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Abstract—This paper focuses on a simple, yet fundamental question of distributed edge computing: “how to handle IoT traffic with
different levels of sensitivity and criticality by satisfying the application-specific latency constraints?” This question arises in the practical
deployment of edge computing, where user data can arrive at a much faster rate than that they can be processed by an edge node.
Addressing this question is critical for meeting the latency requirement for latency-sensitive applications, but existing approaches are
inadequate to the problem. We present JANUS, a multi-level traffic scheduling system for managing multiple data streams with various
degrees of latency constraints. At the edge node level, JANUS uses multi-level queues to manage data streams with different latency
constraints. It then allocates the output bandwidth of the edge node according to the requirements of applications in different priority
queues, aiming to reduce the queuing and processing delay of latency-sensitive streams while maximizing the edge-node throughput.
At the network level, JANUS actively redirects incoming data streams to the less-loaded ones to achieve better network-wide load
balance and improve the overall throughput. Experiments show that JANUS reduces the latency to only 16.6% of a non-priority based
solution and improves the throughput by 1.7x of a state-of-the-art priority-aware data stream scheduling approach.

Index Terms—data streaming, latency, QoS, edge computing
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1 INTRODUCTION

The rise of the Internet of Things (IoT) is making
computing an integrated and ubiquitous part of society,
enabling data to be collected, correlated and analyzed at
an unprecedented scale. Concurrent to this development
is the quick adoption of edge computing by deploying
computing sources closer to end-users and data sources.
Edge computing paradigm is highly attractive because it
offers a cost-effective and scalable capability of aggregating
and processing data of connected IoT devices and sensors
before sending the data streams to remote clouds [1]. Edge
nodes (aka. edge servers, IoT Edge gateways, etc.) operate
as gateways and provide a smooth connection between such
devices on the network and the cloud.

While promising, edge nodes with heterogeneous com-
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puting power and diverse network bandwidths [2] tend to
cause a fundamental problem in IoT streaming management
known as throughput mismatch. Incoming data are generated
at a much faster pace than that can be processed by an edge
node. This mismatch is more frequently manifested due
to high data volume or data spike (e.g., crowd gathering)
of data-intensive IoT applications, and unstable network
connectivity (e.g., cellular network) between edge nodes
and the cloud [3], [4], [5]. Consequently, data are massively
buffered on the edge nodes and devastatingly increases the
end-to-end (E2E) latency of data transfer – typically including
transmission time over network links from data sources to
cloud servers and waiting time (queuing and processing) on
the edge nodes – in many real-life edge deployments.

Meanwhile, latency requirements vary substantially
among different applications. For example, intelligent trans-
port systems [6] aggregate traffic information from each
road by means of CCTV, Piezoelectric Sensor and Radar
Microwave Sensors to support urban road safety warning
and traffic efficiency improvement. While the E2E latency
for urban road safety is usually less than 100 ms, it can be
relaxed to 100-500 ms in some IoT scenarios [7]. Particu-
larly for a latency-sensitive application with co-flow [8] –
a collection of parallel data flows to process and transmit
– each edge node is responsible for transferring numerous
co-flows of multiple applications generated from different
IoT sensors. The E2E latency is determined by the last flow
to complete and thus extremely susceptible to any delays
within an edge node and over the network.

Congestion control approaches in traditional computer
networks [9], [10], [11] require either heavy support from
switches or modification of transmission protocols and OS
kernel/application modules. Such drawbacks make it im-
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possible to deploy upon commodity hardware and to pro-
vide guaranteed bound on the latency and flow deadlines.
QJUMP [12] was among the first attempts to tackle the
package queuing delay and control network interference
at the switch level. It prioritizes latency-sensitive applica-
tions by allowing data from higher-priority applications
to jump the queue over packets from lower-priority ones.
Although QJUMP is a good fit for traditional datacenters,
it is unsuited for edge environments. QJUMP is a network-
layer solution that requires full control over key network
infrastructures such as switches that can be hardly fulfilled
in edge environments. QJUMP also assumes a homoge-
neous computing and networking environment where all
network devices have the same computational resources
and capabilities. However, such an assumption does not
hold in real-world edge environments. Furthermore, con-
gestion control mechanisms in sensor networks [13] drop
new arrival data packets when the buffer of an edge
node is full or the network bandwidth is oversubscribed.
However, such a passive strategy cannot actively prevent
buffer overflow or bandwidth oversubscription by simply
coordinating the resources used across a distributed net-
work, inevitably leading to long-standing backlogging and
information loss. Other network-layer load balancing algo-
rithms [14], [15] lack the application-level communication
semantics between groups of devices and hence fail to
customize users’ requirements and make the best use of
edge nodes. Therefore, we are in great need of a lightweight,
easy-to-deploy yet flexible streaming traffic management
system that can tackle diverse requirements of latency and
throughput sensitivity.

We present JANUS, a distributed and QoS-centric stream-
ing traffic scheduling system to make the best utilization of
bandwidth resources on edge nodes. It aims to reduce the
queuing delay and maximize the QoS assurance of latency-
sensitive applications without compromising the overall
system throughput. To do so, we formulate two distinct yet
interconnected optimization problems and tackle them in
JANUS based on greedy-based heuristics for their speed and
ability to adapt quickly to changing conditions at runtime:
i) At edge node level, JANUS queue manager differentiates
the traffic from different streams and manages them sepa-
rately through a multiple-level priority queuing mechanism.
JANUS then dynamically adjusts the allocated bandwidth
to each queue if the estimated queue delay surpasses a
configurable threshold. At the core of bandwidth allocation
is to ensure the allocated bandwidth be large enough to clear
both the backlogged records that have been awaiting deliv-
ery and the new records accumulated within a time interval
within a predefined latency requirements. ii) Above multiple
edge nodes, JANUS employs a global coordination mechanism
for flow redirection. It detects bandwidth shortage due to
traffic spiking by monitoring traffic and bandwidth usage at
application level, and make a best-fit mapping between the
bandwidth shortage and available bandwidth on idle nodes.
Requests from high-priority queue with a larger amount of
bandwidth shortage will be prioritized in the bandwidth
redirection and edge nodes with larger available bandwidth
will be first considered as the forwarding destination. Such
an elastic and timely forwarding mechanism facilitates to
break the barrier of local bandwidth capacity and mitigate

…

Edge Node

MQTT Broker

Cloud
AMQP BrokerLAN

netw
ork…

Edge Node

MQTT Broker

W
AN

netw
ork

MQTT
(WiFi)

AMQP
(WiFi, 4G, 3G)

Things
(IoT Devices)

Fig. 1. Streaming pipeline in Cloud-edge computing paradigm

the mismatch issue, with the overall throughput improved.
JANUS is easy to deploy as it is agnostic to heterogeneous

computing devices without the need of control access to
internal resources of the network infrastructure. We evaluate
JANUS in simulation settings and an edge testbed built
upon real-world hardware. Experiments show that JANUS
reduces the E2E latency by up to 5× and improves the
system throughput by up to 1.5× over the state-of-the-
art priority-aware data stream scheduling (e.g., QJUMP)
in an emulated network environment. In a 4G network
testbed, JANUS reduces the latency to only 16.6% of a native
approach without priority-based queue management and
improves the network-wide throughput by 1.7× against the
existing priority-aware approach. We showcase that JANUS
is lightweight because it uses only 9.5% RAM and 4% CPU
time on a low-cost Raspberry Pi 3 development board.

This paper makes the following contributions:
• We formulate the streaming delivery in the edge en-

vironment as optimization problems to make the best
utilization of edge nodes (§4).

• A novel bandwidth scheduling mechanism for adaptively
allocating output bandwidth for individual edge nodes
based on the node’s forwarding capacity and the require-
ments of input data streams (§5.1).

• A traffic orchestrator to avoid oversubscribing edge
nodes and improve the overall system throughput (§5.2).

Organization. §2 outlines the research background and mo-
tivation. §3 describes the system architecture and overview.
§4 presents the formalized problems. Key techniques and
system implementation of JANUS are discussed in §5 and
§6, respectively. We evaluate the system in §7. §8 presents
related works and we conclude the paper in §9.

2 BACKGROUND AND MOTIVATION

2.1 Streaming in Edge-Cloud Paradigm
Streaming Pipeline. Our work specifically targets the typ-
ical streaming management for IoT applications in edge
environments. As depicted in Fig. 1, IoT devices (e.g., smart-
phones, sensors, actuators, etc.) connected to and exchange
information with a proximate edge node (e.g., edge servers,
IoT edge gateways) that serves as intermediary between
IoT devices and cloud. Streaming messages are sent to edge
nodes through the lightweight Message Queuing Telemetry
Transport (MQTT) protocol [16] and then forwarded to
remote Cloud servers through Advanced Message Queuing
Protocol (AMQP) protocol [17] that can provide enhanced
reliability. Edge nodes can be deployed in a variety of
environments via wireless or cellular networks, particularly
when the deployment involves remote or mobile IoT appli-
cations, including remote monitoring in such areas as natu-
ral reserves, oil rigs, rural farms, and smart transportation
where edge nodes are usually deployed in a vehicle or robot.
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TABLE 1
Network Latency Requirement of IoT Applications [7]

Applications Tolerable Latency Categories
Factory automation 0-50ms Latency-sensitive (ls)

Smart grids 50-100ms
Normal (nm)Road safety urban 50-100ms

Traffic efficiency 100-500ms
Cooling system 500-1000ms Latency-tolerant (lt)

Latency Criticality. Some studies [7], [18], [19] exemplify a
variety of IoT applications and Table 1 briefly summarizes
their latency requirements. For example, factory automa-
tion applications are referred to as the real-time control of
machines or systems in production lines and are generally
considered to be highly latency-sensitive. By comparison,
smart grids can allow longer delay to obtain the required
data, while cooling and heating systems in smart buildings
can tolerate much longer response time. According to the
sensitivity of applications to E2E latency, in the context of
this paper, we roughly categorize applications into three
classes: latency-sensitive (ls), latency-tolerant (lt) and nor-
mal (nm) applications. As will be discussed in §6.1, one can
flexibly customize the threshold of each class and define
fine-grained categorization.

2.2 Terminologies
We now summarize the key concepts used in this paper
in terms of streaming applications and the network traffic
generated from stream transmission.
• Stream of records. In this paper, a data record is referred

to as a key-value pair. One producer writes records and
they can be read by one or more consumers. A stream
is an ordered, unbounded and continuously-updating
sequence of records.

• Traffic. The amount of streams transmitted over the net-
work during a given time period. In [T, T + t], the traffic
is measured by the number of records (#records).

• Bandwidth. This refers to the maximal allowed data trans-
fer rate for a fixed period of time and can be practically
measured by #records/s. Bandwidth is physically used
by all co-existing traffic streams. There are two types
of bandwidth: inbound bandwidth is consumed when
data streams come into the device/server while outbound
bandwidth is referred to as the rate limit when the
device/server sends out data records. In this paper, we
mainly target the outbound bandwidth allocation among
different streams to coordinate their flow rates.

• Throughput and input/output rate. Throughput is the ac-
tual traffic rate, practically measured by the actual
#records/s. The input rate of a given stream literally
depicts the inbound throughput, while output rate is
referred to as the outbound throughput or equivalently
throughput, which is most notably an indispensable per-
formance indicator. The effect of bandwidth adjustment
is to throttle the runtime traffic throughput.

2.3 Throughput Mismatch
As a motivating example, consider latency-sensitive (ls) and
latency-tolerant (lt) data streams from the edge to the cloud.
Setup. This experiment is conducted on a micro-testbed
consisting of three Raspberry Pi devices and a multi-core
server. We use two Raspberry Pis to generate sensor data
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Fig. 2. Throughput mismatch (WiFi) and the latency of ls streams

and another to act as an edge node to receive and forward
the sensor data to the server. All the computing devices are
connected through a dedicated WiFi enabled switch with
200 mbps bandwidth; we control the latency and bandwidth
of the network to emulate the typical 3G, 4G and WiFi
environments. More details of our testbed can be found
in §7.1. We use a large-scale real-world smart building
dataset [20] consisting of CO2, occupancy and temperature
data samples, to generate the data. We measure the end-to-
end throughput of an edge node when the data are forwarded
to the server via the edge node.
Motivation Results. Fig. 2(a) shows a substantial through-
put mismatch between the inbound and outbound on a
given edge node in a WiFi environment. The data arrive
2× faster than the amount that can be sent to the remote
server. This is unsurprising because AMQP is, in general,
slower than MQTT due to the overhead associated with its
reliability guarantee. The delay is also because the incoming
messages incur a significant CPU and memory footprint,
utilizing 60% of the CPU and occupying over 70% of the
RAM, which further limits the processing capability and
responsiveness of the edge node. Fig. 2(b) shows that when
the input rate of lt streams climbs up, the ls streams gen-
erally experience an increase in the latency. In reality, the
network bandwidth could be increasingly occupied by the
throughput of lt streams during peak time, which will in
turn increase the forwarding latency of ls streams.
Negative Impact on Latency-sensitive Streams. Observ-
ably, throughput mismatch can severely slow down the
responsiveness of latency-sensitive streams. This becomes
even worse in a low-speed network (e.g., 3G cellular net-
work in this experiment), as records coming into an edge
node have to share bandwidth and await forwarding in the
same queue. Latency-sensitive applications will suffer from
a long-standing queue delay if all incoming data streams
are treated equally without considering the application-
specific latency criticality. To tackle this, we need a scheme to
differentiate data streams and prioritize time-critical streams
for reduced latency, and to coordinate available bandwidth
across edge nodes to mitigate the inherent mismatch issue.
JANUS is designed to offer such capabilities.

3 JANUS OVERVIEW

3.1 Requirements
This paper focuses on streaming data management for
satisfying diverse latency requirements of different applica-
tions. Hardware or OS kernel based queuing management
approaches [12] are inadequate for this problem due to the
strong dependencies on switch-level support and intrinsic
difficulties of development and deployment on commodity
hardware[21]. We turn to look at application layer solutions
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based on throughput control in the publish-subscribe sub-
system. We aim to achieve three research objectives:
• [R1] We need to differentiate and prioritize data streams,

i.e., labelling the data records and prioritizing latency-
sensitive applications over other workloads, to allow
diverse application-specific latency requirements.

• [R2] We need a traffic-aware and multi-level queue man-
agement mechanism for enabling individual manage-
ment of a specific type of data records and for harnessing
bandwidth allocation. Bandwidth of each queue can be
dynamically throttled and flexibly allocated at runtime
according to the varying traffic condition.

• [R3] We need to harvest idle bandwidth resources to
achieve a holistic network-level balance in response to
the varying load across edge nodes. This can enable the
re-distribution of overflowed streams, from a saturated
edge node to light-loaded edge nodes, to mitigate the
congestion and the consequential latency increase.

3.2 System Architecture

JANUS is a loosely-coupled streaming management system
that aims to assure the QoS both locally within an edge node
and globally across edge nodes. Fig. 3 depicts the system
architecture consisting of a Queue Manager within each edge
node and a global Traffic Orchestrator at the network level.

To satisfy [R1] and [R2], JANUS primarily attempts
to resolve the potential queuing delay by using multi-
queue management within an edge node. JANUS categorizes
streams into three distinct classes and assigns differential
priorities according to the particular type of traffic and the
associated QoS requirements. For example, ls and lt streams
are given the highest and lowest priority, respectively. It
is worth noting that this multi-priority queue model can
be extended to underpin any number of priorities if the
applications have additional fine-grained QoS requirements.

Queue Manager comprises three key components: Message
Dispatcher, Throughput Estimator, and Bandwidth Reallocator.
Specifically, Message Dispatcher sends off the arrived stream
records into different queues. The records are then en-
queued and buffered, awaiting forwarding to the endpoints
of cloud servers. Throughput Estimator exploits runtime met-
rics of both throughput and bandwidth (either consumed
or available) to estimate the flow status (step ➀, §4.1). If
a QoS violation is detected – the estimated delayed time
surpasses the pre-defined threshold – bandwidth realloca-
tion for each queue will be triggered (step ➁). Bandwidth

TABLE 2
Symbol Notations

Symbols Descriptions
Ei, I edge node i and the index set of all edge nodes

qils, qinm, qilt ls, normal and lt queue in Ei

λi
j Individual input rate of stream j in Ei

Λi Total input rate of Ei

Λi
ls, Λi

nm, Λi
lt Total input rate of qils, qinm, qilt

Vi Total output rate of Ei

Vi
ls, Vi

nm, Vi
lt Total output rate of qils, qinm, qilt

Ci
in Maximal inbound bandwidth of Ei

Ci
out Maximal outbound bandwidth of Ei

ε Processing delay introduced by Ei

tpils, tpinm, tpilt The throughput of queue qils, qinm, qilt
tpi The throughput of edge node i

wi
nm, wi

lt The weights of the penalty function
βi, φi The variables for replacing max penalties

Φ(qilt, p) The volume of the data from qilt to Ep.
dils, dinm, dilt Estimated queuing delay of qils, qinm, qilt
sils, sinm, silt # of existing records in qils, qinm, qilt
δils, δinm, δilt Maximal tolerable latency of qils, qinm, qilt

bwi
ls, bwi

nm, bwi
lt Inferred bandwidth requirement of qils, qinm, qilt

Pi Available nodes to receive the redirected traffic

Reallocator is responsible for calculating the bandwidth ad-
justment among different types of queues to better utilize
local bandwidth resources to guarantee the QoS of high-
priority streams such as ls streams. This is achieved by the-
oretically formulating an Integer Linear Programming (ILP)
problem (§4.2.1) and practically using a heuristic solution to
find a proper amount of bandwidth that is enough to clear
the backlogged records in the queue and satisfy the queue
latency requirement (§5.1).

To meet [R3], we formulate the global traffic scheduling
as another ILP problem (§4.2.2). A global orchestrator is de-
vised to harness all available bandwidth resources across the
system in response to traffic redirection requests. If an edge
node is saturated, Bandwidth Reallocator proactively petitions
Traffic Orchestrator by submitting a redirection request. The
request encompasses the amount of bandwidth that is still
required by the sourcing queue to mitigate the long data
backlogging (step ➂). Traffic Orchestrator is a key component
holistically responsible for making high-level coordination
over edge nodes. Three replicas of Traffic Orchestrator are
deployed in edge nodes for high availability, with a pri-
mary component and others on hot standby. It globally
hunts for a suitable bandwidth matching based on available
bandwidth periodically reported by all running edge nodes
or piggybacked in the heartbeat messages between edge
nodes and the Orchestrator. The results will be returned
to the corresponding Bandwidth Reallocator (step ➃) and
Queue Controller then tweaks the bandwidth among queues
in the edge node or to establish a connection to migrate the
pending records to other edge nodes (step➄). More details
will be presented in §5.2.

4 PROBLEM FORMULATION
In this section, we firstly demonstrate how to model and
estimate the runtime queuing delay of each queue based on
the data streams on the fly and the real-time output rate.
We then progressively introduce how we formulate the two-
level optimization problem at the local edge node level and
at the global orchestrator level to maximize the throughput
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of the entire system whilst ensuring proper QoS of latency-
sensitive streams. To improve readability, we summarize
detailed notations used in this paper in Table 2.

4.1 Runtime Queue Delay and Throughput Estimation
JANUS works on the basis of estimating queue delay and
throughput at runtime. We partition all data records into
separate queues according to their sensitivity to latency.
As an example, we use three queues for latency-sensitive,
normal and latency-tolerant streams. We assume that an edge
node Ei receives a collection of streams with an input rate
λi
j for the stream j. The total input rate of an edge node

Ei is Λi =
∑

j∈N λi
j , where N is the total number of the

streams. The input rate of each queue is defined by: Λi
ls =∑

j∈Nls
(λi

j), Λ
i
nm =

∑
h∈Nnm

(λi
h) and Λi

lt =
∑

k∈Nlt
(λi

k),
separately, where Nls, Nnm and Nlt represent the collection
of ls, nm and lt streams respectively. Accordingly, the output
rates of these three queues is defined as Vi

ls Vi
nm and Vi

lt.
Output rate in total is Vi = Vi

ls + Vi
nm + Vi

lt. In reality, the
maximum of input rate and output rate are constrained by
the processing capacity of the edge node and the available
network bandwidth between the edge node and the cloud.
Hence, input rate Λi and output rate Vi constraints can be
formulated as Λi ≤ Ci

in and Vi ≤ Ci
out, where Ci

in and Ci
out

represent the maximum inbound and outbound bandwidth
of Ei. For example, for a latency-sensitive queue, with a
time window ∆t, ∆t ∗ Λi

ls data records will be fed into qils.
Size(qils) ∈ Z+ is the queue length of qils. The total number
of data passing through qils will be sils = ∆t∗Λi

ls+Size(qils).
As a result, the estimated queuing delay of the latency-
sensitive queue dils can be calculated by:

dils =
sils
Vi
ls

+ ε, (1)

where ε is a bias variable which can be instantiated as the
processing delay introduced by Ei. Since the actual through-
put is co-restrained by the data amount passing through
(sils) within the time window ∆t and the inherent restriction
of the queue itself (Vi

ls), tpils can be then expressed as
min{ sils

∆t ,V
i
ls}. Similarly, the overall throughput of a given

node Ei can be formulated as Eq. 2.

tpi = tpils + tpinm + tpilt (2)

tpils = min{ s
i
ls

∆t
,Vi

ls}

tpilt = min{ s
i
lt

∆t
,Vi

lt}

tpinm = min{s
i
nm

∆t
,Vi

nm} (3)

4.2 Two-Level Optimization
4.2.1 Optimizing Throughput for a Local Edge Node
In a given edge node Ei, the optimization model aims to
maximize the throughput of Ei whilst meeting a set of
constraints:

max tpi (4)

s.t. dils ≤ δils, d
i
nm ≤ δinm, dilt ≤ δilt (5)

Vi ≤ Ci
out (6)

As shown in Eq. (4), the optimization goal is to allo-
cate the most suitable output bandwidth for each queue
{Vi

ls,Vi
lt,Vi

nm} to maximize the node-level throughput.
Constraint (5) indicates the maximal delay allowed by each
specific queue while satisfying the capacity constraint in
Constraint (6). However, §2 shows that low computing
capacity or low network bandwidth may cause the violation
of constraint (5), resulting in a non-existing solution.

During bandwidth insufficiency, to allow soft constraints
in lower-priority queues (nm and lt queues), we can prac-
tically relax Constraint (5) by incorporating the following
penalty terms into the objective function:

max tpi − wi
nmmax{dinm − δinm, 0}

− wi
ltmax{dilt − δilt, 0} (7)

s.t. constraints(3) (8)

dils ≤ δils (9)

wi
nm ≥ wi

lt (10)

Constraint (9) indicates a stringent latency guarantee
for the latency-sensitive queue, while normal and latency-
tolerant queues could tolerate a certain degree of constraint
violation. wi

nm and wi
lt are the weights in the penalty func-

tion, and the values in constraint (10) indicate the partial
order of the queue priorities and the relative importance
of its constraints, e.g., it is of more importance to allocate
available bandwidth to nm queue than lt queue. We then
introduce two more variables βi and φi to overcome the
non-smoothness of the objective function revealed from
the max penalties. Based on the bounds and direction of
optimization, the penalties in the function can be relaxed
further as follows:

max tpi − wnmβi − wltφ
i (11)

s.t. constraints (3), and (8) (12)

βi ≥ dinm − δinm, βi ≥ 0 (13)

φi ≥ dilt − δilt, φ
i ≥ 0 (14)

4.2.2 Optimizing Global Throughput across Edge Nodes
We then formulate the procedure of data stream redirection
at the overall network level. In the event of overflowed
streams, the records in an existing data queue qils in Ei, for
example, can be redirected to a set of destination nodes Pi

that have available resources for the time being.
We make the following assumption.

Assumption 1:. The queuing data streams can be flexibly
split and sent out to any edge nodes at a specific rate.
Assumption 2:. The edge nodes are connected with the local
network which has a much smaller latency than the delay
between edge nodes and the cloud.

We use Φ(qils, p) ∈ Z+ to represent the volume of the
data stream sent from qils to a destination edge node Ep

where p ∈ Pi. Particularly, if p is equal to i, the portion of
the data stream remains in the queue of the source node.

The total throughput of qils is therefore t̃pils =
∑

p∈Pi
Φ(qils,p)

∆t .
Correspondingly, the overall system throughput – consider-
ing all types of queues and all edge nodes in the system –
can be calculated as follows:



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 99, NO. 99, JULY 2023 6

TP =
∑
i∈I

∑
p∈Pi

Φ(qils, p)

∆t

+
Φ(qinm, p)

∆t
+

Φ(qilt, p)

∆t

=
∑
i∈I

t̃pils + t̃pinm + t̃pilt (15)

Hence, the final optimization problem will be:

max TP (16)

s.t. dils ≤ δils, d
i
nm ≤ δinm, dilt ≤ δilt, ∀i ∈ I (17)

Vi ≤ Ci
out, ∀i ∈ I (18)∑

p∈P,∀i∈I

Φ(qils, p) ≥ sils, (19)∑
p∈P,∀i∈I

Φ(qinm, p) ≥ sinm, (20)∑
p∈P,∀i∈I

Φ(qilt, p) ≥ silt (21)

This paper assumes the available resources are sufficient
to transfer the data streams to the cloud within a pre-defined
domain of latency tolerance as indicated in constraint (17).
Otherwise, we can relax the constraint by using the tech-
nique aforementioned in the local node’s optimization. A
solution to the objective (16) necessitates the specific value
assignment to Φ ∈ Z+ and α ∈ {0, 1}.

This is an integer linear programming (ILP) problem and
proved to be NP-hard [22] – Capital Budgeting problem [23],
Knapsack problem [24], Traveling Salesperson problem [25].
While the strategies such as Branch-and-Bound, cutting
plane can obtain an optimal solution for these problems,
the time complexity of these algorithms is polynomial time.
ILP solvers such as Gurobi [26] and CPLEX [27] are ex-
tremely time-consuming – even taking a few hours for
small instances – and thus cannot be applied to satisfy the
requirements of real-time streaming systems. We turn to
heuristics design in a runtime traffic management system.
Such algorithms are well-suited for problems particularly
in the time-critical domains where real-time decisions are
required to be made with low latency.

5 KEY TECHNIQUES

To fulfill the aforementioned optimization objectives, JANUS
leverages two greedy-based heuristic algorithms. Once any
queue’s delay is detected exceeding a defined threshold,
the throughput will be adjusted at each edge node level
to achieve the objective (7). If any latency constraint of the
queues is breached, Traffic Orchestrator will carry out a plan
to achieve the objective (16).

5.1 Bandwidth Reallocation in an Edge Node
The key procedure of dynamic bandwidth allocation is to
ascertain and diminish the discrepancy between the pre-
defined latency threshold and the runtime queuing delay
within a time window. To meet the constraints (8) and (9),
we leverage a priority-based bandwidth reallocation mech-
anism for prioritizing latency-sensitive queue over other
queues. At the core of the reallocation is to determine the

Algorithm 1: Priority Based Throughput Throttle
1 PBTT()
2 // Count the input rate of each queue within the time interval t
3 Λi

ls,Λ
i
nm,Λi

lt ← Counter(t)
4 // Compute the queuing delay for three queues

5 dils, d
i
nm, dilt ←

sils
Vi
ls

+ ε,
sinm
Vi
nm

+ ε,
silt
Vi
lt

+ ε

6 if dils > δils or dinm > δinm or dilt > δilt then
7 // Reallocate the bandwidth for each queue
8 Vi

ls, Vi
nm, Vi

lt ← BWAllocator(Λi
ls,Λ

i
nm,Λi

lt)
9 return Vi

ls, Vi
nm, Vi

lt

10 end
11 else
12 return NULL // Keep current bandwidth for each queue
13 end

Algorithm 2: Bandwidth reallocation (Ei)

Input: Λi
ls,Λ

i
nm,Λi

lt: current input rate of each queue
bwi

ls, bwi
nm, bwi

lt: current bandwidth allocation
freebwi: available bandwidth

1 BWAllocator()
2 // Predict the output rate requirement of each queue
3 bwi

ls, bw
i
nm, bwi

lt ← using Eq. 22
4 if bwi

ls ≤ Ci
out then

5 Vi
ls ← bwi

ls

6 if bwi
nm ≤ Ci

out − Vi
ls then

7 Vi
nm ← bwi

nm

8 if bwi
lt ≤ Ci

out − Vi
ls − Vi

nm then
9 Vi

lt ← bwi
lt

10 freebwi ← Ci
out − Vi

ls − Vi
nm − Vi

lt

11 Vi
ls ← Vi

ls + freebwi

12 end
13 else
14 BWRequest(0, 0, Vi

lt − bwi
lt)

15 end
16 end
17 else
18 Vi

nm ← Ci
out − Vi

ls; Vi
lt ← 0

19 BWRequest(0, Vi
nm − bwi

nm, −bwi
lt)

20 end
21 end
22 else
23 Vi

ls ← Ci
out; Vi

nm ← 0; Vi
lt ← 0

24 BWRequest(Vi
ls − bwi

ls, −bwi
nm, −bwi

lt)
25 end
26 return Vi

ls, Vi
nm, Vi

lt

minimal required bandwidth that is believed to satisfy the
latency constraint of each type of stream, while diminishing
the existing queue backlogging delay. The intuition behind
this design is to leverage as less bandwidth as possible to
fulfill a given latency requirement on a per queue basis (e.g.,
δils), and thus to spare unused bandwidth on an edge node
to handle bandwidth shortage on other busy neighbors.

Alg. 1 shows the detailed procedure: initializing from
the time T , we evenly assign bandwidth to three queues.
Counter() reads the monitored input rate of each queue
during a time interval t (Line 3). Afterwards, we calculate
the estimated queuing delay before comparing against the
pre-defined threshold. If any expected queue delay is de-
tected to surpass the threshold δ, bandwidth reallocation
will be triggered, and BWallocator will rapidly alleviate
throughput discrepancy between current allocation and the
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wanted allocation (Lines 6 - 10).
As shown in Alg. 2, BWallocator aims to allocate the

finite amount of bandwidth to three prioritized queues. The
decision depends upon both the existing and the estimated
queuing length for the next time interval t. Ideally, the allo-
cated bandwidth is desired to be large enough to clear both
the backlogged records that have been awaiting delivery
and the new records accumulating during the time interval
within a predefined latency requirements.

bwi
ls =

sils + (Λi
ls − Vi

ls) ∗ t
δls

+ Vi
ls (22)

As shown in Eq. 22, the estimated queuing accumulation is
calculated by the difference between the input rate Λi

ls and
output rate Vi

ls times t. After the ideal amount of bandwidth
of each queue is calculated, we proceed to the realistic band-
width re-allocation. The ls queue has the highest priority to
obtain all possibly available bandwidth Ci

out, followed by
the nm and lt queue, respectively. This is aligned with the
weight associated with each soft constraint defined in con-
straint (10). In the event of bandwidth shortage, bandwidth
request will be generated by BWallocator via Update()
and bandwidth allocation will take effect on each queue.

5.2 Global Traffic Coordination across Edge Nodes
Traffic Orchestrator coordinates the imbalanced data
streams among edge nodes and maps the redirection re-
quest from a saturated edge node onto other edge nodes
that currently have sufficient bandwidth resources. Its core
responsibility is to find the most suitable match between the
waiting requests and available bandwidth resources that can
achieve the objective (16).

5.2.1 Bandwidth Request and Response
To simplify the bandwidth requirement of each edge node
in the scheduling model, we leverage the uniformed 3-
attributes tuple (bls, bnm, blt) to represent the following band-
width operations for different queues:
• Available/Allocated Bandwidth: the amount of available

bandwidth that can be provisioned by different queues
in an edge node, and the current bandwidth allocation
among different queues in an edge node;

• Bandwidth Request/Response: the amount of requested
bandwidth (equivalent to the traffic shortage or traffic
for redirection) and the amount of bandwidth granted to
an edge node for redirecting pending stream records.
We use a positive value to indicate the available resource

and a negative value to imply the requested resource to
resolve the current bandwidth shortage. For instance, one
could request [0,−5, 0], indicating 5 units bandwidth short-
age in the second-level queue. The pertaining traffic would
be, ideally, redirected to other edge nodes to avoid the
latency violation. An edge node labelled [0, 0, 10] can lend
out 10 units bandwidth to rescue the traffic delay.

Note that, by design, the available bandwidth tuple
(the unallocated bandwidth pertaining to each queue) is
collected and reported periodically from each edge node
to Orchestrator through an independent thread sitting in
the edge node, or piggybacked in the heartbeat message
between edge nodes and Orchestrator.

Algorithm 3: PMRFS-based Traffic Redirection
1 redirection(bw requests, bw availables)
2 // Descend Sort of required bandwidth and available bandwidth
3 Receivers← PriorityFirstSort(bw_requests)
4 Providers← Sort(bw_availables)
5 forall Pj ∈ Providers do
6 forall Ri ∈ Receivers do
7 if freebwPj ≥ reqbwRi then
8 tmpbw ← reqbwRi

9 BWRespond(Ri, Pj , tmpbw)
10 BWReserve(Pj , tmpbw)
11 Receivers← Receivers\{Ri}
12 freebwPj ← freebwPj − tmpbw
13 end
14 else
15 tmpbw ← freebwPj

16 BWRespond(Ri, Pj , tmpbw)
17 BWReserve(Pj , tmpbw)
18 Providers← Providers\{Pj};
19 reqbwRi ← reqbwRi − tmpbw
20 break
21 end
22 end
23 end

5.2.2 Prioritized Max Request First Served Heuristic
Key Idea. We categorize edge nodes into bandwidth
provider and bandwidth receivers, according to the provi-
sion/shortage role, i.e., negative/positive value within the
attribute tuple. Our previous algorithmic study on bin pack-
ing [28] concluded that Given that node-centric algorithms
can achieve a good trade-off between running time and
solution quality. Based on this, we propose an approxima-
tion Redirection mechanism, Prioritized Max-Request First
Served (PMRFS) algorithm, to i) prioritize the bandwidth
request from the high-priority queue with a larger amount
of bandwidth shortage; and ii) consider edge nodes that has
larger available bandwidth as the bandwidth providers. The
intuition is that the proposed scheme can mitigate band-
width shortage as soon as possible to reduce the redirection
times whilst increasing the success possibility of bandwidth
allocation, and thus maximize the overall throughput.

As shown in Alg. 3, we first sort both bandwidth request
and available bandwidth in a descending order. Most no-
tably, we employ a priority first sort (Line 3) to ensure that
requests from higher priority queue can be ranked on top
of requests of other queues, even if they may have smaller
request amount. To achieve PMRFS, we firstly pick the head
request from the sorted Receivers and pick the edge node
with the largest available amount of bandwidth from the
Providers set. If a single provider cannot completely satisfy
a request, the satisfied fraction will be held by the receiver;
meanwhile the receiver awaits next available providers until
all its requested bandwidth is satisfied. It is worth noting
that the held fraction will be incrementally assigned and
Traffic Orchestrator will notify the edge node to redirect the
given amount of traffic to the designated edge node (Lines
14-21). Likewise, if one provider from Providers has more
bandwidth than the requested value of the current receiver,
the remaining fraction can be further allocated to the next
receiver (Lines 7-13). The iterative allocation will not cease
until all receivers get the required bandwidth. Once Traffic
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10
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13
10
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Traffic Surge 
5+ Allocated BW

Fig. 4. Bandwidth request, response and reservation

Orchestrator makes a decision, the beneficiary node will
forward a specific number of records from its queue to the
destination node according to the allocated bandwidth. The
destination node will reserve the bandwidth (Line 10) and
prepare for receiving the forthcoming record streams.
Working Example. We use the following numerical example
to showcase the algorithm procedure. To simplify the expla-
nation, we selectively depict the interactions between two
edge nodes (E1 and E2) and the centralized Traffic Orches-
trator. Fig. 4 shows the details of bandwidth request and
response among these components. More specifically, the
current bandwidth allocation for E1 and E2 are [10,10,10]
and [18,10,2], respectively. At time T , E1 experiences a
bursting traffic into the latency-tolerant queue and thus
requires extra 5 units bandwidth to resolve the transient
latency issue. The bandwidth request [0,0,-5] will be sent
to the orchestrator. Orchestrator will gather the available
bandwidth from each edge node and calculate which run-
ning edge node can provide a spare resource. Given 8 units
free resources can be provided by E2 from its latency-
sensitive queue, the available bandwidth tuple [8, 0, 0] will
be known by the orchestrator via periodic resource updating
and synchronization between edge nodes and orchestrator.

The orchestrator will then carry out Alg. 3 and confirm
that E1 should redirect its overflowed traffic to E2 and E2

has to reserve the corresponding bandwidth temporarily for
the redirection. To this end, Orchestrator will respond to all
the involved nodes, notifying the satisfied amount [0, 0, 5] to
the requesting edge node. Within the designated edge node,
an internal bandwidth shift [5↓, 0, 5↑] to the destination
edge node for the bandwidth reservation. Once upon E2

receiving the instruction, 5 units of available bandwidth will
be secured to its latency-tolerant queue, i.e., the bandwidth
allocation will shifted from [18, 10, 2] to [13, 10, 7]. Upon
receiving the request response, E1 redirects its traffic to E2.
Complexity Analysis. JANUS is a simple and efficient
stream processing system with low complexity. Alg.2 only
has O(n) time complexity, where n denotes the types of the
queues. The time complexity of Alg.3 is O(p × r) where p
is the number of bandwidth provider, and r represents the
edge nodes that redirect their streams to the providers.

5.2.3 Other Comparative Heuristics
We are aware of many other counterpart heuristics that
can serve the requests of traffic redirection. Specifically, our

previous study [28] presented comprehensive experimen-
tal comparisons among node-centric, application (request)-
centric and multi-node approaches. As will be shown in
§7.1, we select the following representative winning algo-
rithms as baselines to compare their runtime performance.

6 SYSTEM IMPLEMENTATION

6.1 Implementation Details

Message Exchange Protocols. We firstly present the selec-
tion of message exchange protocols to underpin stream-
ing flows: 1) IoT devices to edge nodes: We leverage MQTT
protocol to fulfill lightweight record transmission due
to its dedicated design for IoT messaging following the
Pub/Sub model. Eclipse Mosquitto [29] is a lightweight
implementation of MQTT protocol and well-suited for di-
verse devices stretching from low-power sensors to high-
performance computer servers. We launch an instance of
Eclipse Mosquitto server on each edge node and other
modules can use a Mosquitto client to subscribe the pre-
defined topics through the Pub/Sub. 2) edge nodes to cloud
servers: We choose AMQP as the application-layer proto-
col, for it provides resilient flow-controlled communication
with message-delivery guarantees. We use RabbitMQ [30]
to underpin the fundamental message delivery in WAN
environments, building up the streaming tunnels between
edge nodes and cloud servers. RabbitMQ is a lightweight
and easy-to-deploy messaging system software that has
been widely used as Pub/Sub system by industries for al-
most a decade. Owing to the in-memory operations without
permanently storing to intermediate disks, RabbitMQ has
far lower latency against Kafka when transferring messages.
Additionally, RabbitMQ offers more flexibility of devel-
oping bespoken redirection algorithms due to its intrinsic
nature of supporting Pub/Sub messaging.
Streams Categorization. Table 1 presented an example of
representative value range that approximates the typical
latency requirement of the listed applications. One can
flexibly determine the number of categories and define
the corresponding thresholds for each of them according
to their latency requirement. Our solution is adaptive to,
and working correctly in extreme cases. For instance, if all
streams belong to the same category, JANUS will perform
in the first come first served manner; if all tasks are com-
pletely different in the latency requirement, one can simply
partition the tasks, putting one task into one category.
Scalability. Due to the loosely-coupled system design, ad-
ditional edge nodes can be simply added into the system in
the event of increasing demands or insufficient forwarding
capability. Our redirection approach that adopts greedy
heuristic can underpin thousands of edge nodes even on
a low-power computational device. However, collecting in-
formation from many edge nodes to a centralized edge node
may become a system bottleneck. We plan to employ decen-
tralized methods [31], [32], [33] to tackle this communication
scalability in the future work.
Fault Tolerance. In an attempt to reduce single point of
failure, we set up hot-standby replications for key compo-
nents – such as Queue Manager, Edge Agent, and Traffic
Orchestrator – to enable their automatic failover in the face
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TABLE 3
Emulated network environment.

Network Latency Throughput
WiFi 5ms 200mbps
4G 50ms 18mbps
3G 100ms 780kbps

of any crash-stop faults. Each edge node periodically check-
points the arrived streams within a given time frame. We
use sequence numbers to track the last consumed records
of all streams. Once an edge node recovers from software
component or hardware crashes, we simply restore the most
recently saved checkpoints to continue the execution: if the
faulty node has pending data to transmit, Queue Manager
will retry the transfer to the corresponding cloud endpoints,
and the PMRFS algorithm will be called, where necessary,
to re-transmit the recovered data to other peer edge nodes.
Fairness. Our current implementation does not consider
fairness scheduling among different queues in a single edge
node. However, we found that it is rare to starve lt or nm
queues. This is because the arrival rate of ls streaming is
typically small and the available bandwidth on idle edge
nodes are thus sufficient for our redirection mechanism to
tackle the overflow in lt or nm queues. Prior work [34],
[35], [36], [37] considered the fair bandwidth allocation
in the context of cloud computing. These techniques can
be integrated with JANUS to address fairness scheduling
problem and will be left for future study.

6.2 Discussion

JANUS makes its best effort to target QoS requirements
of data streaming delivery theoretically based on manage-
able throughput measurement. This, however, is not an
easy task; practically numerous uncertainties may influence
its effectiveness: i) resource interference: stream processing
is memory and CPU intensive, and the throughput (in-
put/output) significantly depends on the amount of avail-
able resource and the degree of resource interference in the
node, which is however in short supply and sometimes
difficult to predict. ii) network variability: our real-world eval-
uation in §7.3 indicates that bandwidth of the IoT network
(e.g., cellular network) fluctuates drastically over time, and
is extremely vulnerable to factors such as weather, shared
connections and network coverage, etc. These variables
complicate the design of the robust and optimal mechanism
for throughput throttle and traffic redirection. JANUS uses
a simple and efficient means particularly for low-power
and low-cost computational devices. New algorithms can
be easily plugged into JANUS owing to the loosely-coupled
component-based architecture.

Additionally, JANUS focuses on effective IoT streaming
management, without a particular consideration of compu-
tation latency. The computational latency assurance of IoT
streaming processing investigated in many existing works
[38], [39], [40] could be easily integrated with JANUS.

7 EVALUATION

7.1 Experimental Setup

Environments. We evaluate JANUS in two environments:
• Lab Testbed: We evaluate JANUS on a testbed consisting of

real edge hardware including Raspberry Pis and servers.

In terms of IoT networking, we consider an emulated
network and real-world 4G: In the emulated network,
we run micro-benchmarks over 10 Raspberry Pi 3 model
B+ (with 1.4GhZ 4 cores and 1GB of RAM) and a bare
metal Ubuntu machine, with 20 cores (Intel(R) Xeon(R)
Silver 4114 CPU @ 2.20GHz) and 64 GB memory. The
network is emulated by using Linux traffic control (TC)
[41]. Table 3 shows the network configurations for the ex-
periments where the configuration parameters are based
on real world measurement [42].

• Real-world Testbed: We connect the edge nodes (Raspberry
Pis) with an amazon EC2 cloud server (4 vCPU and
8 GB memory, Vodafone 4G network through 4G USB
Dongles). In the micro-benchmarks, 4 Pis are set as edge
nodes which consume sensor data sending from sensors.
All Pis are connected through local WiFi network through
Netgear switch with 200 Mbps bandwidth.

Dataset and Workloads. To generate realistic workloads, we
use a real-world smart building dataset [20]. It contains data
samples collected from 4, 000+ sensors such as occupancy,
CO2 and temperature etc. We categorize the input data from
different sensors and analyze the distribution of their arrival
rates. Input rate of each edge node is controlled and tuned
by changing the sensor’s forwarding rate to the pertaining
edge nodes. According to the empirical profiling, we set
the input rate 30 records/s for all three types of streams
on on idle edge nodes. The input rate of busy nodes is
configured at 30 records/s for latency-sensitive streams and
300 records/s for normal streams. Since JANUS focuses on
the throughput optimization in streaming data delivery, we
simply run a data query program that includes aggregate
functions, e.g., sum/avg operation in a time window, as the
representative workload in the cloud.
Methodology and Metrics. We vary the input rate of
throughput-tolerant streams (from 1K records/s to 5K
records/s) and network environment (3G, 4G and WiFi),
and measure their impact on the system effectiveness. We
compare JANUS with three baselines:

• Native scheme: No queue management mechanism is
enabled and inbound streams will be directly forwarded
from sensors to cloud without any interventions by pri-
ority queues.

• QM-Only scheme: This is a comparable strategy adopted
in QJUMP that only encompasses the local queue man-
ager with the traffic orchestration disabled.

We also compare JANUS that adopts PMRFS for global
traffic coordination with several baseline heuristics:

• Random scheme randomly picks requests from multiple
queues among different overloaded edge nodes.

• First Come First Served (FCFS) scheme picks the request
that asks for additional bandwidth first.

• Least Request First Served (LRFS) scheme chooses the re-
quest with minimal bandwidth request.

• Best Fit (BF) scheme traverses the list of available band-
width providers and pick the bandwidth request that is
closest in size to the current available provider.

For accurate results, we repeat each experiment 5 times
independently and calculate the average. We consider three
metrics in our evaluation:
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Fig. 5. The end-to-end latency in various network environment.

TABLE 4
The end-to-end latency of each types of queues under various network environment

Network 3G 4G WiFi
Approaches ls (s) nm (s) lt (s) ls (s) nm (s) lt (s) ls (s) nm (s) lt (s)

Native 10.86±0.12 7.52±0.08 7.26±0.09
QM-Only 1.13±0.18 8.51±0.19 13.22±0.14 0.53±0.07 4.51±0.08 9.69±0.09 0.41±0.07 3.57±0.06 8.72±0.07

FCFS 4.75±0.16 6.95±0.14 7.69±0.07 1.52±0.04 2.29±0.06 5.19±0.11 1.29±0.03 2.24±0.05 4.63±0.08
LRFS 4.73±0.07 6.89±0.11 7.77±0.04 1.48±0.06 2.26±0.04 5.68±0.13 1.26±0.03 2.19±0.08 4.81±0.09

Best-Fit 4.68±0.12 6.83±0.11 7.70±0.03 1.55±0.04 2.33±0.16 5.04±0.06 1.30±0.03 2.29±0.12 4.08±0.13
Random 4.81±0.14 6.93±0.07 7.66±0.13 1.49±0.04 2.30±0.08 5.26±0.17 1.27±0.03 2.21±0.04 4.41±0.08
JANUS 4.71±0.11 6.54±0.09 8.04±0.05 1.58±0.08 2.41±0.11 3.53±0.06 1.32±0.04 2.39±0.03 3.06±0.05

• End-to-end Latency: This mainly refers to the turnaround
time of latency-sensitive ls workloads that includes the
data transmission latency between data sources and the
cloud and the execution time of workloads in the cloud.
For better evaluating the impact on latency of the neigh-
boring workloads and their compromise on the perfor-
mance, we also measure the end-to-end latency of other
standard nm and latency-tolerant lt workloads.

• System Throughput: This is defined as the total number of
data records forwarded from sensor nodes to the cloud.
This is particularly important for those latency-tolerant
yet throughput-intensive workloads.

• Resource Consumption: We measure the resource overhead
incurred by running JANUS components to examine the
runtime resource cost to the native system.

7.2 Effectiveness Evaluation
7.2.1 Impact on Latency of Latency-Sensitive Streams
We first evaluate the end-to-end latency in various network
environment. The comparisons can be carried out from the
following three perspectives:
Comparison by approaches. As shown in Fig. 5, the latency
can be significantly reduced in both QM-Only and JANUS
compared to the Native approach under all network con-
ditions. For example, in 3G network condition, the latency
of Native is roughly 10.2x times higher than QM-Only and
JANUS. This is simply because the multi-level queue man-
agement will prioritize latency-sensitive streams and secure
its first order in the record forwarding, thereby assuring
a low latency. Due to the intrinsic resource consumption
within edge node during the global traffic coordination,
the forwarding capability for latency-sensitive stream will
be dropped, resulting in a reduced turnover rate for such
stream records and accordingly a higher latency of JANUS
against QM-Only.
Comparison by network conditions. The overall latency of
all the approaches will decrease when the output bandwidth
increase (i.e., from 3G to WiFi). For instance, the average
latency of JANUS under WiFi can be reduced by roughly 85%

compared against 3G environment. Obviously, an improved
network indicates larger outbound bandwidth that will
accelerate the transmission of all sorts of streams. Hence,
the latency will be inherently decreased.
Comparison by different heuristics. Compared with other
methods, Janus can process multiple requests simultane-
ously based on streams’ priority, thereby making better use
of bandwidth on idle nodes. As shown in Fig. 5, JANUS
exhibits slightly higher latency for latency-sensitive data
streams compared with other baselines. This derives from
requiring additional resource and computation cost when
conducting PMRFS algorithm and involving an increased
number of stream redirection than other baselines.
Impact of input rate. In 4G and WiFi network, the latency
of Native dramatically ramps up with the increment of
input rate, mainly due to the queuing backlog introduced
by the throughput-intensive records. When the input rate
reaches 5k records/s, the latency of Native even peaks ap-
proximate 20x and 6x times that of QM-Only and JANUS,
respectively. By contrast, the latency of both QM-Only and
JANUS remains stable without noticeable increase when
input rate increases. Overall, QM-Only in most cases has
the lowest latency – the most significant effect in latency
management – indicating that administrators may switch
off the global coordination for sake of a constantly stringent
latency control. Notably, when the input rate is lower than
2k records/s under 4G and WiFi network, JANUS is in
very close proximity to QM-only because the functionality
of traffic redirection has not been triggered.

7.2.2 Impact on Latency of Other Streams
Apart from examining the impact of different approaches
and different network conditions on the latency of latency-
sensitive streams, we investigate how the latency of lt
and nm streams will be affected so as to evaluate how
JANUS trade their performance for prioritizing the latency
criticality of ls streams. Table 4 demonstrates the end-to-end
latency of each type of the queues under different network
conditions where the input rate is kept to 5k records/s.
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Fig. 6. Overall throughput in various network environment.

TABLE 5
Latency violation comparison under 4G network

Approach ls nm lt
Native 17.5% 4.2% 5.7%

QM-Only 0 9.8% 15.5%
JANUS 0 6.7% 9.4%

Comparison by approaches and heuristics. Overall, JANUS
outperforms other approaches in balancing bandwidth
among queues and thus well guarantee the low latency of
the latency-sensitive workloads without involving too much
starvation to the standard or latency tolerant workloads.
For example, in the 4G environment, compared with native
scheme where no exclusive queues are differentiated – as
shown in Table 4 all queues share the same latency result
– JANUS can reduce the latency of ls from 7.52 seconds to
merely 1.58 seconds on average. Despite the fact that QM-
Only can even reduce ls’s latency to 0.53 seconds on average,
the resultant latency of lt will ramp up to 9.69 seconds,
much higher than its performance in the native case. This
is because, when compared with QM-Only without system-
level traffic orchestration, JANUS can better utilize the band-
width provided by idle nodes to mitigate the impact of
latency on the inferior queues. Different Heuristics do not
show obvious disparities. Table 5 also reveals the latency
violation ratio of each queue under 4G network. Observably,
thanks to the mechanism of adaptive bandwidth realloca-
tion among queues, JANUS and QM-only can guarantee no
violation of latency-sensitive streams, with some violations
in the inferior queues. Compared with QM-only approach,
JANUS can use the idle edge nodes to mitigate the violations
of both nm and lt streams. While native approach has much
lower violation ratio of nm and lt streams, it suffers from
high violation of ls streams, which is unacceptable.
Comparison by network conditions. It is also observable
that network conditions affect the latency results. Arguably,
4G and wireless connections can provision much more suf-
ficient network resource within the entire Edge system than
the 3G environment. The advantage of traffic orchestrator in
JANUS can be thus better leveraged to alleviate the degree
of latency increase of nm and lt streams.

7.2.3 Impact on Throughput
Similarly, we measure the overall throughput under the
same experimental environment.
Comparison by approaches. As illustrated in Fig. 6, JANUS
outperforms other approaches, particularly when the net-
work condition improves to WiFi environments. It is observ-
able that, in most cases, Native and JANUS have a substan-
tial throughput increase compared against QM-Only. For
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Fig. 7. e2e latency and throughput in real 4G network

instance, JANUS achieves similar throughput as Native and
1.7 times more than that of QM-Only in 4G network. This
improvement increases as the network bandwidth grows.
In WiFi network, JANUS achieves higher throughput than
that of Native and more than 2 times of QM-Only. In fact,
QM-Only blocks the traffic redirection for latency-tolerant
streams due to the lack of elastic forwarding mechanism,
even if other edge nodes have sufficient bandwidth capa-
bility. By contrast, Native can directly forward throughput-
intensive records without distinguishing the record types
whilst JANUS can rapidly bypass the congesting edge node
other than using the local capacity, resulting in the highest
system throughput constantly.
Comparison by network conditions. Intuitively, the growth
of outbound bandwidth gives rise to the enlarged capability
of record digestion and transmission. For instance, WiFi and
4G network experience far better throughput against the
3G scenario. In reality, in 3G network, there are marginal
disparities among three approaches purely because of the
limited network bandwidth.
Comparison by different heuristics. Janus can yield higher
throughput than other baselines across various network
conditions and input rates, and the disparity is more no-
ticeable in conditions with more bandwidth capacity. For
example, In Fig. 6, JANUS achieves 1.3x higher throughput
than other heuristics under WiFi network. This is because
Alg. 3 can consider various bandwidth requests simultane-
ously and thus outperform others which can merely handle
a single bandwidth request a time.
Impact of input rate. Increased input rate indicates a grow-
ing crowd of records feeding into the system. In 4G and
WiFi network, the throughput of QM-Only decreases when
the number of input records ramps up. This is because
local processing and queuing ability of an individual edge
node cannot afford timely forwarding for the growing input,
thereby slightly reducing the overall throughput. However,
the throughput of JANUS will, on the other hand, steadily
increase, owing to the redirection mechanism for rapid for-
warding to other nodes. Since the Native approach directly
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forwards all records upon their arrival, its upper throughput
boundary will be confined by the local processing capacity.
JANUS can reuse capacity from both local and neighbor edge
nodes; hence the highest average throughput.

7.2.4 Overhead
We mainly measure the resource (CPU and memory) usages
of each component at runtime as the primary system over-
head. The experiment result shows that JANUS’s overhead
is negligible – Edge Agent only consumes approximate 4.5%
memory and 2.5% CPU; while Traffic Orchestrator uses 1.5%
CPU and 5% memory. This indicates it is worth enabling
the light-weight agent for latency guarantee and throughput
improvement at the cost of marginal system cost.

7.3 Real-world Evaluation
We evaluate JANUS using real-world 4G network. As pre-
sented in Fig. 7(a), JANUS and QM-Only scheme have far
lower latency than the Native baseline. In particular, latency
of Native is more than 5 times that of others when the input
rate is 3k records/s. The difference is further amplified with
the increase of input rate. For example, JANUS is able to
reduce the latency to only 16.6% against Native when the
input rate is 5k records/s. Interestingly, we observe that in
a dynamic mobile network condition, the latency disparity
between JANUS and QM-Only is negligible. In fact, the
available bandwidth between an edge node and cloud is
dramatically volatile that hugely increases the difficulty in
finding the optimal solution to the bandwidth allocation for
different types of queues. As a result, bandwidth reallocation
in Alg. 2 may not be able to allocate an optimal bandwidth
for low latency queue and thus declines the effect of redi-
rection and paving ways for latency-sensitive records.

As shown in Fig. 7(b), the throughput of JANUS can
be improved by 1.56× and 1.7× against the Native base-
line and QM-Only, respectively. The proposed redirection
mechanism greatly facilitates to overcome the dynamicity
issue that is ubiquitously manifested in real-world 4G net-
work. The elasticity provided by traffic redirection advances
the throughput maintenance particularly when available
bandwidth of an edge node fluctuates sharply. It is non-
trivial to note that real world environments bring numerous
uncertainties. For example, when the input rate reaches 3k
records/s, throughput of the Native scheme is lower than
QM-Only, noticeably because of a network bandwidth drop
during the Native experiments.

8 RELATED WORK

Network management in Datacenters. Congestion control
is a common practice in network community, typically by
effectively limiting transmission rate and forwarding net-
work packets to their destination. [10] extends the window
adjustment algorithm adopted in DCTCP [43] and uses ear-
lier deadline first policy in the flow scheduling. [9] improves
the congestion avoidance mechanism in [10] with the aid
of packet-pacing NIC. [11] adopts a first in first out (FIFO)
policy to schedule bandwidth. However, they require either
heavy support from switches or modification of transmis-
sion protocols, OS kernel and application modules, making
it difficult to deploy upon commodity hardware. They can
hardly provide guaranteed bound on the latency and flow

deadlines. QJUMP [12] forwards messages into different
queues based on their priorities, which is aligned with the
intention of multi-level management in JANUS. However,
its proposed method is not applicable in stream processing
applications in the edge environment due to the limited
visibility and control of network devices for manipulating
internal data streams. Homa [44], pHost [45] and NDP [46]
leverage receiver-driven flow control mechanism to reduce
the latency of small messages. However, these switch based
mechanisms are highly dependent upon an assumption that
the ingress throughput equals to the egress throughput, to
be invalid in the IoT-edge-cloud continuum. JANUS firstly
develops an effective mechanism of dynamic bandwidth
allocation and holistic traffic coordination at the application
layer, which is flexible to carry out throughput throttling
and bandwidth adjustment over streaming data.
Stream processing in cloud and edge computing. Most
of the stream processing platforms [47], [48], [49], [50],
[51] rely on datacenter environments to provide centralized
streaming services. The advances of edge computing facil-
itate the shift of cloud-based data processing much closer
to the ground, which can significantly reduce the process
latency [52]. Frontier [53] develops an edge-based stream
processing system for ML applications. However, it focus on
reliability of ML applications on edge nodes in a distributed
manner. Approxiot [38] mainly focuses on optimizing the
performance of analytic tasks rather than considering the
queueing delay problem in delivering the streaming data.
NebulaStream [54] develops APIs for specifying dataflow
programs that can direct data streams to different processing
tasks. However, it does not differentiate latency sensitivity
of different IoT applications and thus fail to effectively
cope with queue delay. JANUS presents an effective traffic
scheduling system across the full stack in the IoT-edge-cloud
continuum, particularly considering different types of data
records and their specific QoS requirements.
Offloading in mobile edge computing. General-purpose
offloading [55], [56], [57], [58], [59], [60], [61] in mobile
computing mainly targets the problem of task offloading to
the cloud, neglecting the impact of messaging across various
computing resources. LEO [55] optimizes the energy con-
sumption by performing multiple sensor processing tasks
on mobile devices, without considering the dynamicity of
IoT network. Despite the consideration of diverse resources,
MAUI [56], Code in the Air [58] and Odessa [57] are un-
aware of queuing delay from edge nodes to cloud. They can
benefit from the network adaptation capabilities in JANUS.
Wang et al. [62] proposed a Edmonds–Karp algorithm to
address a mixed-integer nonlinear programming problem
in computation offloading for IoV. Ren et al.[63] formalized
the edge-cloud task offloading as a convex optimization
problem and resolves it via KKT conditions. Xu et al.[64]
tackled task offloading by simple logistics to optimize the
QoS metrics. They decomposed the optimization problems
into simpler convex forms. However, our system requires a
real-time solution that cannot be resolved by such methods.

9 CONCLUSION

We have presented JANUS, a traffic scheduling system for
data streams in distributed edge computing. JANUS ad-
dresses the throughput mismatch problem where data ar-
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rive faster than they can be consumed on an edge node.
We formulate two distinct optimization problems and tackle
them in JANUS in a practical manner. At the edge node
level, JANUS dynamically allocates the uplink bandwidth
according to the latency constraint of the application, by giv-
ing higher priority to latency-sensitive applications. JANUS
actively monitors the traffic loads of a distributed edge
computing network to direct data from heavily loaded edge
nodes to the less loaded ones to achieve a network-wide
load balancing. In the future, we plan to develop other
gradient-based algorithms for throughput optimization and
evaluate it in a larger-scale environment.
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