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ABSTRACT
There has been a growing interest in cross-source searching to gain
rich knowledge in recent years. A data lake collects massive raw
and heterogeneous data with different data schemas and query in-
terfaces. Many real-life applications require query answering over
the heterogeneous data lake, such as e-commerce, bioinformatics
and healthcare. In this paper, we propose LakeAns that semantically
integrates heterogeneous data schemas of the lake to enhance the se-
mantics of query answers. To this end, we propose a novel framework
to efficiently and effectively perform the cross-source searching. The
framework exploits a reinforcement learning method to semantically
integrate the data schemas and further create a global relational
schema for the heterogeneous data. It then performs a query answer-
ing algorithm based on the global schema to find answers across
multiple data sources. We conduct extensive experimental evalua-
tions using real-life data, and our approach outperforms existing
solutions in terms of effectiveness and efficiency.

1 INTRODUCTION
The increasing diversity of information and products has led to
the evolution of search and recommendations from primarily uni-
directional and text-based to multi-model and heterogeneous data
sources [29, 46]. Many industrial search systems have emerged in-
terested in discovering a heterogeneous data lake to enhance the an-
swer semantics and the search quality [14, 22]. A data lake includes
multiple data models (e.g., structured, semi-structured, and unstruc-
tured) with different data schemas and query interfaces [24, 33].
For instance, an enterprise data lake as shown in Figure 1 naturally
organizes transaction data in different data formats and models. Both
user and product data are maintained in relational tables (see Fig-
ures 1(a)-(b)), which associates with the relation schema as shown
in Figure 1(c). Orders and social networks are stored as a JSON

document and a graph, respectively (see Figures 1(d)-(e)).
Exploring these data to obtain more enriching and complete

knowledge is an important task for data management and appli-
cations, such as pharmacy, bioinformatics and healthcare [10, 18].
Consider an analysis task over the social e-commerce lake as shown
in Figure 1, analysts would like to determine whether to recommend
a product to a user Miller. This requires inspecting the holistic view
of the customer information, i.e. (i) the personalized features and (ii)
the social relationship of Miller. It is necessary to check the user and
product information in Figures 1(a) and (b) for condition (i), and the
social graph in Figure 1(e) for condition (ii).

For a holistic insight into the heterogeneous data lake, we focus on
performing cross-source searching using a general query. Benefiting
from the theories and techniques of relational database management
systems (RDBMS), we utilize the SQL query to search for answers
across multiple heterogeneous data sources. The following example
motivates our work.
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Figure 1: Example of heterogeneous data lake.
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Figure 2: Example of SQL query and its answer.

EXAMPLE 1. To retrieve the customers and their friends who
have bought the products typed “Sports", a data scientist would like
to submit a SQL query 𝑄 illustrated in Figure 2(a) over the lake
shown in Figures 1. We can see that Smith and Franklin both bought
some products with the brand “Adidas" in the type of “Sports".
However, neither the relational tables 𝐷1, the JSON 𝐷2 nor the
graph 𝐷3 can completely reflect this information.

In this paper, we expect to find an answer like 𝑅(𝑄) reported
in Figure 2(b), which is created by the following three aspects: (i)
Considering the attribute and instance overlap, we think that “Cus-
tomer" and “User" refer to the same concept, similar for “Product"
and “Item". (ii) For the source 𝐷1 shown in Figures 1 (a)-(b), a set
of tuples with attributes “name" and “title" associated with the con-
cepts “Customer" and “Product" can be obtained based on 𝐷1. As
for 𝐷2 shown in Figure 1 (d), the structural relationship associated
with the concepts “Product" and “Brand" can be obtained. For 𝐷3
shown in Figure 1 (e), the “type" information of “Brand" can be
obtained. (iii) The answer 𝑅(𝑄) can be calculated by joining these
results returned from the different sources based on holistic relation
schemas for the concepts “Customer", “Product" and “Brand".



Clearly, 𝑅(𝑄) spans three different data models and completely
captures the relational information for customers, which is exactly
what the user wants or could be interested in.

Cross-source query answering also occurs in medicine discovery
scenarios where biologists would check the basic pharmacological
features of drugs and the interactions among drugs and protein
molecules in the human body. This paper aims to create a global
relational schema for querying across heterogeneous data sources.
We will support SQL queries across multiple data sources, and to
the best of our knowledge, this is the first paper to consider a global
relational schema for this purpose.

The query answering in a data lake faces many challenges pre-
sented as follows. Firstly (C1), how to create a global relational
schema that bridges the schema associations between different sources
is the first concern due to the heterogeneity and autonomy of the data
lake. Some relational schema learning approaches have been pro-
posed for a single data model such as for key-value stores [8, 12, 45],
for uncertain data [30]. These cannot be adapted to the lake with
multi-model data sources because they fail to extract the same or
similar semantics from heterogeneous concepts or classes in differ-
ent sources. A recent work [50] focuses on storing multi-model data
in RDBMS, which differs from our goal of supporting SQL queries
and exploring richer cross-source answers. Secondly (C2), how to
efficiently perform query answering based on an integrated rela-
tional schema to enhance the answer semantics of a SQL query over
the data lake. Most works have been studied to augment data lake
tables [13, 27], such as Infogather [48] is designed to obtain more
complete answers via entity augmentation and attribute discovery.
These are restricted to relational data and do not enrich semantics
with a global schema. Additionally, some engines have been pro-
posed to process distributed SQL, such as MuSQLE [20], Presto [38],
CockroachDB [43] and Polaris [5], but do not consider that in a data
lake with heterogeneous data models and query engines.

Main idea. To tackle these challenges, we present a schema
integration-based query answering framework. Every source 𝐷𝑖

maintains a local schema 𝐶𝑖 , and a mediator 𝑀 manages a global
relational schema 𝐶𝑔 that provides the schema associations between
different sources, and the mappings from 𝐶𝑔 to 𝐶𝑖 . A SQL query
is formulated based on 𝐶𝑔 and submitted to the mediator 𝑀 . The
framework consists of schema integration and query answering,
detailed in Section 3. We present classification-based method and
an edge table-based approach to break semantic gap between dif-
ferent data sources, and then build the global relational schema to
unify the semantics between the local schemas using a reinforce-
ment learning approach (for C1). The global schema generation is
considered a Markov decision process and is motivated by three
types of actions and a novel reward function based on a Q-learning
algorithm, introduced in Section 4. And then we present a query
answering approach based on schema integration to enhance the
answer semantics of SQL queries (for C2). Specifically, we enrich
logical search spaces by bridging the schema gap between the query
and the source schemas based on 𝐹𝑔. Semantic joining is proposed to
establish semantic associations between data instances of different
data sources to compute the final answers of the query, illustrated in
Section 5. Finally, we experimentally verify that LakeAns can find
the answers with greater coverage rate spending almost the same

time with the methods performing local evaluation in a single data
source, detailed in Section 6.

2 PROBLEM DEFINITION
2.1 Preliminary
Data lake. A data lake denoted by 𝐷 =

⋃𝑛
𝑖=1 𝐷𝑖 , collects a set of

heterogeneous data sources, such as JSON documents, graphs, re-
lational data and multimedia data (e.g., videos, images). Here we
mainly concern three general data models JSON, graphs, and rela-
tional databases presented as follows. Unstructured multimedia data
can be converted into structured scene graphs [47, 51] by extracting
all objects and their relations from images and videos, and will be
concerned in our future works.

JSON. A JSON object is a collection of key-value pairs {𝑘1 :
𝑎1, ..., 𝑘𝑙 : 𝑎𝑙 } that maps the key 𝑘𝑖 to the value 𝑎𝑖 . The JSON value
can be a boolean value, a numeric value, a string value, an array and
an object.

Graph. A graph is defined by 𝐺 = (𝑉 , 𝐸, 𝐿), where 𝑉 is a set of
nodes, and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges. 𝐿(𝑣) and 𝐿(𝑒) represent the
labels of 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸, respectively.

Relational database. A relation schema 𝑅 is associated with a
set of attributes of the form 𝑅(𝐴1, ..., 𝐴𝑘 ), where 𝐴𝑖 is an attribute
with domain 𝑑𝑜𝑚(𝐴𝑖 ), and the attribute 𝐴𝑖 of 𝑅 is written as 𝑅 [𝐴𝑖 ],
𝑖 ∈ [1, 𝑘]. A relation 𝐼𝑅 of schema 𝑅 is a set of tuples with attributes
𝐴𝑖 (𝑖 ∈ [1, 𝑘]) of 𝑅. A database schema is a pair (R, Σ), where
R = (𝑅1, ..., 𝑅𝑛) is a finite set of relation schemas, and Σ is a set
of constraints. A relational database D of R is (𝐷1, ..., 𝐷𝑛) that
satisfies all constraints in Σ, where 𝐷𝑖 is a relation of schema 𝑅𝑖 for
𝑖 ∈ [1, 𝑛].

These data models have heterogeneous schema semantics and
query interfaces. Below we discuss the key challenges of unifying
the data schemas and performing a general SQL query.

2.2 Problem Statement
Schema integration is an effective approach to bridge heterogeneous
schema semantics and provide a unified query interface for the
data lake. For example, 𝐶1, 𝐶2 and 𝐶3 shown in Figure 3 are the
local schemas of the relational database 𝐷1, the JSON document 𝐷2
and the graph 𝐷3 in Figure 1, respectively. We formally present a
relational schema graph as follows.

Relational schema graph. A relational schema graph is modeled
as a property graph 𝑆 = (𝑉𝑠 , 𝐸𝑠 , 𝐿𝑠 , 𝐹𝑠 ), where 𝑉𝑠 and 𝐸𝑠 are a set of
nodes and edges, respectively. 𝐿𝑠 is a labeling function such that for
each node 𝑣 ∈ 𝑉𝑠 , 𝐿𝑠 (𝑣) is a node label. 𝐹𝑠 (𝑣) is a set of attributes
{𝐴1, ..., 𝐴𝑘 } for each node 𝑣 .

In practice, a relational schema graph illustrates the relation
schemas and their reference constraints in a database schema. The
relation schema 𝑅(𝐴1, ..., 𝐴𝑘 ) is specified by a node 𝑣 ∈ 𝑉𝑠 whose
label 𝐿𝑠 (𝑣) is the relation name 𝑅, and 𝐹𝑠 (𝑣) captures its attributes
𝐴𝑖 for 𝑖 ∈ [1, 𝑘]. Each edge indicates the semantic relationships
among nodes. In this paper, an edge from 𝑢 to 𝑣 indicates that there
is a reference from 𝑅1 to 𝑅2, where 𝑅1 and 𝑅2 are relation schemas
encoded by 𝑢 and 𝑣 , respectively.

The local schema graph 𝐶1 of 𝐷1 shown in Figure 3 describes
the relational database schema in Figure 1(c), which includes an
edge connecting two relation schemas “User(name, location, buy)"
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Figure 3: Architecture of the schema integration S for 𝐷 consist-
ing of 𝐶𝑔,𝐶𝑙 and 𝐹𝑔.

and “Product(title, color)". In Section 4.2, we will introduce how to
create a local schema for different data sources.

To integrate heterogeneous data schemas and effectively support
query answering across multiple data sources, we create a global
relational schema graph, namely 𝐶𝑔 shown in Figure 3. 𝐶𝑔 is gener-
alized from the local schemas of the heterogeneous data lake and
stored in a mediator 𝑀 , which will be detailed in Section 4.3. How
to create an effective global schema 𝐶𝑔 for 𝐷 and efficiently support
SQL queries based on it is our main concern in this paper.

To uniformly query the heterogeneous data lake, we study the
query answering of SQL queries with SELECT-FROM-WHERE
clauses. A SQL query 𝑄 is formulated based on the global relational
schema 𝐶𝑔, and its answer after performing 𝑄 over the data lake is
formally defined as follows.

Query answer. Given a SQL query 𝑄 over the data lake 𝐷, an
answer for𝑄 is a set of tuples with attributes (𝐴1, ..., 𝐴𝑘 ), denoted by
𝑇 (𝑄), where (1) each 𝐴𝑖 (1 ≤ 𝑖 ≤ 𝑘) corresponds to an attribute in
the SELECT clause of 𝑄; and (2) each attribute values is an instance
value of 𝐷 .

Note that (i) 𝐴𝑖 may be an attribute of the relational database, a
key of the JSON object and an edge label of the graphs; and (ii) the
answer of 𝑄 follows a relational schema 𝑅(𝐴1, ..., 𝐴𝑘 ), which may
span multiple data sources of 𝐷 and can be deduced from 𝐶𝑔.

EXAMPLE 2. Figure 2 shows the answer of 𝑄 over the data lake
shown in Figure 1. The answer 𝑇 (𝑄) spans three data sources, i.e.,
𝐷1, 𝐷2 and 𝐷3, and follows a schema 𝑅 with attributes 𝐴 = {“name",

“knows", “title", “brand"} specified by the SELECT clause of 𝑄 . The
schema 𝑅 is deduced by joining the relation schemas “Customer"
and “Product" based on 𝐶𝑔 and projecting into the attribute set 𝐴.

3 QUERY ANSWERING FRAMEWORK
Figure 4 illustrates our query answering framework (namely LakeAns),
which aims at exploring the complete answers for SQL queries across
multiple heterogeneous data sources in the data lake.

The LakeAns consists of two components: offline schema integra-
tion and online query answering.

Schema integration. As for a data lake 𝐷 , we formulate a schema
integration paradigm S, which consists of a global schema 𝐶𝑔, a
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Figure 4: Overview of query answering framework.

set of local schemas 𝐶𝑙 extracted from 𝐷, and a mapping functor
𝐹𝑔. 𝐶𝑙 is built to bridge the schema gap between heterogeneous data
sources.𝐶𝑔 provides global relational schema and uniformly general
query interface for data scientists, which is created by integrating the
local schemas based on a reinforcement learning approach. The 𝐹𝑔
maps the concepts from 𝐶𝑔 to 𝐶𝑙 and benefits to query rewriting and
across-sources access over the data lake. Detains will be presented
in Section 4.

Query answering. Given a SQL query 𝑄 formulated based on 𝐶𝑔,
it is answered based on the integrated schema to enhance the query
semantics, as introduced in Section 5. We enrich logical plans of 𝑄
based on the local relational schema 𝐶𝑙 and the mapping functor 𝐹𝑔.
Thereafter, the local results computed from different data sources are
required to perform semantic joining to deduce a relational schema
based on the local schema 𝐶𝑙 to obtain the final answers for 𝑄 .

4 SCHEMA INTEGRATION
In this section, a schema integration approach is developed to create
a global relational schema graph to establish semantic associations
across different data sources in the data lake.

4.1 Method Overview
Given a data lake 𝐷 = {𝐷1, ..., 𝐷𝑚}, we define a schema integration
paradigm as S = ⟨𝐶𝑙 ,𝐶𝑔, 𝐹𝑔⟩. As shown in Figure 3, we have 𝐶𝑙 =⋃𝑚

𝑖=1𝐶𝑖 and 𝐹𝑔 =
⋃𝑚

𝑖=1 𝐹𝑖 .
As for 𝐶𝑙 , a classification-based method and an edge table-based

approach are introduced to create the local relational schema for
the JSON documents and the graphs, respectively. Details will be
described in Section 4.2.

To unify the schema semantics among the local schemas, a global
relational schema 𝐶𝑔 is required. We consider the generation of 𝐶𝑔
as a Markov decision process that aims to find the best relational
schema (i.e., state) for 𝐷 . This is done by performing a sequence of
transformations (i.e., actions)) on the local schemas to efficiently
support cross-source answering of SQL queries. Starting from the
local schemas 𝐶𝑙 , 𝐶𝑔 is created utilizing a reinforcement learning
approach motivated by three types of actions and a new reward
function. Details will be introduced in Section 4.3.

In the integration paradigm S, a query can be uniformly formu-
lated by using 𝐶𝑔 and completely answered based on 𝐹𝑔 and 𝐶𝑙 over
the heterogeneous data sources 𝐷 .

4.2 Local Schema Construction
For each heterogeneous data of 𝐷, local relational schema is con-
structed by doing the following two steps: (1) extracting a data
schema, and (2) transforming it into relational database schema.

3
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Figure 5: Example of local schema construction.

As for a relational database 𝐷𝑖 , 𝐶𝑖 is described by its database
schema where nodes are specified by the relation schemas of 𝐷𝑖

and edges represent the reference constraints among the relation
schemas. 𝐶1 shown in Figure 3 illustrates the relational schema of
the data source 𝐷1.

For JSON documents. Given a JSON document𝐷𝑖 , a classification-
based approach is used to construct its corresponding relational
schema. Firstly, we extract a tree-structured schema for 𝐷𝑖 based on
the JSON schema specification1. Secondly, we iteratively identify
collection-like keys and tuple-like keys from the JSON schema. At
each iteration, a unique relational schema is created by treating those
tuple-like keys as attributes, and there is a reference to the relation
schema encoded by the collection-like key.

Figure 5(a) illustrates the tree-structured JSON schema of 𝐷2
shown in Figure 1(d), and its relational schema is shown in Fig-
ure 5(b). Starting from an object 𝑢1, three tuple-like keys are iden-
tified, i.e., “customer", “totalprice" and “item", so that a relation
schema is created as ”Order(customer, totalprice, item)". Similarly,
a schema “Item(name, color, brand)" is created by another object
𝑢3 and its parent node 𝑢2 labeled “item". There is an edge from
the schema “Order" to “Item" because 𝑢2 is a collection-like key
represented by an array. Similar for the object 𝑢6.

For graphs. Given a graph database 𝐷𝑖 , an edge table-based ap-
proach is presented to create its relational schema graph 𝐶𝑖 . Firstly,
we summarize a graph schema by merging vertices with the same
type and summarizing the relationships. Secondly, we extract a set
of edge tables, each of which associates with a non-leaf vertex and a
set of its adjacent edges. An edge table naturally forms a relational
schema where the label of the vertex is relational name, and the la-
bels of adjacent edges are attribute set. If there is an edge connecting
two vertices, there is a reference between the two relational schemas
encoded by them.

For example, Figure 5(d) is a graph schema of 𝐷2 shown in
Figure 1(e), and its relational schema is shown in Figure 5(c).

4.3 Global Schema Generation
In this section, we introduce a reinforcement learning method (namely
LakeGrsg) to generate a global relation schema, which requires to
augment the semantic associations across multiple data sources and
to further efficiently support relational queries in the data lake.

4.3.1 Idea of LakeGrsg. Given a set of SQL queries and the
local schema 𝐶𝑙 of 𝐷, LakeGrsg aims to create a global relational
schema graph 𝐶𝑔 based on a Q-learning algorithm, such that these

1https://json-schema.org
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Figure 6: Overview of LakeGrsg for 𝐶𝑔 over 𝐷 .

queries can obtain the most richest answer semantics with the least
cumulative query time.

We consider the generation of 𝐶𝑔 as a Markov decision process
defined by a quadruple (𝑆,𝐴,𝑇 , 𝑅), where 𝑆 is a state space, 𝐴 is a
set of actions, 𝑇 is a transition function linking state-action pairs to
new states, and 𝑅 is a reward function that reports a reward value for
a state-action pair. In this paper, we design three types of actions,
i.e., linking, merging and splitting. The state is a relational schema
graph generated by taking the action. This process generates 𝐶𝑔
by interacting an agent with an environment. Figure 6 illustrates
the overview of LakeGrsg where the environment is a RDBMS. A
Q-learning algorithm is used to take actions on the environment
to maximize the expected rewards, which is recorded in a Q-table
for action-state pairs. In each step, the agent greedily select the
action with maximum expected rewards according to the Q-table
and change the state of the environment. The state and reward are
fed back into the agent to perform the next action.

Specifically, taking 𝐶𝑙 as an initial state, the agent works in the
following steps: for each iteration, (1) it selects an action 𝑎𝑡 and
creates a new state 𝑠𝑡 ; (2) the given SQL queries are performed
based on the new state; and (3) it computes a reward 𝑟 and updates
the value of Q-table based on the generated state. This process is
repeated until the maximum number of iterations is reached or a
finite number of actions are tried, and we can finally obtain a global
relational schema 𝐶𝑔 for 𝐷 .

The multi-model data is stored as relational tables based on 𝐶𝑙 to
support the execution of the given SQL queries. Furthermore, the
functor 𝐹𝑔 that records the mappings of concepts (i.e., relation names
and attributes) between 𝐶𝑔 and 𝐶𝑙 would be updated when an action
is taken in each iteration.

To enable to calculate the semantics of relations and instances,
we project the string values into an embedding space based on
the fastText database [26], which can handle out-of-vocabulary
words by learning character embeddings. As for a relation schema
𝑅(𝐴1, ..., 𝐴𝑘 ), ®𝑅 represents the embedding vector projected by the
value of 𝑅. We utilize Π𝑅 to represent the feature space associated
with the instance values of 𝑅. Let 𝑑𝑜𝑚(𝐴𝑖 ) be the instances of 𝐴𝑖 in
𝑅, and Π𝑅 (𝐴𝑖 ) be the embedding set of 𝑑𝑜𝑚(𝐴𝑖 ). A pivot vector is
used to represent the sample mean of Π𝑅 (𝐴𝑖 ), which is calculated by
the embedding mean of the values in 𝑑𝑜𝑚(𝐴𝑖 ), denoted by ®̀(𝐴𝑖 ).

We next introduce the action identification and a Q-learning based
state update.

4.3.2 Actions. Action space is defined by a set of transformations
(i.e., actions) about the relational schemas motivated by the unique
attributes in 𝐶𝑙 . This means that when an attribute is selected, the
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agent will determine how to transform the relational schema asso-
ciated with it. Based on the transformation, we further define three
types of actions: linking, merging and splitting to integrate the initial
relation schema.

Linking actions are introduced to complement implicit references
across multiple local schemas and unify the schema semantics of
different data sources. Splitting and merging actions are developed to
normalize schemas and make them to effectively support relational
query processing. Before detailing these actions, we first describe
how to identify whether an attribute 𝐴𝑖 of relation schema 𝑅1 can
join with the attribute 𝐵 𝑗 in the relation schema 𝑅2.

Given two relation schemas 𝑅1 (𝐴1, ..., 𝐴𝑘 ) and 𝑅2 (𝐵1, ..., 𝐵𝑙 ), 𝑅1
and 𝑅2 are semantically joinable on attributes 𝐴𝑖 and 𝐵 𝑗 , 𝑖 ∈ [1, 𝑘],
𝑗 ∈ [1, 𝑙], if (a) 𝐴𝑖 and 𝐵 𝑗 refer to the same or similar concept;
and (b) 𝐴𝑖 and 𝐵 𝑗 have similar value domains. Specifically, we
first check how close are ®𝐴𝑖 and ®𝐵 𝑗 in the embedding space. If the
similarity is greater than a threshold 𝛼 , we measure the distance
of ®̀(𝐴𝑖 ) and ®̀(𝐵 𝑗 ) using the cosine similarity. We say that 𝑅1 and
𝑅2 are semantically joinable on 𝐴𝑖 and 𝐵 𝑗 if 𝑐𝑜𝑠 ( ®𝐴𝑖 , ®𝐵 𝑗 ) ≥ 𝛼 and
𝑐𝑜𝑠 ( ®̀(𝐴𝑖 ), ®̀(𝐵 𝑗 )) ≥ \ where 𝛼 and \ are the thresholds for concept
similarity and pivot vector distance, respectively.

Linking action. There is a linking action on two joinable attributes
𝑅1 [𝐴𝑖 ] and 𝑅2 [𝐵 𝑗 ], which inserts an edge connecting 𝐴𝑖 of 𝑅1 and
𝐵 𝑗 of 𝑅2. Essentially, the linking action corresponds to complement-
ing a foreign key reference between 𝑅1 and 𝑅2. Accordingly, 𝐹𝑔
stores a pair of attributes 𝑅1 [𝐴𝑖 ] and 𝑅2 [𝐵 𝑗 ], which are semantically
equivalent concepts.

Merging action. To reduce schema redundancy and avoid frequent
expensive join operations, we introduce merging action to combine
the relation schemas. As for 𝑅1 (𝐴1, ..., 𝐴𝑘 ) and 𝑅2 (𝐵1, ..., 𝐵𝑙 ), 𝑅1 is
contained in 𝑅2, denoted by 𝑅1 ⊑ 𝑅2, if the following conditions
are satisfied: (a) 𝑅1 and 𝑅2 have the same or similar relation name;
and (b) for each attribute 𝐴𝑖 of 𝑅1, there is an attribute 𝐵 𝑗 in 𝑅2 that
is similar to its concept and domain. That is, we have 𝑅1 ⊑ 𝑅2 if
𝑐𝑜𝑠 ( ®𝑅1, ®𝑅2) ≥ _, 𝑐𝑜𝑠 ( ®𝐴𝑖 , ®𝐵 𝑗 ) ≥ 𝛼 and 𝑐𝑜𝑠 ( ®̀(𝐴𝑖 ), ®̀(𝐵 𝑗 )) ≥ \ , where
_ is a distance threshold for the relation name.

In this case, a merging action is required to combine 𝑅1 and
𝑅2, which inserts all of the foreign key references of 𝑅1 into the
corresponding attributes of 𝑅2. Therefore, 𝐹𝑔 updates the mappings
associated with 𝑅1 to those of 𝑅2.

Splitting action. To effectively support query processing and im-
prove schema readability, we perform a splitting action when there
are too many references included in a relation schema. Given a
schema 𝑅, splitting action corresponds to a projection of 𝑅, which di-
vides 𝑅 as a schema set 𝑃 = {𝑃1, ..., 𝑃𝑠 } such that (1) 𝐴 =

⋃
1≤𝑖≤𝑠 𝑃𝑖

where𝐴𝑖 is the attribute set of 𝑃𝑖 ; (2) 𝜋𝐴𝑖
(𝐼𝑅) = 𝐼𝑃𝑖 for 𝑖 ∈ [1, 𝑠], and

𝐼𝑃1 ⊲⊳ ... ⊲⊳ 𝐼𝑃𝑠 = 𝐼𝑅 where ⊲⊳ is the join operations of 𝐼𝑃1 , ..., 𝐼𝑃𝑠 in
the embedding space Π𝑅 ; (3) There is a foreign key reference from
𝑃𝑖 [𝐴𝑝 ] to 𝑃 𝑗 [𝐴′𝑝 ], 1 ≤ 𝑖, 𝑗 ≤ 𝑠, where 𝐴𝑝 and 𝐴′𝑝 are the joinable
attributes for 𝑃𝑖 and 𝑃 𝑗 .

The first and third conditions aim at dependency preservation
and lossless joining for relation schemas, respectively. The second
condition ensures that the join operation for each relation 𝑃𝑖 of 𝑃
does not lose the instance information in 𝑅. Accordingly, 𝐹𝑔 updates
the mappings associated with 𝑅 to those of 𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑠.

Algorithm 1: LakeGrsg
Input: a set of queries 𝑃 , an action space 𝐴, the Q-table𝑇𝑄 , and an

initial state 𝑠𝑡 ;
Output: a new state 𝑠𝑡+1.

1 𝑚 ← 0; /** an episode **/
2 Select an action 𝑎𝑖 ;
3 while 𝐴 is not empty do
4 Compute 𝑅 (𝑠𝑡 , 𝑎𝑖 ) based on 𝑃 ;
5 Obtain the next state 𝑠𝑡+1 based on 𝑠𝑡 and 𝑎𝑖 ;
6 Compute 𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑖 ) and update𝑇𝑄 [𝑡, 𝑖 ];
7 if𝑚 < 𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑖 ) then
8 𝑎𝑡 ← 𝑎𝑖 ;
9 𝑚 ← 𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑖 );

10 𝐴← 𝐴 \ {𝑎𝑖 };
11 Update 𝑠𝑡+1 based on 𝑎𝑡 and 𝑠𝑡 ;
12 return 𝑠𝑡+1;

4.3.3 State Update. At the 𝑡-th step, the agent starts with the
state 𝑠𝑡 and greedily selects the action 𝑎𝑡 with the maximum expected
reward to generate a new state 𝑠𝑡+1.

A Q-table is used to record the expected reward for each action-
state pair, which is a (𝑁×𝑁 )-dimensional table whose rows are states
represented by all attributes associated with the relation schemas
and columns are actions defined by 𝐴, where 𝑁 is the size of 𝐴. At
each step 𝑡 , the agent selects an action 𝑎𝑡 and update 𝑄-value based
on the reward 𝑟𝑡 for 𝑎𝑡 and 𝑠𝑡 .

As for an action 𝑎𝑡 and a state 𝑠𝑡 , the reward function is designed
to motivate the agent not only to explore the optimal global relational
schema, but also to weight the semantic diversity of answers and the
query complexity for the given query set. Consider the answers of
query set returned by the environment, we define the reward function
to be negatively correlated with the query time and positively corre-
lated with the number of crossing answers. The reward 𝑅(𝑎𝑡 , 𝑠𝑡 ) for
𝑎𝑡 and 𝑠𝑡 is computed as follows:

𝑅(𝑎𝑡 , 𝑠𝑡 ) = [ ( 𝑑𝑡

𝑑𝑡−1
− 1) + (1 − [) (𝑤𝑡−1

𝑤𝑡
− 1), (1)

where (i) 𝑑𝑡 (resp. 𝑑𝑡−1) is the number of crossing answers at the
𝑡-th (resp. (𝑡 − 1)-th) iteration; (ii) 𝑤𝑡 is the query time performing
the given query set in the RDBMS at the 𝑡-th iteration; and (iii) [ is
a weight parameter, 0 ≤ [ ≤ 1.

The update of Q-value is based on the Bellman optimality equa-
tion, which is a weighted average of the current value and the new
information, as introduced below:

𝑄𝑡+1 (𝑠𝑡 , 𝑎𝑡 ) = (1−𝛽) ·𝑄𝑡 (𝑠𝑡 , 𝑎𝑡 ) +𝛽 · [𝑅(𝑠𝑡 , 𝑎𝑡 ) +𝛾 max
𝑎∈𝐴

𝑄 (𝑠𝑡+1, 𝑎))],
(2)

where (i) 𝛽 ∈ [0, 1] is the learning rate that determines the ratio of ac-
cepting newly learned information; (ii) 𝑅(𝑠𝑡 , 𝑎𝑡 ) is the reward from 𝑠𝑡
to 𝑠𝑡+1 by taking the action 𝑎𝑡 ; (iii) 𝛾 ∈ [0, 1] is a discount factor that
determines the influence of future reward, where the smaller 𝛾 the
more short-term benefits are considered; and (iv) max𝑎∈𝐴𝑄 (𝑠𝑡+1, 𝑎)
is the maximum reward that can be obtained from state 𝑠𝑡+1, which
is weighted by the learning rate 𝛽 and the discount factor 𝛾 .

Algorithm 1 illustrates the process of state update and the details
is described by the following example.
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5 QUERY ANSWERING WITH INTEGRATION
PARADIGM

In this section, we first present an overview of query answering
pipeline, and then introduce how to attack the heterogeneity of the
data lake to enhance the query semantics of 𝑄 based on the schema
integration paradigm S.

5.1 Query Answering Pipeline
Generally, distributed query optimizers [1, 21, 39] handle a SQL
query in the following steps: (1) parsing the input query string and
creates an abstract syntax tree; (2) compiling the created syntax
tree to generate the logical search space where contains all logical
equivalent alternative plans to execute the query; and (3) enumerating
all physical distributed execution plans of these logical plans and
choosing one with the least estimated cost.

To perform query answering over 𝐷, there are two problems
should to be solved, as described below: (1) heterogeneity of data
schemas, which may lead to incomplete logical plans and further
produce incorrect answers; and (2) semantic heterogeneity of data
instances, which will lead to incomplete query results computed by
the physical plans.

Therefore, we present two key modifications to break the hetero-
geneity of schemas and instances in the data lake. Firstly, logical
plan enrichment enriches the logical search space by bridging the
schema gap between the query and the source schemas. Secondly,
semantic joining builds semantic associations among data instances
of different data sources.

5.2 Semantic Enhancement
To enhance the query semantics of 𝑄 , we present our logical plan
enrichment and semantic joining based on the schema integration
paradigm S as follows.

Logical plan enrichment. We bridge the semantic gap between
the query and the local relational schema based on the mapping
functor 𝐹𝑔. This is done by replacing the concept in the logical tree
of 𝑄 as that of the local schemas.

For example, the class “Customer" in the query 𝑄 shown in Fig-
ure 2 should be projected into “User" in 𝐶1 and “Customer" of 𝐶3,
as illustrated in Figure 3.

Semantic joining. After performing the distributed physical query
plan over the naive database engines of 𝐷 , a semantic join operation
is presented to progressively join these local results. We need to
address the heterogeneous matches that refer to the same entity,
and further deduce a relation schema for them in terms of the local
schema 𝐶𝑙 .

Given a set of tuples 𝑇 with relation schema 𝑅(𝑏1, ..., 𝑏𝑚) in 𝐷𝑘

and a subgraph 𝐺 in 𝐷𝑙 , we identify a match (𝑢, 𝑡) for a tuple 𝑡 ∈ 𝑇
and vertex 𝑢 ∈ 𝐺 by checking whether they have the same or similar
concepts and instance values. Recall that there is an edge from
𝑅1 [𝐴𝑖 ] to 𝑅2 [𝐵 𝑗 ] in 𝐶𝑔 if there is a reference from the foreign key
𝐴𝑖 of 𝑅1 to the primary key 𝐵 𝑗 of 𝑅2. Let 𝐹𝑔 (𝑢) represent the global
concept of 𝑢 in𝐶𝑔. Therefore, 𝑢 conceptually matches 𝑡 if 𝐹𝑔 (𝑢) and
an attribute 𝑏 of 𝑡 in 𝐶𝑔 are reachable. We then use the embeddings
®𝐿(𝑢) and ®𝑡 .𝑏 to compute their instance similarity for the condition

(2). If the similarity is larger than a threshold, we call that 𝑡 and 𝑢

can be semantically joined via the joining key 𝑡 .𝑏.

Table 1: Datasets.
Relational JSON Graph-vertex Graph-relationship

Unibench 150 000 142 257 9 949 357 620
IMDB 494 295 84 390 113 858 833 178
DrugBank 940 812 - 648 415 1 487 091
DBLP 1 182 391 435 469 512 768 3 492 502

As for the match (𝑢, 𝑡), we deduce a relation schema 𝑅𝐺 with
attributes (𝑏1, ..., 𝑏𝑚, 𝑏𝑚+1, ..., 𝑏𝑛), such that 𝑡 can be enriched with
additional attributes 𝐴′ of 𝑢 extracted from the subgraph 𝐺 , where
𝐴′ = {𝑏𝑖 |𝑚 + 1 ≤ 𝑖 ≤ 𝑛}. Specifically, we first extract the relation
schema 𝑅′ with attributes𝐴′ for𝐺 based on𝐶𝑙 , and then semantically
join 𝑅 with 𝑅′ via the joining key 𝑏 to obtain 𝑅𝐺 , i.e., 𝑅𝐺 = 𝑅 ⊲⊳𝑏 𝑅′.
Thereafter, we populate 𝑅𝐺 with the corresponding instance values
to compute 𝑇 ⊲⊳ 𝐺 .

6 EVALUATION
Using real-life datasets, we experimentally evaluate LakeAns for its
efficiency and scalability. Our highlights are described as follows:

(1) Our schema integration approach LakeGrsg outperforms its
competitors in terms of query time, the number of crossing answers
and convergence speed.

(2) LakeAns can find the answers cross multiple sources spending
almost the same time with the methods performing local evaluation
in a single data source.

(3) LakeAns can efficiently perform cross-source queries based
on the integrated relational schema in LakeGrsg, and has better
scalability than its competitors in terms of data size and number of
sources.

6.1 Experimental Setting
Datasets. We use four real-life datasets shown in Table 1: (1) Unibench,
a multi-model e-commerce benchmark [52], in which the customer
and product information are modeled as two relational tables includ-
ing 150,000 tuples. Order information and transaction relationships
are represented by a JSON document and a graph, respectively. The
JSON contains 142,257 objects, and graph has 9,949 vertices and
375,620 edges. (2) IMDB: movie dataset in [10]. The relational data
includes performing and rating information. The JSON stores film
information and the graph is about cooperative information that in-
dicates two actors have ever worked for the same movie and they
are linked. (3) DrugBank, is extracted from DrugBank Central [3]
and ChEMBL database [2], which includes 8 tables to present drug,
target, ChEMBL information, etc. The interaction data of drugs and
targets is modeled as a graph. (4) DBLP: publication data consisting
of bibliography records in computer science. The publication records
are presented in relational data. A subset of the paper information is
represented in JSON. We also construct a co-authorship graph where
two authors are connected if they publish at least one paper together.

Every dataset derive a local schema for each data source and gen-
erates a global relational schema that is maintained in the mediator
using LakeGrsg. SQL queries are formulated based on the global
schema and submitted at the mediator.

Query workload. We first generate a set of SQL queries for each
dataset by randomly selecting classes from the global relational
schema. The queries have SELECT and FROM clauses. We then
extend these queries by adding references or filter conditions into the
WHERE clause that relate to the classes of the SELECT clause. Here
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we denote the query set as𝑄1,𝑄2,𝑄3,𝑄4,𝑄5 and𝑄6, corresponding
to 1J, 2J, 3J, 3J1S, 3J2S and 4J, respectively, where the query 𝑖J 𝑗S
has 𝑖 join conditions and 𝑗 filter operations in the WHERE clause.
The default one is 𝑄3.

Implementation. We develop a prototype system of LakeAns
where the mediator employs a SQL server to maintain the global
relational schema, and MongoDB, Neo4j and SQL server as the
local database for the JSON, graph and relational data, respectively.
As we discuss in Section 3, our algorithm mainly performs on the
mediator and benefits from the technology of these local databases.
We conduct our experiments on CentOS Linux 5.4 equipped with 3
Intel(R) Xeon(R) Silver 4110 CPUs, 30 GB memory.

Baselines. Most relational query baselines are limited in their
ability to perform cross-source querying because they are restricted
to a single data model, such as structured relational data. To ensure
fair comparisons, we modify several existing methods to accommo-
date cross-source querying over the data lake as described below.
(1) Naive performs the input SQL query on each local relational
schema of the data source and then returns the final answer by di-
rectly matching the returned local results with the same attributes.
Naive is barely able to find those results cross heterogeneous data
sources and is mainly used to measure the semantic fusion capability
of other methods. (2) InfoGather [48] considers indirect and direct
matching, and exploits a holistic matching framework based on en-
tity augmentation and attribute discovery to find the answer cross
multiple web tables. InfoGather cannot support the query answering
over the data lake including semi-structured and unstructured data.
To adapt it to heterogeneous data lake, we load the dataset into rela-
tional tables complying with the local relational schemas created in
Section 4.2. (3) Snowflake [9] is a shared-data distributed architec-
ture that provides SQL extensions to traverse semi-structured and
unstructured data. Snowflake cannot support global schema-based
computation and it bridge heterogeneous semantics between dif-
ferent data sources using schema discovery. Similar to InfoGather,
Snowflake focuses only on the enhancements of query semantics but
neglects the optimal joining order of intermediate results, which is
constrained by the SQL extensions.

These baselines differ from our approach in that LakeAns requires
to enhance query semantics over the data lake with multiple data
models and heterogeneous query engines. To this end, LakeAns
considers the global relational schema to bridge the schema het-
erogeneity of multiple data sources and the optimal join order of
intermediate results to improve the query efficiency.

There is no baseline considers schema integration of heteroge-
neous data to efficiently support SQL queries across sources. We
design the following baselines. (1) MultiStore [50] learns a relational
schema to store multi-model data into RDBMS using reinforcement
learning. It denotes all data as a set of two-column tables and aims
to find the optimal join sequences to generate relational schema.
MultiStore expects to obtain the schema with minimal query time
but ignores the query semantics over the generated schema. (2)
Two variants of LakeGrsg are designed by modifying the agent
of LakeGrsg. LakeR𝑙 is the agent removing merging and splitting
actions. LakeR𝑙𝑚 is the agent removing the splitting action.

Metrics. To evaluate the performances of schema integration quan-
titatively, we use the following aspects: (1) the query time (2) the
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Figure 7: The changes in query time and coverage rate as the
increasing of episodes.
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Figure 8: The expected reward with respect to the discount
factor 𝛾 and weight parameter [.

relative coverage rate of crossing answers in the final results, and (3)
the expected reward of the given SQL queries. The relative coverage
rate is computed as Rate = |𝑇𝑖 − 𝑇0 |/𝑇0, where 𝑇𝑖 and 𝑇0 are the
answer set at the 𝑖-th iteration and the initial state, respectively.

The evaluated metrics for query answering contain the query time
and the relative coverage rate of crossing answer in terms of the
answers computed by Naive.

Parameter selection. As for the LakeGrsg algorithm, we search
hyper-parameters in the following values: the learning rate 𝛽 in
{0.0001, 0.0005, 0.001, 0.005, 0.01}, discount factor 𝛾 in {0, 0.2,
0.4, 0.6, 0.8, 1}, reward weight parameters [ in {0, 0.2, 0.4, 0.6, 0.8,
1}. The similarity thresholds in actions are set _ in {0.2, 0.6, 0.8,
1}, 𝛼 in {0.5, 0.6, 0.7, 0.8, 0.9} and \ in {0.5, 0.6, 0.7, 0.8, 0.9} for
relation names (i.e., classes), attribute names and pivot vectors of
attribute domains, respectively. The selected setting is that 𝛽 = 0.001,
𝛾 = 0.8, [ = 0.6, _ = 0.6, 𝛼 = 0.8, \ = 0.7.

6.2 Experimental Results
We next report our findings.

Exp-1: performance of schema integration. To evaluate the per-
formance of schema integration algorithm, we concern two aspects:
(1) the changes in query time and coverage rate as the increasing of
episodes; and (2) the expected reward with respect to the discount
factor 𝛾 and weight parameter [.

As reported in Figure 7(a), the query time of LakeGrsg is always
smaller than that of MultiStore especially when the episode number
is large. The reason is that (i) MultiStore creates a relational schema
by finding a sequence of joins, which results in some relation schema
including much foreign keys to increase the query cost. (2) Consid-
ering the foreign key of schemas, LakeGrsg defines merging and
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Figure 9: Impact of query in Unibench dataset.

 0

 500

 1000

 1500

 2000

 2500

Q1 Q2 Q3 Q4 Q5 Q6

Q
u
er

y
 T

im
e 

(m
s)

Query

Naive
LakeAns

InfoGather
Snowflake

(a) Query time

 0

 0.2

 0.4

 0.6

 0.8

 1

Q1 Q2 Q3 Q4 Q5 Q6

C
o
v
er

ag
e 

R
at

e

Query

Naive
LakeAns

InfoGather
Snowflake

(b) Coverage rate

Figure 10: Impact of query in IMDB dataset.

splitting actions to simplify the relational schema to further avoid
excessive joins on it. Figure 7(b) illustrates that LakeGrsg has higher
coverage rate and converges earlier than MultiStore because our
agent is powered by the query time and the number of crossing an-
swer. However, the agent of MultiStore does not consider the answer
semantics of cross-source queries.

Therefore, our schema integration approach LakeGrsg outper-
forms MultiStore in terms of query time, coverage rate and conver-
gence speed.

Figure 8 shows that with the increasing of 𝛾 and [, LakeGrsg
has more stable expected reward than LakeG𝑙 and LakeG𝑙𝑚. This
is because that (i) LakeGrsg exploits linking action to bridge the se-
mantics between different data sources, so that the crossing answers
can be found, and (ii) it performs merging and splitting actions to
simplify relational schema, so that the query time can be reduced
by avoiding excessive joins. That means that the three actions in the
agent of LakeGrsg helps it to obtain more stable long-term benefits.

Exp-2: performance of query answering. To evaluate the impact
of different queries, we vary the query from 𝑄1 to 𝑄6 and then apply
it to LakeAns as well as the comparison algorithms. As for each
query, we both report the impact on query time and coverage rate on
different datasets.

Figure 9(a) shows that the execution time of LakeAns, InfoGather
and Snowflake increases with the increasing of join condition num-
ber, while the execution time of LakeAns is close to that of Naive and
smaller that of than InfoGather and Snowflake. More importantly,
LakeAns has much smaller upward trend than them. Especially,
LakeAns performs much better than InfoGather and Snowflake on
large datasets, as we can see from the IMDB and DrugBank datasets
shown in Figures 10(a) and 11(a). This is because that: (i) Info-
Gather aims to find an holistic match for a query by considering
entity enhancement and attribute discovery. However, LakeAns is
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Figure 11: Impact of query in DrugBank dataset.
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Figure 12: Impact of source number.

a schema-based approach that answers queries based on a global
relational schema and the mappings from the global to the local. (ii)
Snowflake utilizes SQL extensions to answer cross-source queries,
which progressively traverses the bindings of attributes and entities.
LakeAns benefits form an integrated schema and can effectively
bridge the semantic associations between different data sources to
perform cross-source querying.

Figure 9(b) illustrates the following two aspects. On the one hand,
the coverage rate of LakeAns and Snowflake are larger than that of
Naive and InfoGather. In most cases, the coverage rate of LakeAns is
greater than or equal to that of the other methods, as we can see from
the IMDB and DrugBank datasets shown in Figures 10(b) and 11(b).
On the other hand, the coverage rate of LakeAns, InfoGather and
Snowflake all increase with the increasing of join condition number
in the query, while LakeAns significantly has a much larger upward
trend than that of Naive and InfoGather in different datasets.

Totally, LakeAns spends almost the same time with Naive that
performs local evaluation in a single data source to find the answers
with greater coverage rate than other methods.

Exp-3: impact of source numbers. To evaluate the scalability, we
vary the source number from 3 to 7, which is done by partitioning
the DBLP dataset into several fragments.

As illustrated in Figure 12, LakeAns outperforms other methods
in terms of scalability, yielding much smaller execution time than
InfoGather and Snowflake, and greater coverage rate than Naive
and InfoGather. With the increasing of source number, all execution
times decrease and coverage rate improve. As the number of sources
increases, all execution times decrease and the coverage rate slowly
increases. Furthermore, LakeAns can obtain twice the coverage rate
of the answers obtained by Naive and InfoGather, as reported in
Figure 12(b). This is because that LakeAns finds crossing answers
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in the data lake as much as possible by leveraging an integrated
relational schema.

All the above experimental results justify that our LakeAns frame-
work is efficient and effective. It scales well on all metrics and has
high coverage rate of answers across multiple data sources. More-
over, the integrated relational schema learned by LakeGrsg can ef-
fectively and efficiently support cross-source querying and enhance
the answer semantics for a heterogeneous data lake.

7 RELATED WORK
We categorize the related work as follows.

Schema Matching. Some problems in data integration, such as
entity resolution [16, 31], ontology alignment [28, 35], schema
matching [17, 40] and dataset linking [19] have attracted signifi-
cant interests in recent years.

The most related work to our schema integration is schema match-
ing. Given a set of datasets and their schemas, schema matching
is the problem of discovering potential correspondences between
concepts of different datasets and it is one of the most important
prerequisite steps for analyzing heterogeneous data collections [40].
State-of-the-art schema matching algorithms use simple schema- or
instance-based similarity measures to struggle with finding matches
beyond the trivial cases. Semantics-based algorithms require the use
of domain-specific knowledge encoded in a knowledge graph or an
ontology. For example, Data Tamer [41] match attributes using a
variety of similarity measures and algorithms called experts. The
Data Civilizer system [10] uses a linkage graph to support data dis-
covery, while Aurum [18] builds knowledge graphs where different
datasets are correlated with respect to their content or schema. All
of these methods rely on similarity computation, e.g. Jaccard Simi-
larity, value distribution. [53] and [19] build relationships between
concepts of different databases using cluster-based matching algo-
rithm and a given ontology. As a result, schema matching depends
on external knowledge [19] such as domain-specific ontologies, and
still remains a largely manual process.

These efforts differ from ours in that we generate a global rela-
tional schema for heterogeneous data sources by using a reinforce-
ment learning method. This does not require external knowledge,
but rather interaction with a relational database to find the schema
with maximum expected reward.

Relational Schema Mapping. There has been a growing interest
in mapping various data types into relational database to be able to
reuse mature robust relational database technology. The choice of
relational schema design plays a crucial role for efficiency. Different
designs not only imply different kinds of physical data partitions, but
also different translations to SQL operations. Our global relational
schema generation relates closely to store the multi-model data to
relational databases [50], but it is not designed for supporting the
unified SQL query. Additionally, relational mapping has been studied
in semi-structured data [11, 12, 44], RDF [4, 37] and uncertain
data [15, 30].

The most straightforward of semi-structured to relational mapping
earlier efforts provide generic mapping rules that do not necessi-
tate upfront analysis of the input dataset [11]. Some other works
present a mapping strategy based on structural analysis of the input

dataset [11, 12, 49]. They design schemas for XML datasets by an-
alyzing a graph of the DTD elements present in the input data and
a set of heuristics is used to dictate whether an element should be
materialized as its own table or linked within a parent element’s table.
Investigations of various schema designs form RDF data to relational
have been started by [4, 36]. Recently, for a single-node system, the
analysis provided in [37] gives arguments for using an emergent
schema. [6] obtains the relational schemata using Apache Hadoop as
the distributed processing platform and mapping SPARQL queries
into Spark SQL. There are two major and complementary approaches
to dealing with uncertainty in data [15]. In general, probability the-
ory is quantitative with more precise outcomes, but these come at
the price of acquiring actual probabilities and high computational
complexities in managing them [42]. However, if data uncertainty
does come with meaningful probability values, a probabilistic model
is more appropriate if it can be managed with feasible resources. In
recent work, a survey of practical methods for constructing possibil-
ity distributions was given [15]. Research on probabilistic databases
has focused on queries [42]. Typical is the desire to extend trusted
relational technology to handle uncertainty.

Data Lake Discovery. [33] identifies the challenges and opportu-
nities in a data lake. Aurum [18] discovers syntactic relationships
between datasets in a graph data structure and supports keyword
search and similar content search. [34] defines the table union search
problem on open data, which proposes value set, class semantic
and embedding similarity to determine the attribute union-ability.
Skluma [7] extracts diverse embedded metadata from files based
on a probabilistic pipeline and allows the topic-based discovery.
Constance [23] exploits the semantic annotations of data sources
to enriches metadata, which can be accessed by a template-based
query. Some approaches also navigate dataset based on the linkage
graphs [10] or version graphs [25]. Recently, a new organization
structure based on the Markov probabilistic model is proposed such
that users can navigate a data lake more effectively [32]. Josie [55]
finds some datasets in the data lake that can be joined with a given
table, which is transformed into a overlap set similarity problem.
Juneau [54] finds additional tabular or nested data for training or
validation from computational notebooks (e.g., Jupyter), workflows
and cells. More related works for knowledge discovery in a data lake
can be found in surveys [24, 33].

These works have different goals with our work, and we aim
at exploring complete answers for SQL queries across multiple
heterogeneous data sources.

8 CONCLUSION
In this paper, we study query answering over a heterogeneous data
lake, which aims to enhance answer semantics of cross-source re-
lational querying. To this end, a novel schema-based framework
LakeAns is proposed. LakeAns integrates local schemas to create a
global relational schema based on a reinforcement learning approach
to effectively support the query answering and to find answers across
multiple data sources. Our experimental evaluation verify that this
framework is promising for finding more answers cross multiple
data sources with minimum execution time. In future works, we
will extend our work to handle unstructured multimedia data in a
heterogeneous data lake.
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