetting and Overfitting. As shown in Fig. 2b, direct training
on new classes with few-shot inevitably leads to the model forgetting the
knowledge of the old classes [6] and over-fitting effects on the limited data
[14, 16].

– Unknown Class Distribution Shift. As shown in Fig. 2c, unknown new class
distributions may be shifted in the vicinity of old classes, leading to limited
classification performance of traditional incremental models [6, 15].

– Unknown Open Set Boundary. As shown in Fig.2d, the lack of samples makes
us unable to see the true class distribution, which hinders the accurate esti-
mation of the open set boundaries.

In addition, the multi-stage continuous incremental process aggravates the
above challenges and leads to a drastic decrease on the efficiency of existing
incremental algorithms[6], iCARL[15], OSR[2], and FSCIL [22]. To address the
above practical challenges, we have rethought human learning patterns that
derive from long-term adaptation to complex environments, i.e., learning how to
learn in meta-learning [3]. Motivated by this, we expect the DL model to become
a generalized evolution model with both FSCIL, OSR, and lifelong learning
capabilities like humans through continuous environment simulation.

In this paper, we propose a meta-learning-based few-shot open-set incremen-
tal learning (FSOSIL) for RF fingerprint recognition (Meta-RFF ) framework.
We first propose a signal augmentation scheme for few-shot samples. Second,
based on the meta-learning idea, we define the FSOSIL meta-tasks and sampled
a large number of pseudo-tasks from the training set to realize environment sim-
ulation. Further, we utilize the meta-learning technique for multi-task training to
make the neural network adaptive in such an environment. Finally, to solve the
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FSOSR problem, we incorporate open loss in the meta-task. Our contributions
can be summarized as follows:

– To the best of our knowledge, we are the first to formulate an FSOSIL
framework for RFF recognition and realize a generalized RFF continuous
learning system.

– We define the FSOSIL meta-tasks and design a multi-task training mechanism-
based prototype network.

– We propose a soft orthogonalization loss and an open loss to achieve auto-
matic calibration of prototype points and OSR.

2 Problem Definition
Few-Shot Open-Set Incremental Learning for RFF Recognition. In a
traditional DL-based RFF recognition setting, the RF receiver (Rx) will get a
series of signals x(n) from a set of RF transmitters (Tx = {Tx1, Tx2, ..., Txk}).
We define the base session (0-th session) dataset consisting of k transmitters
as D0 = {xi, yi}n0

i=0 with sufficient instances. Then we define the emerging un-
known source signals training sets as {D1, ...,Db} with limited instances of known

classes, i.e.,Db = {(xi, yi)|yi ∈ {Y1, ...,Yb}}n
b

i=1. At the same time, there are open
sets of unknown classes in the environment, i.e., Do = {(xi, yi)|yi ∈ Yo}n

o

i=1. The
Yb is the label space of task b, and Yb ∩Yo = ∅. Then the nb and no denotes the
number of samples in Db and Do, respectively. When facing a new dataset Db, a
model should learn new classes while maintaining performance on old classes and
rejecting unknown classes. The process can be formalized as the minimization
of the expected risk overall seen and unseen classes:

min
θ

E{xi,yi}∼{D0,...,Db,Do}[ℓ(f
b
θ (xi;Db, ψb−1,Wb−1), yi)]. (1)

The model f0θ (x) comprises a embedding function ψ(·) : x→ Rd and a linear clas-

sifier W0 = {wi}i=|Y0|
i=0 , i.e., f0θ (x) = WT

0 ψ(x) and Rd denotes the d-dimensional
feature space. By Eq. 1, the model f b−1

θ (•) should construct the new model based
on the new dataset Db and the current model Wb−1, ψb−1. Then in real-world
testing, we expect that the newly constructed model f bθ (•) to minimize the loss
over all known and unknown test dataset.

3 Methodology

Fig. 3 shows the pipeline of Meta-RFF framework for solving the FSOSIL task.
Specifically, the proposed Meta-RFF framework can be separated into three
stages: 1) Feature Pre-training stage, 2)Meta-Task sampling stage, and
3) Meta-Incremental training stage. In the feature pre-training stage, the
feature embedding networks and classifier weights (i.e., prototype points) are
obtained using base session data. Subsequently, we will construct few-shot incre-
mental recognition scenarios and perform task sampling. In the training phase,
a prototype network is utilized for few-shot learning, and a Transformer is used
to calibrate the distribution of new and old class prototype points in an orthog-
onality prototype space. Finally, an open loss is optimized to achieve few-shot
open-set recognition.
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Fig. 3. The workflow of Meta-RFF framework.

3.1 Feature Pre-training Stage

Prior incremental learning approaches have demonstrated that fine-tuning the
network with new class data from a subsequent session can result in catastrophic
orgetting [6], wherein previously acquired knowledge is lost and overfitting tran-
spires with the introduction of new data. Recent advances in incremental learn-
ing [21, 20] suggest that decoupling the feature embedding network from the clas-
sifier can largely reduce the effect of catastrophic forgetting. Thus, we follow the
previous work and additionally employ the classic prototype network [16] (widely
used under the few-shot learning scenario) to alleviate the catastrophic forgetting
and overfitting problems under the few-shot sample condition.

Feature Extraction.. To improve the recognition efficiency of I-Q data with
few shots, we need to extract more signal modal information. In wireless com-
munication, IQ signals are usually defined by using amplitude, frequency, and
phase [9]. Therefore, we follow the setting of Zheng et al. [23] and mainly extract
the instantaneous amplitude A(n), instantaneous phase φ(n), and instantaneous
frequency F (n) information of the signal. The relevant calculations are shown
below

A(n) =
√
xI(n)

2
+ xQ(n)

2
,

φ(n) ∝ arctan(xQ(n)/xI(n)),
F (n) = φ(n)− φ(n− 1), n = 1, 2, ..., N − 1,

F(n) = F (n)− 1
N

∑N
n=1 F (n),

(2)

where F(n) denotes the centered instantaneous frequency, and the details of
φ(n) refer to [23]. For easier representation, we redefine the sample symbols as

x(n) = concat{xIQ(n), A(n), φ(n),F(n)}. (3)

Model Pre-training.. Specifically, we first train the feature embedding net-
work ψ(•) and classifier W0 in the base session. The classifier weights wi are
represented by the average embedding of each new class ci (i.e., the class proto-
type or the most representative feature of the class). The class prototype wj in
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D0 can be calculated by:

wj =
1

|D0|

|D0|∑
i=1

I(yi = j)ψ(xi), (4)

where I(·) denotes the indicator function. With the class prototype points wi,
we can calculate the class probability pj for each base session sample as

p(y = j|x;ψ0) =
exp(sim(ψ(x), wj))∑

j∈Y0
exp(sim(ψ(x), wj))

, (5)

where sim(•) denotes the cosine similarity function. The Eq. 5 suggests that
the similarity of the sample to the class prototype point determines the sample
prediction category. Finally, we using the cross-entropy loss function [22] to
perform with training on the base session samples:

ℓce = − 1

|D0|
∑

i

∑Y0

j=1
yij log(pij). (6)

During the base session pre-training, a network with robust feature extraction
capabilities is obtained by leveraging a substantial amount of available sample
data. Then, when a new task arrives, the parameters of the feature embedding
network are frozen to prevent knowledge forgetting, and the prototype points of
the new class are computed to update the classifier.

3.2 Multi-phase Meta Task Sampling
The generalization ability of the learned features largely affects the performance
of the incremental session. Under the FSOSIL task, this effect is magnified, as
the model must generalize to new classes with a limited number while main-
taining the ability to reject unknown classes. However, the model does not have
direct access to new class data and unknown class data in the incoming incre-
mental sessions, making it challenging to evaluate the generalization ability of
learned features for future tasks. Thus, motivated by the idea of meta-learning,
we propose to sample a large number of “fake” FSOSIL tasks from the base ses-
sion data to simulate the procedure of real FSOSIL tasks. The sampled “fake”
FSOSIL tasks aim to provide a way for the neural network to learn generalizable
embeddings.

To make the “fake” FSOSIL tasks share the same data format as the ‘real’
FSOSIL task, we first divide the base dataset D0 into three non-overlapping sets:
T = {S,Q∗, Qo|Cs, C∗, Co}, where S = {xi, yi}NK

i=1 denotes support set with N -

way K-shot and the label is Cs, Q∗ = {xi, yi}|Y0|K
i=1 denotes the many-shot query

set with |Y0|-way K-shot and the label is C∗, Qo denotes the open set with
N -way K-shot. Also, the label spaces of Qo and Q∗ are non-overlapping, i.e.,
C∗ ∩ Co = ∅, Cs ⊂ C∗. After the “fake” FSOSIL task sampling, the training
objects can be formulated as the minimization of the empirical risk on the m-th
task Tm:

min
θ

E{xi,yi}∼{Qs
m,Qo

m,Q∗
m}[ℓ((xi;Sm, ψm−1,Wm−1), yi)]. (7)
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3.3 Meta-Training for FSOSIL

To facilitate the training process of the established “fake” FSOSIL tasks, we pro-
pose an optimization strategy that simultaneously trains the network to extract
robust features for both incremental recognition and OSR tasks.
Optimization for few-shot incremental recognition.. During the incremen-
tal session, the classification model will continuously receive new session tasks,
which require the network to generalize across both new and old class samples.
To emulate the incremental session, we utilize the support set S, and the all class
query set Q∗ from the base session to represent new class incremental samples,
and all class samples, respectively. During the optimization process, the network
first generates new prototypes ci for the few-shot support set in the incoming
task using Eq. 5, and then directly employs the pre-trained old class weights wi

to recognize the old classes. Thus, the classifier weights WTm
for task m will be

updated by:

WTm
=

{
ci,∀i ∈ Cs

wi,∀i /∈ Cs, i ∈ C∗ . (8)

By jointly constructing new prototype points and optimizing through the
similarity-based cross-entropy loss function, we can obtain the optimization func-
tion for the incremental session:

LTm
= ℓce(sim(f(Q∗

m),W )). (9)

Finally, based on idea of meta-learning, we need to optimize for a large num-
ber of “fake” few-shot incremental tasks at the same time. So that the neural
network can learn how to adapt to this context. This meta-learning optimization
loss can be shown by the following

min
θ

1

Tm

∑Tm

m=1
LTm(Qm|Sm, fθ,Wm). (10)

Meta-calibration module.. The incremental optimization is based on the
many-shot old classes, which are tailored to depict old class features. To cali-
brate the semantic gap between new and old class prototypes (i.e., updating the
relative spatial distribution), we design a transformer-based calibration module
capable of extracting inductive bias during meta-training and generalizing to
subsequent incremental sessions.

We define the adaptation function T (·) by using the transformer to carry out
the calibration process. The transformer utilizes a triplet of information (query
Q, key K, and value V) and learns through the attention mechanism. First, the
query sample (ψ(xm) ∈ Rd×|M|,m ∈ M) is projected linearly using weights
Wq, Wk, and Wv respectively. Next, the attention coefficients αqk are computed
using Q, K, and softmax functions. Finally, the attention coefficients are applied
to weight V, obtaining the final attention result in ψ(xm)′. In our framework,
we drop query samples into T (·) for adaptive optimization along with prototype
points, i.e.,

Q = K = V = [w, c]. (11)
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The calibrated prototype point are then defined as (ŵ, ĉ) = T (w, c).
Optimization for few-shot open-set recognition.. While the aforemen-
tioned approach enables the recognition of seen classes, Eq. 9 fails to effectively
constrain the open space, resulting in limited open-set recognition capabilities.
To address this issue, we propose simulating the open-set scenario in the meta-
task to optimize open-set recognition ability.

The main idea of OSR is to control inter-class distances, i.e., the new class
prototype adapts its open space distribution concerning the old class prototypes.
We introduce an orthogonalization loss in the inner product space that all pro-
totypes are orthogonalized vectors the cosine similarity is 0, i.e., ||wi||T ||wj || =
0, i ̸= j,∀i, j ∈ C. Then, to make the prototype points of the new class orthogo-
nal to the old class, we impose the orthogonalization loss ℓor in the meta task,
i.e.,

ℓor(Ŵ ) =M ⊙ ||Ŵ ||T ||Ŵ ||,

Mij =

{
0, i = j
1, i ̸= j

,
(12)

where M ∈ R|Y0|×|Y0| denotes the mask matrix, ⊙ denotes the element-wise
multiplication, || • || denotes the ℓ2-norm.

After controlling inter-class distances, we need to further control intra-class
distances. We use the idea of clustering samples with their class prototype points
to progressively reduce the differences. This process can be implemented by the
following equation

ℓd(fθ(x(n)), Ŵ ) = ℓe(fθ(x(n)), Ŵ )− ℓc(fθ(x(n)), Ŵ ), (13)

where ℓe denotes the euclidean distance, ℓc denotes the cosine similarity.
In summary, we combine the Eq. 9, 12, 13 and the final meta-task loss is

LTm = ℓce(f(Q
∗
m, Ŵ )) + αℓor(Ŵ ) + βℓd(fθ(Q

∗
m), Ŵ ), (14)

where α and β denote the hyper-parameters.

4 Evaluation
4.1 Experiment Setup

Experimental Environment. The Meta-RFF algorithm is implemented by
using Pytorch 1.10.0 and NVIDIA GeForce RTX3090 GPUs. In addition, we
use 1D ResNet-18 as the backbone network both for our algorithms and other
baseline algorithms.
Dataset. We use real-world ADS-B signals to verify FSOCIL methods for wire-
less device identification. For the FSOCIL task setting, we extracted IQ samples
for a total of 893 aircraft in the dataset. Aircraft categories ranging from 0-237
possess many shots, which can be used as the base session dataset. 200-437 range
has relatively few samples, which can be used as the few-shot incremental ses-
sion. The samples in the range of 437-893 are scarce and not easy to train, and
this paper serves as an open unknown class. This data set is publicly available
at [11].
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Models’ setup and comparison baselines. To ensure the fairness of the
comparison, we use a uniform network architecture for all baseline methods. In
addition, we use standard transformer [18] as a calibration module and adap-
tive generator. To evaluate the effectiveness of our proposed Meta-RFF on the
FSOSIL task, we first compare to current state-of-the-art FSOSR algorithms,
e.g., Softmax [5], ARPL [2] and PEELER [10]. Besides, we also compare to cur-
rent state-of-the-art FSCIL algorithms: iCaRL [15], CASTLE [20], CEC [22] and
LIMIT[24].

4.2 Experimental Results

Comparison of Closed-Set Performance among Baselines.. As shown
in Table 1, we compare the accuracy of closed-set data with mainstream algo-
rithms. We divided the test dataset into base set data and incremental data. In
traditional supervised learning algorithms (Softmax, ARPL), we can see that the
lack of incremental learning capability of the model produces a catastrophic for-
getting problem, with test accuracies for the base set and incremental classes of
data almost approaching 0. In addition, although the classical incremental learn-
ing algorithm iCaRL guarantees a certain base set accuracy, it cannot adapt to
few-shot incremental environments and its performance on incremental data is
poor. In contrast, the rest of the algorithms that impose a few-shot incremental
mechanism not only solve the catastrophic forgetting problem but also achieve
good results on incremental datasets. However, we can see that the proposed
Meta-RFF achieves state-of-the-art performance on both base and incremental
data. The above results show that our Meta-RFF can significantly improve few-
shot incremental performance by imposing RF data augmentation, multi-stage
meta-task training, and soft orthogonalization loss.

Table 1. Comparison with the state-of-the-art on ADS-B dataset. “*” denotes the use
of a fine-tuning operation in the algorithm, ”†” denotes the use of CATSTLE in the
algorithm, and PD denotes the performance dropping rate.

Methods Test set
Accuracy in each Session with 1-shot (%) ↑

PD↓
0 1 2 3 4 5 6 7 8 9 10

Softmax*
Base 98.76 81.44 9.09 8.75 4.53 0.48 1.21 2.57 1.00 0.57 0.09 -98.67%

Incremental - 0.00 0.00 0.53 1.35 0.35 0.19 0.20 0.59 1.48 0.54 None

ARPL*
Base 97.32 90.90 27.62 47.03 19.08 27.32 19.79 14.08 9.10 5.42 6.09 -91.23%

Incremental - 0.00 0.00 0.02 0.36 0.24 0.43 0.69 1.05 1.27 0.71 None

PEELER† Base 99.20 93.90 93.82 93.72 93.62 93.53 88.13 88.07 88.02 70.35 70.28 -28.92%
Incremental - 49.52 42.82 41.90 40.03 38.29 36.20 35.36 34.66 27.87 26.40 -23.12%

iCaRL
Base 99.86 91.43 90.19 88.89 87.98 86.57 84.43 83.00 80.34 78.15 76.79 -23.07%

Incremental - 1.51 11.56 5.16 6.28 5.70 6.02 3.83 4.08 3.78 4.35 None

CATSTLE
Base 99.32 98.32 98.25 98.23 98.20 98.18 98.12 98.10 98.08 97.99 97.96 -1.36%

Incremental - 55.38 50.30 46.23 44.30 42.35 42.73 42.01 41.27 40.40 40.66 -14.72%

CEC
Base 98.76 97.04 96.94 96.90 96.85 96.77 96.56 96.52 96.45 96.38 96.34 -2.42%

Incremental - 58.33 49.77 44.83 44.10 42.95 43.26 42.35 41.98 41.84 42.42 -15.91%

LIMIT
Base 99.96 98.63 98.15 97.61 97.17 96.84 96.52 96.12 95.88 95.49 95.23 -4.73%

Incremental - 70.08 67.73 63.82 59.04 57.58 57.95 55.35 54.60 52.92 52.63 -17.45%

Meta-RFF
(1-shot)

Base 99.86 99.82 99.79 99.78 99.77 99.76 99.76 99.70 99.68 99.67 99.64 -0.22%
Incremental - 80.17 79.17 78.20 78.21 76.42 76.62 76.98 77.70 76.92 77.03 -3.14%

Meta-RFF
(5-shot)

Base 99.86 99.83 99.76 99.75 99.73 99.72 99.70 99.65 99.60 99.55 99.54 -0.32%
Incremental - 94.65 92.89 91.10 90.88 89.88 89.95 91.54 91.49 91.22 91.57 -3.08%
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Table 2. Comparison of few-shot incremental open-set recognition performance and
state-of-the-art algorithms. “*” denotes the use of a fine-tuning operation in the algo-
rithm, ”†” denotes the use of CATSTLE in the algorithm.

Methods FSOSR FSCIL
AUROC in each session with 1-shot ↑

0 1 2 3 4 5 6 7 8 9 10

Softmax* - - 0.9546 0.8697 0.6543 0.6116 0.5398 0.5426 0.5881 0.5375 0.4555 0.5569 0.5475
ARPL* ✓ - 0.9564 0.9054 0.7164 0.7593 0.6765 0.6698 0.6848 0.6413 0.6392 0.6057 0.5795

PEELER† ✓ - 0.9414 0.9341 0.9278 0.9229 0.9185 0.9141 0.8918 0.8878 0.8837 0.8330 0.8287
iCaRL - ✓ 0.9090 0.8490 0.8250 0.7940 0.7802 0.7642 0.7422 0.7321 0.7221 0.7071 0.7011

CATSTLE - ✓ 0.7328 0.7308 0.7488 0.7497 0.7629 0.7653 0.7730 0.7807 0.7816 0.7767 0.7652
CEC - ✓ 0.7319 0.7265 0.7940 0.8010 0.8060 0.8073 0.8098 0.8166 0.8165 0.7990 0.7842

LIMIT - ✓ 0.9787 0.9666 0.9534 0.9409 0.9298 0.9174 0.9122 0.9015 0.8984 0.8892 0.8834

Meta-RFF ✓ ✓ 0.9965 0.9921 0.9867 0.9803 0.9755 0.9715 0.9672 0.9645 0.9622 0.9561 0.9529

Comparison of Open-Set Performance among OSR Baselines.. Table 2
shows the AUROC performance for the few-shot incremental open-set recogni-
tion task, where higher AUROC means better open-set recognition performance.
We can see that our algorithm not only achieves state-of-the-art performance
over multiple incremental sessions but also possesses a low-performance decay
rate. This result is mainly because we impose open-set loss in multi-stage meta-
task training, which reduces the inter-class differences. In addition, we normalize
the distance between prototype points using soft orthogonalization loss, which
allows new prototype points to be automatically separated from the old ones
and adjust the distribution during a continuous incremental process. This mech-
anism allows our algorithm to adapt to multiple incremental processes, yielding
a low AUROC decay rate.
4.3 Ablation Study
Effects of the number of phases and shots.. Fig. 4a illustrates the perfor-
mance impact of the number of phases on FSCIL as well as OSR in a continuous
incremental session. In this figure, the line graph represents AUROC and the
bar graph represents accuracy. We can observe that under 1-phase, the model’s
classification accuracy and open-set performance decline significantly in incre-
mental sessions, which implies that adding more meta-task phases improves the
model’s ability. Similarly, in Fig. 4b, increasing the sample size of the incre-
mental class will be able to further improve the model classification ability and
open-set recognition ability.
Effect of hyper-parameters.. Fig. 4c evaluates the effect of parameters α and
β in the model regularization term on OSR, where α denotes the prototype or-
thogonalization loss and β denotes the open loss in Eq. 14. When α = 0, β = 0,
we can observe clearly that the AUROC of OSR performance drops drastically
in continuous incremental sessions. The AUROC of the model improves sig-
nificantly when we apply just β = 0.5, indicating that reducing the distance
between the samples and the prototype points can reduce the area of overlap
with the unknown samples. Our model achieved optimal AUROC performance
when we parameterized both regularization terms α, β. In particular, modifying
the parameter values of α and β produces AUROC performance that is close.

5 Conclusion and Future Work
In this paper, we propose a continuous evolutionary algorithm for RFF recogni-
tion models that implements FSOSIL tasks. Our algorithm incorporates a meta-
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Fig. 4. Accuracy and AUROC performance comparison of different parameters.
(a)Effect of training phases. (b)Effect of shots. (c)Effect of hyper-parameters.

learning technique that utilizes many FSOSIL tasks constructed and performs
meta-training to adapt to the FSOSIL scenarios gradually. In particular, to im-
prove the performance of open-set recognition during a continuous incremental
process, we introduce open loss as well as an adaptive open-set threshold genera-
tion technique based on reciprocal points. In the future, for the RFF recognition
model, we will further construct the signal large model to realize a more general
recognition system.
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