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Abstract— In Earth observation, cloud severely affects the
interpretation of optical satellites generated high-resolution
images. Cloud-free optical images are vital for downstream tasks
such as semantic segmentation and object detection. Thus, the
elimination of clouds from optical imagery has emerged as
a significant topic in remote sensing. Currently, most existing
methods are proposed to leverage the texture information from
auxiliary synthetic aperture radar (SAR) images to restore
cloud-free images via direct channel merging. However, such a
unified feature extraction approach often neglects the inherent
distribution disparity between SAR and optical images—the
result of differing imaging principles-potentially leading to sig-
nificant feature loss. To this end, we introduce a network by
jointing SAR and optical images multimodal and cross-attention
network (MMCANet) to effectively extract multiscale contextual
features from SAR imagery and integrate them with optical
features. Specifically, instead of simple concatenation of the
channels of SAR and optical images, we obtain high-dimensional
features from them through independent feature extractors. The
integration of these features is facilitated by a cross-attention
mechanism that provides a more fine-grained amalgamation
of information. Meanwhile, an atrous spatial pyramid pooling
(ASPP) module is introduced into the integration of high-
level features, which captures multiscale contextual information
around clouded areas. In addition, we propose four advanced
remote sensing image restoration algorithms that approach image
restoration as a series of subtasks, gradually eliminating clouds
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to enhance performance. Comprehensive assessments show that
MMCANet performs well on the SEN 12 MS-CR dataset with
peak signal-to-noise ratio (PSNR) of 39.8871, structural similarity
index (SSIM) of 0.9672, mean absolute error (MAE) of 0.0081,
and spectral angle mapper (SAM) of 2.9884.

Index Terms— Cloud removal, deep learning, feature fusion,
image restoration.

I. INTRODUCTION

AS REMOTE sensing technology advances, high-
resolution optical images from satellites are increasingly

used to support various Earth observation applications,
including micro-object detection, surveying, and disaster mon-
itoring [1], [2], [3]. However, clouds present a significant
challenge in interpreting these spaceborne optical images.
According to existing research, over 55% of land areas in
these images are obscured by clouds [4]. The concealment
of image contents can be caused by thick clouds, while
even thin translucent clouds can significantly distort the
ground below, thereby greatly affecting the usefulness of
satellite images [5]. Therefore, reconstructing high-quality
images from cloud-contaminated degraded images is an indis-
pensable preprocessing step for applications. Removing thin
clouds restores partially obscured targets, making their out-
lines clearer and reducing the likelihood of misjudgment in
subsequent tasks. Removing thick clouds supports specific
sequential observation tasks in the same area.

Due to the loss of texture information in areas obscured
by clouds, the task of cloud removal is markedly ill-posed.
Traditional cloud-removal approaches typically utilize the
information from cloud-free regions on current images in
spatial-based methods [6] or past-time images in temporal-
based methods [7] to estimate the areas under cloud cover.
However, when relying on the current cloud-free areas to
restore occluded pixels, the approach might fail due to exten-
sive cloud coverage. On the other hand, using past-time
cloud-free areas can be affected significantly by landscape
changes, thereby greatly impacting the final restored images.

Benefit from the synthetic aperture radar (SAR) images,
which are unaffected by cloud coverage due to their
superior penetrability and ability to measure backscatter,
significantly mitigate these challenges. By leveraging the
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complementary information between the auxiliary images and
the corresponding optical images, these methods [8], [9]
can reconstruct the contaminated image. However, due to
their distinct imaging mechanisms, SAR and optical images
manifest different characteristics of the observed objects,
thereby creating a substantial domain gap between them.
Existing methods frequently depend on the simplistic super-
imposition of SAR and optical image channels for data
fusion. This approach could result in inadequate information
complementarity and consequently lead to unstable model
performance [10], [11], [12].

Recently, [13] proposed a method to integrate SAR and
optical modalities through a dual-stream global–local fusion,
which significantly minimizes the domain gap effect aris-
ing from direct channel superimposition, yielding substantial
performance improvements. However, the image restoration
process employed by these methods is typically executed in
a single-stage fashion and often depends on intricate network
architectures. The single-stage network’s nonlinear representa-
tion capacity is frequently insufficient, making it challenging
to reconstruct the rich texture information present in images
under complex scenarios.

To solve the aforementioned problems and limitations,
we propose a method by jointing SAR and optical images mul-
timodal and cross-attention network (MMCANet) to recover
the missing regions in optical images. Specifically, we leverage
a dual-encoder structure to extract contextual information from
both SAR and optical images and employ a cross-attention
mechanism [14] to integrate features at low and high-level
representations, thus enabling multimodal data interaction.
This module seeks to maximize the compensatory capability
of SAR images for texture details. Furthermore, in light of the
stochastic nature of cloud coverage, we incorporate an atrous
spatial pyramid pooling (ASPP) [15] on the fused high-level
features to extract multiscale contextual information near the
cloud regions. This facilitates improved restoration of optical
images across a range of cloud coverage levels. To further
optimize the performance of MMCANet, we develop four pro-
gressive restoration architectures and investigate their potential
for cloud removal. The restoration process is decomposed into
several sub-tasks, gradually restoring high-resolution images.
As such, the proposed algorithm is capable of better integrating
multimodal data, resulting in high-quality, cloud-free images.

The contributions of our work can be summarized as
follows.

1) We propose a network for jointing SAR and optical
images, MMCANet. It extensively explores the benefi-
cial role of SAR in restoring reliable texture details and
maintaining the global consistency of the reconstructed
images, thus facilitating effective reconstruction of areas
obscured by cloud cover.

2) We combine the multimodal cross-attention module
and the ASPP module in our dual-stream network to
enhance the transmission of complementary information
embedded in SAR images and the global interaction
between contexts. This ensures that the structure of the
recovered regions remains consistent with the remain-

ing cloud-free areas, while also generating reliable
texture details.

3) We have developed a multistage remote sensing image
restoration framework and its variants, specialized for
high-quality cloud removal. We experimentally validated
their effectiveness and conducted a detailed analy-
sis, thereby providing a research direction for future
studies.

Organization. We propose the details of MMCANet and
four multistage image restoration algorithms in Section III.
All experimental results are given in Section IV. In Section V,
we analyze the comparison results with other baselines in
detail. Finally, we summarize this article in Section VI.

II. RELATED WORK

A. Single-Stage Methods for Cloud Removal

The single-stage architecture is commonly employed in
cloud removal networks, employing diverse functional compo-
nents to enhance performance. Enomoto et al. [16] harnessed
the substantial generative capabilities of conditional generative
adversarial networks (cGAN) for thin cloud removal. Lever-
aging both NIR and optical images as inputs, their approach
effectively eliminates clouds from visible light images when
they are perceptible in the NIR images. Pan [17] intro-
duced the spatial attention mechanism into the task of cloud
removal and proposed a spatial attention generative adversar-
ial network (SpA GAN) which only uses SAR images as
input. This method focuses the network’s attention more on
cloud regions, thereby greatly improving the quality of the
restored image. Bermudez et al. [10] employed cGANs to
establish the relationship between optical and SAR images,
using SAR to obtain optical images directly. However, the
inherent differences between the two modalities, the generated
optical images lack quality assurance. Grohnfeldt et al. [11]
proposed a novel method based on cGAN for cloud removal
by fusing images of the two modalities. They enhanced
the ability to extract features and fuse multimodal data.
Gao et al. [18] performed cloud removal by two-step. Ini-
tially, they generated simulated optical images using SAR.
Subsequently, they combined simulated optical, optical, and
SAR images to restore regions covered by clouds using GAN.
Meraner et al. [12] employed a deep residual neural network
to remove clouds by concatenating SAR and optical images.
This fusion method may result in the loss of local information
and is ineffective in reconstructing regions with significant
cloud coverage.

In order to effectively leverage the complementary infor-
mation inherent in SAR and optical images, [13] devised
a dual-stream cloud removal (GLF-CR) algorithm aimed at
extracting both global and local features from SAR and
optical datasets while facilitating feature fusion. Integration of
the Swin transformer and attention mechanism significantly
bolsters the model’s feature extraction capabilities. Nonethe-
less, it demonstrates a tendency toward overcorrection in
tone prediction, leading to an overall darkened appearance
in the resulting images. Han et al. [19] introduced a novel
transformer-based network for feature extraction from the
fusion of SAR and optical data. However, their approach
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Fig. 1. Overall framework of our proposed model, MMCANet. The model consists of a dual-stream encoder and decoder, with the multiaxis feature fusion
(MFF) blocks being crucial components. The encoder is illustrated in four encoding stages, each of which stacks a different number of MFF blocks. Similarly,
the decoder also shows the number of stacked MFF blocks. k represents the MFF block numbers for each stage in the encoder and decoder. Fhigh

SAR and Fhigh
Opt

represent the encoded high-level features while F low
SAR and F low

Opt represent the encoded low-level features. Key components of the model also include the
multimodal cross attention module and ASPP.

merely concatenates SAR and optical channels without delving
deeply into the feature fusion intricacies between SAR and
optical imagery.

B. Multistage Methods for Image Restoration

Currently, the utilization of multistage structures in cloud
removal research remains limited, despite its widespread
application in computer vision. Prior studies [20], [21], [22]
have demonstrated that multistage networks can outperform
single-stage counterparts in sophisticated vision tasks such as
pose estimation and action segmentation. Filtjens et al. [21]
proposed a multistage spatial–temporal graph convolutional
network (MS-GCN) that replaced the initial stage of temporal
convolution with spatial graph convolution.

With advancements in deep learning, multistage models are
no longer limited to high-level tasks but have been diversified
and applied to various downstream tasks. Bai et al. [23],
Yan et al. [24], and Manu [25] have achieved better perfor-
mance by using multistage models to accomplish tasks such
as dehazing, deblurring, denoising, and compound restoration.
For example, [23] introduced MSPnet, a network composed
of three denoising stages. Each stage comprises a parallel
structure consisting of an encoder–decoder and a single-scale
branch. The network decomposes the denoising into multiple
sub-tasks, allowing for the gradual removal of noise through
progressive steps.

III. METHOD

This section is composed of four parts: 1) single-stage
image restoration; 2) multistage progressive image restoration

(MPIR); 3) optimization objective of MMCANet; and 4) eval-
uation metrics.

A. Single-Stage Image Restoration
Fig. 1 illustrates the proposed MMCANet (single-stage

image restoration variant). The proposed network employs a
traditional encoder–decoder architecture to restore degraded
images by harnessing multiscale feature extraction and fusion.
Specifically, the cloudy and SAR images are first fed into
the proposed dual-stream network to generate diverse levels
of features for the subsequent fusion module. The low- and
high-level features are then input into the cross-attention
module to generate two joint attention maps AP low

Opt−S AR

and APhigh
Opt−S AR . To integrate the aforementioned high-order

and low-order features for image restoration, we introduce
a low-high level feature fusion module. Subsequently, the
optical-SAR fused feature is utilized as input to the decoder
for image restoration. More details about these modules will
be given in Sections III-A1–III-A3.

1) Dual-Stream Network: Previous research often leverages
early fusion of SAR and optical images (i.e., concatenating
the images prior to feature extraction) to perform modal-
ity integration. However, due to the domain gap between
SAR and optical modalities, the integrated feature extrac-
tor cannot effectively extract mode-specific features, leading
to unstable cloud removal outcomes. Thus, to amplify the
use of complementary information inherent in SAR images,
we utilize a dual-stream structured network to perform
mode-specific feature extraction. Specifically, the dual-stream

Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on April 22,2025 at 14:17:25 UTC from IEEE Xplore.  Restrictions apply. 



5618313 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Fig. 2. Pipeline of MFF block. (a) Details of the MFF Block. It concludes
three branches. (b) Kernel basis attention (KBA) module in MFF block.

network is composed of numerous multiaxis feature fusion
(MFF) blocks [26] [as presented in Fig. 2 (a)], each having
distinct kernel sizes for the optical and SAR modalities. The
MFF block enables the network to extract detailed channel
and spatial information through a diverse set of kernel bases,
thereby facilitating the adaptive modeling of various local
structures.

The MFF block initially encodes the input features through
layer normalization, which aims to stabilize the train-
ing process and facilitate spatial information aggregation.
Subsequently, three operators—namely, depth-wise convolu-
tion (DWconv) [27], channel attention [28], and Kernel basis
attention (KBA) [26]—are utilized to extract comprehensive
mode features. The 3 × 3 DWconv is designed to capture
spatially invariant features, while channel attention serves
to modulate feature channels. KBA module is intended to
manage spatial features adaptively, which is illustrated in
Fig. 2(b). Specifically, at each pixel position, the KBA mod-
ule utilizes the learned kernel bases to compute localized
feature representations and predicts a pixel-wise coefficient
vector. This vector is subsequently used to conduct a linear
combination of various kernel bases, thereby generating the
final feature representation. The pixel-wise coefficient vec-
tor is learned during training and predicted for each pixel
position, allowing adaptive aggregation of spatial information
and improving model performance. At last, a residual shortcut
with point-wise multiplication is applied, promoting training
convergence and directly fusing diverse features from the three
branches. To further enhance the MFF’s nonlinear transforma-
tion capability, we attempt to replace the 3 × 3 convolution
in DWconv with a 5 × 5 convolution. Although Table II show
s stronger restoration capability, the computational workload
significantly increased.

2) Multimodal Cross Attention Module: The SAR and
optical images have different physical properties and imag-
ing mechanisms result in different information expression
formats. SAR can provide detailed structural information,

including edge details and texture features of the contam-
inated area, while optical images can offer rich spectral
information to achieve higher spectral fidelity in the generated
images. Thus, leveraging both SAR and optical features can
provide intensive fine-grained information for image restora-
tion task and bring high-quality results. Inspired by that,
we introduce a multimodal cross-attention module to per-
form the cross-modal information integration based on the
extracted domain-specific features. The proposed multimodal
cross-attention module aims to take the extracted low-level
and high-level features from the dual-stream network as the
input to generate high-dimensional joint features via the cross-
attention mechanism (as illustrated in Fig. 1). Specifically, the
single modality attention mechanism initially transforms the
single modality features, FOpt and FSAR, into three distinct
feature maps: QOpt, QSAR, KOpt, KSAR, and VOpt, VSAR, using
1 × 1 convolutions. Subsequently, the transpose of the query
feature Q is multiplied by the key feature K . This product is
then passed through a softmax layer to derive the self-attention
map P . The equations to extract the low-level self-attention
maps for both optical and SAR modalities are as follows:

P low
Opt = softmax

(
Qlow

Opt
T

⊗ K low
Opt

)
(1)

P low
SAR = softmax

(
Qlow

SAR
T

⊗ K low
SAR

)
. (2)

Then, the self-attention maps generated from both SAR
and optical modalities are input into the cross-attention fusion
mechanism. This results in a joint weighted feature map, which
can be represented as

P low
Fuse = P low

Opt ⊙ P low
SAR (3)

AP low
Opt , AP low

SAR =

(
P low

Fuse ⊙ V low
Opt

)
,
(

P low
Fuse ⊙ V low

SAR

)
(4)

AP low
Opt−S AR = AP low

Opt ⊙ AP low
SAR. (5)

Similarly, the high-level features can be formulated as

Phigh
Fuse = Phigh

Opt ⊙ Phigh
SAR (6)

APhigh
Opt , APhigh

SAR =

(
Phigh

Fuse ⊙ V high
Opt

)
,
(

Phigh
Fuse ⊙ V high

SAR

)
(7)

APhigh
Opt−S AR = APhigh

Opt ⊙ APhigh
SAR . (8)

3) Low–High-Level Feature Fusion: To enhance the inte-
gration of the extracted joint feature maps, a multiscale feature
fusion module is proposed, ensuring the complementarity of
low-to-high-level features. The feature fusion mechanism first
endeavors to concatenate the joint feature map alongside the
cross-modality low/high-level features, expressed as

F low
Opt−S AR = concat

(
F low

SAR, F low
Opt , AP low

Opt−S AR

)
(9)

Fhigh
Opt−S AR = concat

(
Fhigh

SAR, Fhigh
Opt , APhigh

Opt−S AR

)
. (10)

Subsequently, an ASPP module is introduced to aggregate
contextual information across varying scales from the high-
level features. This is particularly beneficial as these high-level
features inherently possess a more expansive receptive field.
Specifically, for the generated Fhigh

Opt-SAR via cross-attention,
3 × 3 convolutions with sampling rates of 6, 12, and 18 are
employed to capture features spanning diverse receptive field
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Fig. 3. Workflow of multistage remote sensing image restoration algorithms. (a) Architecture diagram of MPIR1. (b) Architecture diagram of MPIR2. The
gray box represents ORSnet. (c) Architecture diagram of MPIR3. (d) Architecture diagram of MPIR4. The blue dashed arrows and red dashed arrows represent
concatenation. The solid blue lines represent the transfer of information between two stages and the arrows point to the direction of information transfer.

sizes. Additionally, pooling operations employ a 1×1 convolu-
tional kernel to amalgamate and integrate channel information
at each spatial location of the feature map. As depicted
in Fig. 1, the feature maps extracted from the four components,
possessing identical dimensions, are concatenated. This is
followed by feature fusion and dimensionality reduction via
a 1-D convolutional layer, culminating in the final representa-
tion FhighASPP

Opt-SAR

FhighASPP
Opt−S AR = AS P P

(
Fhigh

Opt−S AR

)
. (11)

Finally, both the high-level and low-level feature maps are
concatenated and jointly utilized as input to the decoder

F Fuse
Opt−S AR = concat

(
FhighASPP

Opt−S AR, F low
Opt−S AR

)
. (12)

B. Multistage Progressive Image Restoration

To improve the quality of the restored images, we employ
the MPIR strategy, which progressively refines images across
multiple stages. The restoration process commences at the
first stage using a low-resolution variant of the input image.
Subsequently, the output from each stage is channeled as input
to its successor, culminating in the acquisition of the final high-
resolution image. We have developed four MPIR strategies,
each characterized by unique feature connection methodolo-
gies, to facilitate high-quality image restoration (as depicted
in Fig. 3).

1) MPIR1: In the first MPIR strategy, a three-stage image
restoration process is adopted, incorporating intermediate fea-
ture connections. The MMCANet, as previously mentioned,
functions as the primary feature extraction network, yield-
ing fused cross-multimodal features tailored for restoration
endeavors. Notably, features produced by each stage, prior
to the terminal convolution, serve as connectors between
respective stages. As illustrated by the blue dashed lines, these
features are subsequently merged with the ones stemming from
the new input postconvolution.

2) MPIR2: Although the MMCANet is adept at assimilat-
ing extensive contextual information, there is a risk of local
semantic information loss. To address this, our second MPIR
strategy substitutes the MMCANet in the third restoration
stage with an original-resolution subnetwork (ORSnet) [29].
This approach operates convolutions at the native resolution,
ensuring the retention of delicate local features. The structure
of the ORB block, depicted in Fig. 4, is primarily built

Fig. 4. Detailed diagram of the ORB in ORSNet. The ORB consists of
multiple CAB blocks, with the details of a CAB block shown within the
green box. GAP stands for global average pooling.

from multiple channel attention blocks (CABs) [30]. Through
weighting each channel, the CAB modulates the significance
of individual channels across the feature map, thus augmenting
the network’s feature extraction capability.

3) MPIR3: Inspired by the residual structure [31], which
introduces shortcuts to facilitate the flow of information
throughout the network, we replace the intermediate connec-
tion with skip connections across different restoration stages.
This approach not only bolsters the network’s robustness but
also refines the generated image by amalgamating features
from the native resolution data.

4) MPIR4: Generally, traditional progressive restoration
algorithms encompass three distinct stages. However, in sce-
narios where the depth network might amplify noise inherent
in the input image or artifacts within the produced image, the
result could be suboptimal restoration outcomes. To counteract
this, we have streamlined the restoration process in MPIR3 to
a two-stage approach. Empirical evaluations underscore the
efficacy of this modification.

C. Optimization Objective

Given the predicted image X and the ground truth Y ,
we utilize the L1 (average absolute error) as the fundamental
error function, which is defined as follows:

L1 =
∥X − Y∥1

N
(13)

where N is the total number of pixels.
Structural similarity index (SSIM) quantifies the similarity

between two images and assesses the quality degradation by
measuring the loss of structural information

SSI M =
(2µXµY + C1)(2σXY + C2)(

µ2
X + µ2

Y + C1
)(

σ 2
X + σ 2

Y + C2
) (14)
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where µ, σ , σXY denote the mean, variance, and covariance of
X and Y . C1 = 0.012 and C2 = 0.032 to avoid zero numerator
or denominator.

In image restoration, SSIM can be utilized as a loss function
during training to guide the optimization process and enhance
the fidelity of the reconstructed images. By minimizing the
SSIM loss, the generated images can better preserve struc-
tural details, textures, and overall visual similarity with the
original images. The mathematical formulation of the SSIM
loss function is as follows:

LSSIM = 1 −
1
N

N∑
p=1

SSI M(p) (15)

where p is the center pixel of an image patch. The size of the
patch and Gaussian filter is 11 × 11.

To acquire cloudless images featuring sharp boundaries,
a custom loss function Lsum is derived by taking the sum of
the two aforementioned loss functions

Lsum = L1 + LSSIM. (16)

D. Evaluation Metrics

The performance of cloud removal is assessed using four
widely used metrics: SSIM, mean absolute error (MAE),
spectral angle mapper (SAM), and peak signal-to-noise ratio
(PSNR). PSNR assesses the ratio between the maximum
achievable power of a signal and the power of the noise
impacting the signal, typically expressed in decibels (dB). Ele-
vated PSNR values signify heightened resemblance between
the reconstructed image and the original image, implying
superior image quality with reduced distortion or noise.
MAE quantifies the average pixel-wise disparity between the
reconstructed image and the ground truth image, providing a
measure of overall reconstruction accuracy by accounting for
absolute differences regardless of error direction. A diminished
MAE value denotes a smaller average error magnitude. PSNR,
along with SSIM, and MAE are employed to evaluate spatial
structure restoration, while SAM denotes the degree of spectral
information preservation in the restored outcomes.

For the predicted image X and the ground truth Y with pixel
values xi and yi , the metrics are calculated as given by

MAE =
1
n

n∑
i=1

|yi − xi | (17)

mse =
1
n

n∑
i=1

|yi − xi |
2 (18)

PSNR = 20log10

(
1

√
mse

)
(19)

where n represents the total number of pixels, and mse means
mean square error.

SAM treats each pixel’s spectrum as a high-dimensional
vector and evaluates spectral similarity by computing the
angle between two vectors. A smaller angle indicates greater
similarity between the spectra

SAM = arccos

 ∑n
i=1 xi · yi√∑n

i=1 x2
i ·

∑n
i=1 y2

i

. (20)

IV. EXPERIMENT

A. Training Details

The proposed framework is implemented through the
PyTorch framework, which is publicly accessible. The training
process is set to run for a maximum of 50 epochs to ensure
convergence. The learning rate is 1 × 10−4 and is reduced by
a factor of 0.1 every 25 epochs. The batch size is 32.

To improve efficiency, all experiments are executed on GPU
and leverage a dual-core parallel. Network parameters are
optimized using the Adam optimizer [32].

B. Dataset

All experiments are conducted using the SEN12MS-CR [33]
dataset, which is a publicly available large-scale dataset
for cloud removal in remote sensing. It consists of four
sub-datasets corresponding to the seasons: spring, summer,
fall, and winter. Taking the spring sub-dataset as an example,
each image in the dataset, which has a size of 256 × 256,
is composed of corresponding two-band SAR images, 13-band
cloud-free, and cloud-afflicted optical images.

To improve the efficiency of model training, we choose the
42 interested regions (IROs) in spring data. The SEN12MS-CR
dataset is not officially divided into dataset, validation set,
and test set. In order to prevent overfitting in model training,
we choose to divide the dataset, validation set, and test set in
the ratio of 20:1:1, so that the training set has sufficient data
volume. Specifically, we select two IROs with relatively evenly
distributed cloud cover at different levels as a test set. The
other 38 IROs as the training set, while two additional IROs
are designated as the validation set. The training set consists of
25 521 images, the validation set includes 1244 images, and
the test set has 1453 images. The images are all resized to
128 × 128 pixels. In addition, following the data processing
approach of [13], we crop the first channel data of SAR images
to [-25, 0], the second channel data to [-32.5, 0], and finally
scaled them to [0, 1]. For cloud-free optical images and cloudy
images, we only select the RGB channels, cropped them to
[0, 10 000], and normalized them to [0, 1]. This data pro-
cessing approach is used for all experiments presented in this
article. Moreover, in order to prevent overfitting during testing,
based on the original spring test set, we select datasets from
other seasons as the test set to evaluate the generalization abil-
ity of the model. Specifically, we randomly select 951 images
from the summer sub-dataset, 1514 images from the fall sub-
dataset, and 954 images from the winter sub-dataset.

C. Comparative Baselines

In this article, we compare our proposed method with
several typical cloud removal algorithms.

1) McGAN [34]: An approach that uses the joint data
of SAR and optical images as input and employs the
U-Net as a generator to restore cloud-free images from
cloudy ones.

2) SpA GAN [35]: A method that employs the spatial atten-
tion [36] as the generator, which only utilizes cloudy
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TABLE I
PERFORMANCE OF OURS METHOD ON THE SEN12MS-CR DATASET

images as input and does not incorporate auxiliary SAR
images.

3) DSen2-CR [12]: A residual structure based on the mod-
ification of the Deep Sentinel-2 ResNet [37] which takes
the concatenated optical and SAR images as input.

4) GLF-CR [13]: It stacks multiple local modules for
information interaction between the two modalities,
which significantly improves the effectiveness of image
restoration.

5) Uformer [19]: A network derived from a U-shaped
transformer-based network [38], which also takes the
concatenated data of SAR and optical images as input.

D. Experiments of All Methods on SEN12MS-CR

To rigorously evaluate the generalization ability of our
proposed method, we conduct both in-domain and out-of-
domain experiments on all baseline techniques. The in-domain
evaluation focuses on analyzing the removal performance
under conditions similar to the training dataset. In contrast, the
out-of-domain test measures the effectiveness of the removal
process on unseen data, especially in different seasons such as
summer, autumn, and winter. Table I summarizes the quantita-
tive results of our method in-domain and out-of-domain, which
demonstrates the feasibility and generalization of the proposed
method. Tables II and III show the quantitative comparison
results of our method with all baselines, further verifying that
the proposed method is a reliable solution for cloud removal.
For all experimental results, a more detailed analysis will be
given in Section V.

E. Analysis of MPIR for Could Removal

Similarly, we conduct both in-domain and out-of-domain
experiments to assess the effectiveness of the proposed MPIR
strategy in comparison to the standalone MMCANet.

1) In-Domain Testing: Fig. 5 presents a visual comparison
of the MPIR variants against the standalone MMCANet.
We can observe that all MPIR variants surpass the performance
of the MMCANet baseline. The red boxes emphasize the
specific regions chosen for a detailed comparison. We choose a
range of terrains with different cloud cover intensities to inves-
tigate the proficiency of progressive algorithms in conserving
the original regions and maintaining edge details. A scrutiny
reveals that all four algorithms yield commendable results
in cloud removal without introducing discernible artifacts.
Evaluating color fidelity, MPIR1, MPIR2, and MPIR4 display
a color distribution that closely aligns with the original image.
Conversely, MPIR3 lags behind in this metric. When it comes

to edge preservation, MPIR1, MPIR2, and MPIR4 hold a
distinct edge over MMCANet.

Furthermore, we note that MPIR1’s cloud removal efficacy
diminishes significantly in regions with dense cloud cover,
leading to lingering pseudo-shadows, particularly evident in
the red regions of the fourth row. The granularity of recovery
in the cloud-covered areas also leaves room for improvement.
Conversely, in cloud-free zones, MPIR2 consistently outper-
forms MMCANet in preserving inherent data. This superior
preservation is largely credited to the deliberate architec-
ture of MPIR2’s concluding phase, designed explicitly for
high-fidelity resolution maintenance. Nonetheless, in terms
of rejuvenating areas obscured by clouds, while the global
land contour is discernibly reconstructed, the intricate masonry
patterns within remain somewhat indistinct.

Additionally, we observe that the cloud removal efficacy
of the MPIR3 strategy is inferior to that of the single-stage
MMCANet irrespective of the cloud density. One possible
explanation for MPIR3’s mediocre performance in image
restoration is the excessive depth of the network, which may
lead to a loss of intricate details and local information during
propagation. To address this issue, we have streamlined the
depth of the MPIR3 and proposed a two-tiered architecture
named MPIR4. This updated model, MPIR4, demonstrates
enhanced texture and structural fidelity in the reconstructed
images. In areas devoid of cloud interference, the restored
results closely resemble the original image.

To evaluate the cloud removal performance quantitatively,
we utilized four distinct metrics on the spring dataset. Detailed
results are tabulated in Table IV. While MMCANet serves as
a benchmark, both MPIR4 and MPIR2 demonstrate marked
enhancements in certain metrics, underlining the efficacy of
these multistage algorithms for cloud removal tasks. The sub-
optimal values for MPIR1 can be ascribed to its constraints in
addressing cloud-covered areas. As for MPIR3, its diminished
metric scores can largely be attributed to the pronounced
information loss within the deep network structure.

2) Out-of-Domain Testing: Similarly, we also conduct
experiments under out-of-domain settings to assess the
robustness of MPIR algorithms. The quantitative results are
presented in Table IV, and we can observe that MPIR4 and
MPIR2 demonstrate stable performance across all datasets,
exhibiting strong robustness. In contrast, the performance of
MPIR1 and MPIR3 displays inconsistency depending on the
dataset, hinting at a reduced capacity for generalization.

F. Ablation Analysis

1) Major Components: To evaluate the impact of the key
components in the proposed MMCANet, we perform ablation
studies in an in-domain setting. We conduct the effects of
each component (i.e., SAR integration, cross-attention module,
and ASPP) and their various combinations. Ablation stud-
ies results are presented in Table V, indicating a positive
contribution from each component within the MMCANet
framework toward the final outcomes. Since the dual-stream
network configuration becomes inapplicable when only cloudy
optical images are employed as inputs, we modify the input
by concatenating the channels of SAR and optical images.
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TABLE II
IN-DOMAIN PERFORMANCE COMPARISON. MMCANET REPRESENTS THE USE OF 3 × 3 CONVOLUTION IN DWCONV WITHIN MFF, WHILE MMCANETL

REPRESENTS THE USE OF 5 × 5 CONVOLUTION IN DWCONV WITHIN MFF

TABLE III
OUT-OF-DOMAIN PERFORMANCE COMPARISON. MMCANET REPRESENTS THE USE OF 3 × 3 CONVOLUTION IN DWCONV WITHIN MFF,

WHILE MMCANETL REPRESENTS THE USE OF 5 × 5 CONVOLUTION IN DWCONV WITHIN MFF

The numeric results demonstrate the pivotal role of SAR
modality integration in providing extra information for the
cloud removal task. Furthermore, the pronounced boost in
SSIM underscores the capacity of cross-attention to better
harness the texture details from SAR images, underscoring the
significance of merging SAR and optical imagery. Addition-
ally, implementing ASPP has invariably led to improvements
across all evaluative metrics. This insight suggests that elevat-
ing the network’s feature extraction prowess in a constructive
manner can furnish a wealth of contextual details, a factor
paramount for amplifying network efficacy.

2) Loss Components: To assess the beneficial impact of
the SSIM loss in the task of cloud removal, we contrasted
the performance of MMCANet on the spring test dataset,
considering both the L1 loss and Lsum loss as independent
variables. The findings are detailed in Table VI. The marked
enhancement in the assessment metrics underscores the impor-
tance of choosing the right loss function, which can refine the
network’s effectiveness and lead to pronounced performance
improvements.

V. DISCUSSION

In this section, we will analyze in detail the performance of
the proposed method compared with other baselines for cloud
removal.

To evaluate the performance of various cloud removal algo-
rithms, we select six scenarios with cloud coverage ranging
from 0%–10%, 10%–20%, 20%–40%, 40%–60%, 60%–80%,
and 80%–100%. Fig. 6 presents the visual results of various

algorithms for cloud removal. As shown in Fig. 6, our method
achieves higher image fidelity than others, meaning that the
generated images closely match the color distribution of the
ground truth. McGAN and GLF-CR exhibit compromised
color fidelity. This deficiency might arise from the models’
inability to accurately capture the color mapping relationship
between input and output images, leading to a notable degra-
dation in the visual quality of their results.

Furthermore, compared to alternative networks, our method
showcases superior image restoration, preserving intricate
details under both thick and thin cloud conditions. McGAN
and SpA GAN both utilize analogous generator architectures.
However, McGAN surpasses SpA GAN in texture restora-
tion, owing to the additional texture information furnished
by SAR. However, when the cloud coverage exceeds 20%,
the McGAN also loses its cloud removal capability. DSen2-
CR exhibits limited capability in cloud and cloud shadow
removal, as undesirable artifacts are still noticeable in the
resulting images. Specifically, under thick clouds that obstruct
the line of sight, the generated images can only retain
minimal useful information. For GLF-CR, despite its low
image fidelity leading to lower image quality, its ability to
restore image details can still be observed, as in the scenario
in the fourth row. Uformer excels in capturing both local
and global dependencies crucial for image restoration, thus
markedly improving cloud removal efficacy. While it adeptly
manages thin clouds without leaving visible artifacts, its pro-
ficiency dwindles when confronted with regions blanketed by
dense clouds.
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Fig. 5. Visual comparison of MPIR variants and MMCANet for cloud removal. The second row shows the local enlargement of the corresponding regions
outlined in red boxes.

TABLE IV
PERFORMANCE COMPARISON OF MPIR VARIANTS. THE BOLD AND ITALIC ENTRIES INDICATE THE OPTIMAL

AND SUBOPTIMAL RESULTS, RESPECTIVELY

TABLE V
ABLATION STUDY OF MMCANET OF SAR,

CROSS-ATTENTION, AND ASPP

In terms of information preservation in cloud-free
regions, our approach consistently outperforms other methods.

TABLE VI
ABLATION EXPERIMENT OF SINGLE-STAGE NETWORK

WITH DIFFERENT LOSSES

The McGAN and SpA GAN tend to preserve a blurred
texture in these regions while DSen2-CR stands out with its
impeccable performance in maintaining clarity. This success
can be attributed to its unique residual structure and the
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Fig. 6. Comparison results of cloud removal under different cloud and cloud shadow coverage scenes. (Top to bottom) Cloud shadow coverage ranging from
0%–10%, 10%–20%, 20%–40%, 40%–60%, 60%–80%, and 80%–100%, respectively.

cloud-adaptive regularized loss function. Similarly, Uformer
also excels in safeguarding the integrity of data in cloud-
free zones.

In order to examine the ability of the network to
recover details in complex scenarios, we select different
complexity-building coverage scenes (as shown in Fig. 7).
We can observe that our proposed approach present decent
image restoration ability regarding the details of complex
buildings, even in the presence of fog or thin/thick clouds.
The SpA GAN experiences difficulty in preserving details
within complex scenes, largely attributed to the lack of SAR
information. In contrast, McGAN, DSen2-CR, and Uformer
use the fusion method that combines SAR and optical image
channels directly, which produce blurred and less detailed
images due to the heterogeneity of multimodal data. While
GLF-CR occasionally yields blurred images, it remarkably
retains substantial edge details.

Table II showcases the quantitative results obtained from
the spring dataset. These metric outcomes align well with our
prior visual analysis. Specifically, McGAN, SpA GAN, and
GLF-CR display elevated SAM values, pointing to notable
spectral drifts and color anomalies. Both McGAN and SpA

GAN-generated images exhibit pronounced deviations from
the authentic data, translating to reduced likeness. Meanwhile,
DSen2-CR demonstrates superior data retention in regions
devoid of clouds, leading to commendable quantitative scores.
However, due to the limited capabilities of GLF-CR and
Uformer in reconstructing images affected by dense clouds,
they record a heightened MAE and a diminished SSIM in
comparison to our proposed method.

It is imperative to highlight that the disparities in cloud
cover distribution across these datasets might lead to vari-
ability in the results. For instance, the winter dataset might
exhibit a larger count of cloud-free images. As depicted in
Table III, elevated SSIM and PSNR values, combined with
diminished MAE and SAM metrics, underscore the superior
robustness and generalizability of the proposed model. Fur-
thermore, although the SNR of input SAR images varies (even
within the same dataset), the performance of the proposed
method remains stable. The key factor is the extraction of
edge features from the SAR images, as the proposed network
performs effectively when the SNR exceeds 20 dB. Based on
existing works, it can be assured that this method applies to
most spaceborne SAR images, not only from public datasets
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Fig. 7. Comparison results of cloud removal under different building coverage scenes. From left to right, the columns represent SAR, cloudy optical image,
ground truth, and comparison results of McGAN, SpA GAN, DSen2-CR, GLF-CR, Uformer, and MMCANet.

but also from open-access data produced by on-orbit satellites,
such as Sentinel-1.

Practical Usage of MMCANet: The computational com-
plexity of single-stage network MMCANet is comparatively
lower, yet its performance is marginally inferior to that of
certain multistage networks. The computational complexity of
multistage networks increases with stage expansion to pro-
vide better restoration performance. Consequently, in practical
applications, the selection of an appropriate cloud removal net-
work should be tailored to the specific remote sensing image
application scenarios. For instance, in the case of rapid-onset
and extensive flood disasters, there is a heightened demand
for the real-time capabilities of cloud removal technologies,
making the low-computational single-stage network a more
suitable choice. For applications that require coarse image
restoration quality, such as some agricultural monitoring,
which often involves large-scale areas and does not require
high spatial detail, a single-stage network is suitable due
to its lower computational complexity. However, for appli-
cations like urban planning and management, which require

detailed and fine-grained restoration images to capture subtle
features and variations, multistage restoration is necessary.
For future work, we plan to implement techniques such as
model pruning to reduce the parameter count of the multistage
network, thereby minimizing computational resource require-
ments while maintaining high performance.

VI. CONCLUSION

In this article, we propose a single-stage dual-stream fea-
ture fusion network MMCANet along with multistage cloud
removal algorithms to address the cloud removal task. A dual-
stream network is designed to allow the incorporation of
the SAR modality and the optical modality, which provide
more fine-grained texture information for image restoration.
Subsequently, a cross-attention mechanism is proposed to
explore the cross-modal fusion between the high-dimensional
features of optical and SAR, enabling the interaction between
high-order and low-order features for information comple-
mentarity. Furthermore, we utilize the ASPP module in the
interacted high-order features to extract multiscale features
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and enrich the extracted semantic information to capture
the cloud area around the target, significantly improving
the ability of cloud cover removal at different levels. The
performance of the proposed single-stage network surpasses
the state-of-the-art approaches. To further improve the perfor-
mance, we explore multistage image restoration algorithms.
We devise four distinct multistage architectures tailored for
remote sensing image restoration and conduct a thorough anal-
ysis of their strengths and weaknesses. Experimental results
validate that two of our devised progressive algorithms yield
notable performance enhancements. In the future, we will
work on developing lightweight cloud removal models to
enhance the application of the algorithm in edge devices or
actual scenarios.
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