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Wearable-based human activity recognition (HAR) typically uses motion sensor data, such as inertial measurement unit
(IMU) signals, to identify human movements. While effective in controlled scenarios, traditional HAR models are trained
on a fixed set of activities and fail to generalize to new or unseen actions. This limitation motivates the use of zero-shot
learning (ZSL), which aims to recognize unseen activities without direct training examples. Existing ZSL methods often rely
on projecting seen and unseen classes into a shared latent space using external semantic information, such as visual or textual
data. However, visual data are commonly unavailable in wearable settings, and text-based semantics from activity labels or
coarse descriptions lack the detail needed for accurate recognition. Recent work explores large language models (LLMs) to
provide prior knowledge through question-answering mechanisms. While promising, these approaches do not use raw sensor
data directly and often miss important contextual signals. We propose IMUZero , a ZSL framework that fuses sensor signals
with LLM-generated semantic attributes. Our method uses LLMs to produce fine-grained, decomposable activity attributes
without additional LLM-based training, preserving sensor context. We also introduce a channel shuffle order constraint that
models axial bias to improve generalization. Experiments on four public datasets show that our method outperforms existing
ZSL approaches that rely on learned semantic embeddings. We release the code at https://github.com/Was-Lab/IMUZero.
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(a) Action–Label Approach[7] (b) Text-Based Approach[24] (c) Visual-Based Approach[25] (d) LLM-Based Approach[17]

Fig. 1. Different Approaches to Zero-shot Inertial HAR.

1 Introduction
Wearable-based human activity recognition (HAR) [10, 19, 23, 29, 33, 46] uses inertial measurement unit (IMU)
data to infer human behaviors. Most existing HAR systems are trained on a small set of predefined activities
collected in controlled environments. However, human motion in daily life is highly diverse, unstructured, and
context-dependent. Manually labeling IMU data for all possible activities is labor-intensive, time-consuming,
and often infeasible at scale. This creates a fundamental gap between training data and real-world deployment:
models must recognize activities that were never seen during training. Traditional supervised learning cannot
address this gap, as it requires labeled examples for each activity class. Zero-shot learning (ZSL) offers a practical
solution by enabling models to infer unseen activities based on semantic relationships with known classes. In
this way, ZSL extends the applicability of HAR systems to more realistic and dynamic environments without
requiring exhaustive annotation.
Fig 1 shows the existing solutions for ZSL for HAR which primarily explored four research directions: (a)

Action–Label Table encode basic limb movements and body postures as binary indicators, but their semantic
coverage remains limited [7, 38]; (b) Textual descriptions of joint and limb motions are processed by language
models to produce semantic embeddings, which nonetheless depend on extensive annotated corpora [24, 41]; (c)
Visual inputs, such as images or video frames of performed activities, yield rich feature embeddings via vision
models, but require additional visual resources [25]; and (d)LLM-based methods leverage prompt engineering
and QA mechanisms to infer unseen activities from expert knowledge, but they often lack sufficient contextual
grounding and do not operate in an end-to-end fashion, complicating the recognition process. [17, 22].
Key Idea. We are inspired by the knowledge of kinematics [45]: Human activities are defined by the spatial
configuration and motion of specific body segments. For example, “walking” can be defined by: "high transverse leg
movement, high longitudinal leg movement, high coronal leg movement, medium transverse chest movement,
medium longitudinal chest movement, high coronal chest movement, low coronal armmovement, low longitudinal
arm movement, high coronal arm movement". This paper proposes to use a limited set of body segments—defined
as activity attributes—that are observable from IMU signals to represent human activities, enabling ZSL for HAR.
However, although the designed activity attributes establish a semantic basis, mapping raw signals to semantics
remains challenging, as it requires accurate extraction of fine grained patterns and formal alignment. Specifically,
building this mapping faces the following challenges:
1) Signal-Semantic Gap: Raw inertial sensor outputs generate continuous, high-dimensional time-

series signals riddled with noise, inter-subject variability, and devoid of inherent semantic markers tied
to human actions. Furthermore, the noisy, high-dimensional nature of these signals makes it difficult to extract
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Fig. 2. The workflow of the proposed IMUZero framework. During the training phase, the learning model is optimized to
construct a semantic bridge between movement-sensitive attributes generated by LLM and the input activity signals. In the
inference stage, the unknown input activity signals are first converted into frequency modality and then simultaneously fed
into the learned model for the nearest semantic search, resulting in the final inference outputs.

robust representations needed for meaningful alignment. Previous research using activity attribute matrices,
textual or visual embeddings, and LLM driven QA has attempted to bridge the semantic gap but offers limited
semantic coverage and demands extensive annotations and lack of contextual grounding. Further, these methods
rely exclusively on IMU data, which captures time series kinematics but omits the spectral information essential
for understanding movement semantics. Consequently, these limitations produce poor semantic mapping and
hinder accurate interpretation of complex activities across varied contexts.
2) Axial Bias: The axial bias is introduced when user variations in wearing behavior or activity-

induced movement alter sensor alignment, causing shifts in the captured signal. (as demonstrated in
sec. 4.3) The discrepancy between subjects in performing activities was neglected in previous studies. [43, 47]
These variations can distort intrinsic signal patterns across activities, thereby limiting model generalizability.

Thus, in this work, we present IMUZero , a fine-grained, end-to-end zero-shot HAR framework that enhances ZSL
by constructing robust projections through a cross-modality fusion mechanism between activity signals and LLM-
generated fine-grained, decomposable attributes.We leverage LLMs and their powerful, cognitive-science–inspired
prior knowledge to generate reliable and informative semantic attributes, in contrast to conventional naive
activity–attribute matrices or simple textual descriptions. Since our method does not rely on direct LLM training
or QA inference, it avoids the loss of contextual information. Furthermore, as a first attempt, we encode the
IMU data in the frequency domain to provide extensive spectral information that supports alignment with
the generated attributes. A fused spatial and spectral representation establishes a robust semantic bridge for
subsequent zero-shot tasks. The workflow of the proposed IMUZero are demonstrated in Fig. 2. Specifically, the
IMUZero framework comprises three major components: 1) TheMovement-sensitive Attribute Generation
component takes predefined category information as input to the LLM, facilitating fine-grained and informative
semantic attribute generation; 2) TheMulti-Scale Time-Frequency Fusion module enhances the integration of
semantically related information from the input activity signal and its corresponding frequency representation,
thereby supporting subsequent fine-grained signal-to-semantic mapping; 3). The Sig2Text Alignment module
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subsequently receives the fused cross-modality features along with the encoded attribute feature to perform local
feature alignment. Additionally, during the feature alignment process, we address the axial bias problem and
introduce a channel shuffle constraint to promote channel-invariant (activity-invariant) information extraction,
thereby enhancing the model’s generalization ability. The main contributions of this paper can be summarized as
follows:

• We present IMUZero , an end-to-end zero-shot HAR framework that flexibly recognizes unseen and novel
classes by bridging the activity signals with the fine-grained activity attributes generated by LLM.

• We present a novel cross-modality multi-stage fusion mechanism to integrate multi-level frequency infor-
mation, enabling fine-grained semantic alignment between signal and text representations.

• We investigate the ’axis bias’ generated by the experimental wearing discrepancy and design a novel
channel shuffle order constraint to extract axis-invariant features to improve the recognition generalization
ability.

• Extensive experiments were conducted, and we studied our IMUZero framework in detail. The promising
results suggested its effectiveness.

The rest of this paper is organized as follows. Section 2 introduces the related background knowledge. Section
3&4 presents the problem definition and the details of the proposed IMUZero framework. Section 5 gives the
experimental settings as well as evaluation results, and Section 6 concludes.

2 Related Work
Human Activity Recognition has a long-standing history in the broader fields of ubiquitous and wearable
computing. In the following section, we will review the specific background for this paper, which spans two main
subject areas: i) Deep learning for HAR in ubiquitous and wearable computing; ii) Zero-shot Learning; and iii)
Zero-Shot Human Activity Recognition.

2.1 Human Activity Recognition
Traditional HAR methods mainly rely on conventional machine-learning approaches such as Support Vector
Machine (SVM) and K-Nearest Neighbor (KNN), etc [1, 12, 20]. However, a significant limitation of these models is
their dependence on hand-crafted features or heuristic information. With the recent surge of deep learning, which
can automatically extract features from raw activity signals, the efforts required for feature engineering have been
significantly reduced. One of the most popular deep learning models is the convolutional neural network (CNN),
which can extract the HAR representation by stacking multiple convolutional layers [44]. Numerous works have
investigated the CNN variants [11, 13, 26, 27, 34, 49] by integrating with specific novel network architecture (e.g.,
Long-Short Term Memory(LSTM) [14], Attention Network [26], etc) to enhance the activity pattern extraction
ability. Shao et al. [31] present the ConvBoost framework, which aims to enhance per-epoch training examples
through a novel sampling layer designed to improve the model’s generalization ability. However, conventional
HAR approaches still focus on predefined class assignments, which limits their application in the real world.

2.2 Zero-Shot Learning
Zero-shot Learning[21] is proposed to utilize a semantic modality to connect the visual and label spaces. Early
ZSL methods [32, 42] focus on mapping visual and semantic domains to transfer knowledge from seen to unseen
classes. These methods extract global visual features from either pre-trained or end-to-end trainable networks,
with the latter generally performing better by fine-tuning features and reducing cross-dataset bias. However,
they often struggle to capture subtle distinctions between class types. Recent attention-based ZSL methods
like DAZLE [16] and Composer [15], use attribute descriptions to identify discriminative features but typically
overlook the localization of crucial attributes, focusing instead on broader region embeddings. Chen et al. present
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HSVA [5] that applies structure adaptation and distribution adaptation to solve distribution-aligned space shifting
problems so to improve generalization ability. Transformer models [36] have shown remarkable performance
across various tasks, benefiting from self-supervision and self-attention mechanisms. Chen et al. propose an
attribute-guided Transformer, termed TransZero [4], which reduces the entangled relationships among regional
features to improve their transferability. The HRT [6] improves the transformer structure by presenting a hybrid
of top-down and bottom-up attention pathways to strengthen the modality bridge. Later, the SHIP [39] has been
proposed to reconstruct the visual features by inputting the synthesized prompts and the corresponding class
names to the textual encoder of LLM. While the aforementioned approaches achieve satisfactory performance in
the vision community, their adaptation to HAR tasks remains limited due to the lack of attribute information, the
uninterpretable nature of signal characteristics, and the significant gap between signal and semantic modalities.

2.3 Zero-Shot Human Activity Recognition
Zero-Shot Human Activity Recognition was initially proposed by Cheng et al. [7] to use a graphical model to
map IMU sensor data to human-defined attribute sequences. However, due to the lack of attribute information in
many popular HAR datasets, relatively few researchers have pursued this task. Some studies have investigated
the potential of transferring knowledge from vision-based zero-shot activity recognition models [35, 40]. Recent
advancements in multi-modal pre-training, such as IMU2CLIP [25], leverage contrastive learning to align IMU
sensor data with visual and textual modalities in a shared representation space, enabling zero-shot transfer to
unseen classes by bridging the semantic gap between signals and human-interpretable descriptions. However,
corresponding vision modality data is often impractical for daily use. Another prominent approach relies on
label-level word embeddings to predict unseen activities through a nearest word embedding search [37]. Yet,
label-level information often lack sufficient semantic richness to bridge the semantic gap, resulting in coarse
mappings. To address the scarcity of labeled IMU data, IMUGPT [22] employs LLM and motion synthesis to
generate diverse virtual IMU data from textual descriptions, facilitating zero-shot HAR by augmenting training
datasets with synthetic samples.With recent advances in LLM, a few studies have started exploring the possibility
of directly inferring unseen activities via “Question & Answering” under prompt engineering [17]. Specifically,
HARGPT [17] demonstrates the capability of LLM to perform zero-shot HAR by directly processing raw IMU
data with role-playing and chain-of-thought prompting, achieving superior performance compared to traditional
baselines without requiring fine-tuning. However, these approaches require highly accurate prompts, and the
non-end-to-end process complicates the inference stage.
In contrast to prior studies, our work introduces the use of LLM-generated attribute descriptions as an in-

termediate, structured semantic representation. Unlike label-level embeddings, which lack extensive semantic
information, and direct prompting methods, which depend heavily on prompt quality and complex role-playing,
our approach leverages the LLM’s capacity to generate rich, human-like attribute descriptions that are both inter-
pretable and semantically aligned with activity concepts. These attributes serve as a bridge between raw sensor
data and class labels, enabling end-to-end zero-shot learning with improved generalization and interpretability.
This introduces a novel and practical alternative to existing methods that either lack semantic granularity or
require complex prompting mechanisms.

3 Problem Definition
Assumption:A general assumption in ZSL is that both seen and unseen classes share a common semantic space,
where samples and class prototypes are projected to facilitate the recognition task [18]. This common semantic
space is typically constructed using external knowledge (a.k.a. side information), such as textual descriptions,
visual annotations, or taxonomies, which enable the transfer of knowledge learned from seen classes to unseen
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Fig. 3. Structure of our proposed IMUZero framework. A detailed description of IMUZero would be presented in Section 4.

ones [2]. In this work, we adopt the same assumption and leverage LLM-generated attributes as side information
to enable knowledge transfer.
Definition:Zero-shot Human Activity Recognition seeks to recognize previously unseen activities by mapping
sensory data into a semantic space defined by decomposable attributes rather than fixed categorical labels. Multi-
modal signals—e.g., 3-axis accelerometer, gyroscope, and magnetometer readings—are collected from multiple
body locations and segmented into fixed-length windows via a sliding-window approach (see experimental
settings for details). Formally, let {𝑥𝑠 , 𝑦𝑠 }𝑁 denote the training set of seen activities, where 𝑥𝑠 is a multivariate
sensor segment and 𝑦𝑠 ∈ 𝐶𝑠 its corresponding label in the seen label set𝐶𝑠 . The goal of ZSL is to learn a mapping
𝑓 (𝑥 ;𝜃 ) that projects 𝑥𝑠 into the semantic attribute space, enabling generalization to unseen activities {𝑥𝑢, 𝑦𝑢}𝑀
where 𝑥𝑢 represents sensor data from unseen classes and 𝑦𝑢 ∈ 𝐶𝑢 their labels in the unseen label set𝐶𝑢 . It should
be noted that there are no overlapping between seen and unseen classes 𝐶𝑢 ∩𝐶𝑠 = ∅.

4 Methodology
Previous work has primarily relied on activity–attribute matrices, textual or visual embeddings, or LLM-based
QA methods, but these approaches suffer from limited semantic coverage, high annotation or resource demands,
and poor contextual grounding. To overcome these challenges, we propose the IMUZero framework, which
leverages LLMs’ cognitive-science–inspired knowledge to generate fine-grained semantic attributes capturing
body movement frequency—thereby preserving contextual information by avoiding direct LLM training or
QA inference. Additionally, to better align sensor data with these attributes, we encode IMU signal frequency
patterns as supplementary projection cues. Fig. 3 illustrates the main pipeline of our framework. Our framework
first encourage the LLM to produce attribute descriptions for each human activity (Sec. 4.1). Then, multi-scale
time-frequency fusion is performed for IMU data to extract more comprehensive signal features (Sec. 4.2). Finally,
the attribute descriptions are aligned with the signal time-frequency features to achieve Zero-Shot Human
Activity Recognition (Sec. 4.3).

4.1 Movement-sensitive Attribute Generation:
Category attributes are a prerequisite for the ZSL task as they provide the essential semantic information required
for generalizing to unseen classes. These attributes have to carry clear semantic meanings, often rooted in
cognitive science-inspired patterns (e.g., the frequency movement pattern of body part), to enable the model to
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Prompt Template

### Question: The IMU data is collected from {device name}. Please formulate attributes from the following sixpoints: {transverse leg, longitudinal leg, coronal leg, transversearm, longitudinal arm, 
coronal arm, transverse chest, longitudinachest, coronal chest(where the transverse legindicates the motionfrequency of the leg in the longitudinaldirection, thelongitudinal leg indicates the 
motion frequency ofthe leg in theforward and backward direction, and the coronal legindicatesthe motion frequency of the leg in the left and rightdirection)} and 0, 0.5, 1 is used to indicate the 
speed of thefrequency.
The person's action belongs to one of the following categories: <category list>.  
### Response: {answer}

### Instruction: You are an expert of IMU-based human activity .
  

Inference Results

Activity Classification

  Activity TL LL CL TA ...

Lying 0 0 0 0 ...

Sitting 0 0 0 0.5 ...

... ... ... ... ... ...

Attribute Generated Description

Lying:
transverse leg is 0 longitudinal leg is 0 coronal leg is 0 transverse arm 
is 0 longitudinal arm is 0 coronal arm is 0 transverse chest is 0 
longitudinal chest is 0 coronal chest is 0
Sitting:
transverse leg is 0 longitudinal leg is 0 coronal leg is 0 transverse arm 
is 0.5 longitudinal arm is 0 coronal arm is 0 transverse chest is 0 
longitudinal chest is 0 coronal chest is 0
......

Ground-truth 
attribute vector

Generated attribute 
description vector

ccz

Fig. 4. Chain-of-thought prompt design for IMUZero .

effectively map input data to natural language descriptions. Previous approaches predominantly leveraged visual
modalities—such as videos, 3D skeletons, or images—as an intermediary to bridge the gap between IMU sensor
data and textual descriptions (IMU↔Image↔Text). However, those methods encounter significant challenges:
aligned video sources are frequently unavailable, and the substantial variability in online activity videos can
introduce domain shift issues, undermining model performance. Inspired by [8], we propose a novel movement-
guided semantic attribute generation module to bridge the gap between sensor readings and text description
directly. This module leaverage the prior cognitive activity knowledge embedded in existing LLM to generate
meaningful and reliable semantic attributes tailored for activity recognition, facilitating robust generalization to
unseen activities without dependence on visual intermediaries.
Generation Workflow: The generation workflow of the movement-sensitive attribute, as demonstrated in
Figure 4, consists of three stage. Firstly, we prompt an LLM to generate precise, fine-grained bio-mechanical
information about human activity. Specifically, we construct a prompt template with instructions and questions to
guide the LLM in generating attributes with maximum discrimination. Existing datasets for activity recognition
predominantly collect data from sensors placed on key body parts such as the arm, leg, and chest. These locations
are chosen because they are central to human movement, providing rich data about motion and posture that are
essential for identifying various activities. Thus, in the prompt, we encourage the LLM to generate attributes
corresponding to arm, leg, chest and their movements along different axes (i.e., transverse, longitudinal, and
coronal). Then, the LLM produces a detailed activity attribute table that quantifies the cognitive activity frequency
for each body part. Finally, the generated values are integrated into a coherent paragraph of text, providing a
semantic representation that supports the projection in the proposed framework. The process could be represented
as:

𝑧𝑐 = 𝐿𝐿𝑀 (𝑝𝑟𝑜𝑚𝑝𝑡 [𝑐 ∈ 𝐶])
𝑎𝑐 = 𝐿𝐿𝑀 (𝑝𝑟𝑜𝑚𝑝𝑡 [𝑧𝑐 ]) (1)

where 𝐿𝐿𝑀 (·) denotes the prompt-guided generation by the language model, prompt[𝑐 ∈ 𝐶] represents the
prompt constructed based on class 𝑐 , and 𝑧𝑐 and 𝑎𝑐 denote the attribute vector and the attribute-based generated
description vector, respectively.
Attribute Value Constraint: The expression of frequency or movement patterns through attribute values is
critical, as these values encapsulate the discriminative information needed to differentiate activities. The reliability
of these values significantly impacts both the projection quality and the construction of a discriminative latent
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Fig. 5. Architecture of Multi-Modal Feature Fusion. (best viewed in color)

space. To address this, we constrain attribute values to three discrete levels: "0" (nearly no movement), "0.5"
(mid-level movement), and "1" (high-level movement). This choice is supported by empirical evidence (i.e., Sec.
5.6) showing that continuous values—whether derived from statistical analyses or LLM—fail to establish clear
decision boundaries. Continuous values often lead to coarse boundaries, complicating the model’s ability to
fit them via constrained regression. While statistical analyses of accelerometer data can provide a baseline by
capturing movement frequencies along the x, y, and z axes, their continuous nature and potential variability for
unseen activities limit their effectiveness. Thus, we select discrete attribute values that offer a more robust and
generalizable solution for the ZSL task.

4.2 Multi-Scale Time-Frequency Fusion
Apart from the quality of the attributes, the mapping between sensor readings and these attributes is fundamental
to achieving generalization in the ZSL task. Previous approaches have predominantly relied on either vision
modalities or raw IMU data to establish this mapping. However, vision data is often unavailable or difficult
to collect, limiting its practicality, while IMU data alone provides only temporal information, which makes it
difficult to capture periodic and oscillation patterns, resulting in coarse representation extraction. To overcome
these challenges, we propose a Multi-Scale Time-Frequency Fusion module(MSTFF) (as shown in Fig. 3), which
aims to generate time-frequency representation by integrating the frequency modality of IMU data as additional
information. Since the attributes are specifically designed to correspond to frequency patterns—such as the
rate or rhythm of body movements—this frequency-based representation captures more extensive and detailed
movement dynamics.
Previous work [48] demonstrates that low-level and high-level features are complementary by nature—low-

level features capture fine-grained spatial details but lack semantic information, while high-level features provide
semantic abstraction at the expense of subtle nuances. Thus, inspired by this work, the MSTFF module is designed
to extract both low- and high-level features from the time and frequency domains, respectively, and integrate
them via a multi-modal cross-attention mechani In this module, the Fast Fourier Transform (FFT) [9] is first
applied to the IMU signal segments to obtain their frequency-domain representations. Subsequently, high-level
and low-level features are extracted from both the time-domain signals and the frequency-domain representations
using dedicated time-domain and frequency-domain encoders (i.e., 𝐸𝑡𝑖𝑚𝑒 (·), 𝐸𝑓 𝑟𝑒𝑞 (·)), respectively. Both two
encoders are implemented as 1D-convolutional ResNet-18 backbones, each comprising an initial convolutional

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: September 2018.



IMUZero: Zero-Shot Human Activity Recognition by Language-Based Cross Modality Fusion • 9

layer, four residual blocks (layer1–layer4) and an adaptive average pooling layer; layer 1 captures low-level signal
features while layer 4 extracts high-level abstractions. The high-level features are primarily derived from the
last layer of these encoders, while the low-level features are extracted from the third layer. This process can be
mathematically expressed as:

𝑥𝑠 = 𝐹𝐹𝑇 (𝑥𝑠 )
𝑧𝑙𝑜𝑤, 𝑧ℎ𝑖𝑔ℎ = 𝐸𝑡𝑖𝑚𝑒 (𝑥𝑠 )
𝑧𝑙𝑜𝑤, 𝑧ℎ𝑖𝑔ℎ = 𝐸𝑓 𝑟𝑒𝑞 (𝑥𝑠 )

(2)

where 𝑥𝑠 denotes frequency format IMU segment, 𝑧𝑙𝑜𝑤 and 𝑧ℎ𝑖𝑔ℎ represent low/high level time-domain features,
𝑧𝑙𝑜𝑤 and 𝑧ℎ𝑖𝑔ℎ represent low/high level freqeuncy-domain features, 𝐹𝐹𝑇 (·) represents the FFT transformation.
Multi-modal Feature Fusion Module. Inertial Measurement Unit (IMU) signals offer rich temporal dynamics
that reflect motion states, while frequency-domain features capture the instantaneous frequency content of
activities. To fuse these complementary modalities, we employ a multi-modal cross-attention mechanism. It takes
the low- and high-level features extracted by a dual-stream network as input and produces high-dimensional
joint representations (see Fig. 5). Specifically, we first apply 1 × 1 convolutions to the single-modality features
𝑧𝑙𝑜𝑤, 𝑧ℎ𝑖𝑔ℎ, 𝑧𝑙𝑜𝑤, 𝑧ℎ𝑖𝑔ℎ to generate twelve feature maps:

𝑄𝑙𝑜𝑤 = 𝑧𝑙𝑜𝑤𝑊𝑞, 𝐾𝑙𝑜𝑤 = 𝑧𝑙𝑜𝑤𝑊𝑘 , 𝑉 𝑙𝑜𝑤 = 𝑧𝑙𝑜𝑤𝑊𝑣

𝑄ℎ𝑖𝑔ℎ = 𝑧ℎ𝑖𝑔ℎ𝑊𝑞, 𝐾ℎ𝑖𝑔ℎ = 𝑧ℎ𝑖𝑔ℎ𝑊𝑘 , 𝑉ℎ𝑖𝑔ℎ = 𝑧ℎ𝑖𝑔ℎ𝑊𝑣

𝑄̃𝑙𝑜𝑤 = 𝑧𝑙𝑜𝑤𝑊𝑞, 𝐾̃𝑙𝑜𝑤 = 𝑧𝑙𝑜𝑤𝑊𝑘 , 𝑉̃ 𝑙𝑜𝑤 = 𝑧𝐿𝑊𝑣

𝑄̃ℎ𝑖𝑔ℎ = 𝑧ℎ𝑖𝑔ℎ𝑊𝑞, 𝐾̃ℎ𝑖𝑔ℎ = 𝑧ℎ𝑖𝑔ℎ𝑊𝑘 , 𝑉̃ℎ𝑖𝑔ℎ = 𝑧ℎ𝑖𝑔ℎ𝑊𝑣

(3)

We then compute the self-attention map by multiplying the transpose of each query feature with its corresponding
key feature, and normalizing via a softmax. The low-level/high-level self-attention maps for the time (i.e.,
𝑃𝑙𝑜𝑤 ,𝑃ℎ𝑖𝑔ℎ) and frequency (i.e., 𝑃𝑙𝑜𝑤 ,𝑃ℎ𝑖𝑔ℎ) modalities are given by:

𝑃𝑙𝑜𝑤 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝑙𝑜𝑤⊺ ⊗ 𝐾𝑙𝑜𝑤), 𝑃ℎ𝑖𝑔ℎ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄ℎ𝑖𝑔ℎ⊺ ⊗ 𝐾ℎ𝑖𝑔ℎ)
𝑃𝑙𝑜𝑤 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄̃𝑙𝑜𝑤⊺ ⊗ 𝐾̃𝑙𝑜𝑤), 𝑃ℎ𝑖𝑔ℎ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄̃ℎ𝑖𝑔ℎ⊺ ⊗ 𝐾̃ℎ𝑖𝑔ℎ) (4)

Then, the self-attention maps generated from both time and frequency modalities are input into the cross-
attention fusion mechanism. This results in a joint weighted feature map, which can be represented as:

𝑃𝑙𝑜𝑤
𝑓 𝑢𝑠𝑒

= 𝑃𝑙𝑜𝑤 ⊙ 𝑃𝑙𝑜𝑤

𝐴𝑃𝑙𝑜𝑤, 𝐴𝑃
𝑙𝑜𝑤

= (𝑃𝑙𝑜𝑤
𝑓 𝑢𝑠𝑒

⊙ 𝑉 𝑙𝑜𝑤), (𝑃𝑙𝑜𝑤
𝑓 𝑢𝑠𝑒

⊙ 𝑉̃ 𝑙𝑜𝑤)
𝐴𝑃𝑙𝑜𝑤

𝑡 𝑓
= 𝐴𝑃𝑙𝑜𝑤 ⊙ 𝐴𝑃𝑙𝑜𝑤

(5)

Similarly, the high-level features can be formulated as:

𝑃
ℎ𝑖𝑔ℎ

𝑓 𝑢𝑠𝑒
= 𝑃ℎ𝑖𝑔ℎ ⊙ 𝑃ℎ𝑖𝑔ℎ

𝐴𝑃ℎ𝑖𝑔ℎ, 𝐴𝑃
ℎ𝑖𝑔ℎ

= (𝑃ℎ𝑖𝑔ℎ
𝑓 𝑢𝑠𝑒

⊙ 𝑉ℎ𝑖𝑔ℎ), (𝑃ℎ𝑖𝑔ℎ
𝑓 𝑢𝑠𝑒

⊙ 𝑉̃ℎ𝑖𝑔ℎ)
𝐴𝑃

ℎ𝑖𝑔ℎ

𝑡 𝑓
= 𝐴𝑃ℎ𝑖𝑔ℎ ⊙ 𝐴𝑃ℎ𝑖𝑔ℎ

(6)

Fusion of Low- and High-Level Features. To effectively integrate the extracted joint feature maps, we
introduce a multi-scale feature fusion module that preserves the complementarity between low- and high-level
representations. First, we concatenate the cross-modality low- and high-level features with their corresponding
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joint feature maps:
𝑧𝑙𝑜𝑤
𝑡 𝑓

= concat
(
𝑧𝑙𝑜𝑤, 𝑧𝑙𝑜𝑤, 𝐴𝑃𝑙𝑜𝑤

𝑡 𝑓

)
,

𝑧
ℎ𝑖𝑔ℎ

𝑡 𝑓
= concat

(
𝑧ℎ𝑖𝑔ℎ, 𝑧ℎ𝑖𝑔ℎ, 𝐴𝑃

ℎ𝑖𝑔ℎ

𝑡 𝑓

)
,

(7)

where concat(·) denotes channel-wise concatenation. Next, to enrich contextual information at multiple scales, we
apply an Atrous Spatial Pyramid Pooling (ASPP) module [3] to the high-level joint feature map 𝑧high

𝑡 𝑓
. Specifically,

we employ parallel 3 × 3 convolutions with dilation rates of 6, 12, and 18 to capture features at different receptive
fields, and a 1 × 1 convolution following global average pooling to aggregate channel-wise context. The output of
the ASPP is denoted

𝑧
ℎ𝑖𝑔ℎ𝐴𝑆𝑃𝑃

𝑡 𝑓
= ASPP

(
𝑧
ℎ𝑖𝑔ℎ

𝑡 𝑓

)
.

Finally, we fuse the low- and high-level representations by concatenating 𝑧𝑙𝑜𝑤
𝑡 𝑓

with 𝑧ℎ𝑖𝑔ℎ𝐴𝑆𝑃𝑃

𝑡 𝑓
, yielding the

overall fused feature:
𝑧
𝑓 𝑢𝑠𝑒

𝑡 𝑓
= concat

(
𝑧𝑙𝑜𝑤
𝑡 𝑓

, 𝑧
ℎ𝑖𝑔ℎ𝐴𝑆𝑃𝑃

𝑡 𝑓

)
. (8)

4.3 Sig2Text Alignment
The ZSL task relies on aligning signal semantics with textual attributes during training. This alignment enables
category matching using the textual attributes of unseen classes during testing. To enhance alignment precision,
we introduce the Sig2Text Alignment module, which localizes the activity pattern most relevant to each attribute.

We hypothesize that adding sensor context to IMU data provides valuable spatial and biomechanical information,
helping the model learn to recognize actions more effectively. Thus, we first incorporate the attribute-based
generated description vector 𝑎𝑐 as semantic guidance for the fused time–frequency feature via a cross-attention
mechanism, which can be expressed as

𝑧𝑐𝑟 = softmax
[
(𝑎𝑐𝑊 𝑞

𝑐𝑟 )T⊗(𝑈 (𝑧fuse
𝑡 𝑓

)𝑊 𝑘
𝑐𝑟 )

]
⊙ (𝑈 (𝑧fuse

𝑡 𝑓
)𝑊 𝑣

𝑐𝑟 ), (9)

where𝑈 is the transformer encoder, 𝑧𝑐𝑟 is the attribute-integrated feature, and𝑊 𝑞
𝑐𝑟 ,𝑊 𝑘

𝑐𝑟 ,𝑊 𝑣
𝑐𝑟 are the query, key,

and value projection weights of the cross-attention layer, respectively.
To align the attribute-integrated feature with the ground-truth class attribute, we employ an attribute-based

cross-entropy loss LACE:

LACE = − log
exp

(
𝑧𝑐𝑟 ·𝑧𝑐𝑖

)∑
𝑐𝑖 ∈𝐶 exp

(
𝑧𝑐𝑟 ·𝑧𝑐𝑖

) , (10)

where 𝑧𝑐𝑖 is the ground-truth attribute vector for class 𝑖 and 𝐶 is the set of all class attributes.
While LACE maximizes inter-class separation, it does not explicitly minimize intra-class variation. To address

this, we introduce an attribute-regression loss LAR that penalizes the distance between the integrated feature
and its corresponding class attribute:

LAR = ∥ 𝑧𝑐𝑟 − 𝑧𝑐𝑖 ∥22 . (11)
SinceLAR andLACE optimize the model’s performance on known classes, the training process would inevitably

overfit to these classes. To address this issue, we introduce self-calibration loss LSC, which explicitly shifts some
prediction probability from known to unknown classes. LSC is defined as:

LSC = − log
exp

(
𝑧𝑐𝑟 ·𝑧𝑐𝑖 + I[𝑐𝑖 ∈𝐶𝑢 ]

)
|𝐶 |∑︁
𝑗=0

exp
(
𝑧𝑐𝑟 ·𝑧𝑐 𝑗 + I[𝑐 𝑗 ∈𝐶𝑢 ]

) , 𝑗 = 0, 1, . . . , |𝐶 |. (12)
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(a) Sitting (b) Lying (c) Cycling (d) Rowing

Fig. 6. Visualization of IMU data for two distinct individuals from the DSADS dataset. Ideally, accelerometer peak values for
the same activity should exhibit consistent patterns (similar peak and trough values, or similar scale under ideal experimental
data-collection settings). However, the recorded data reveal significant variability in these peaks—highlighted by the red
boxes—indicating the presence of axis bias.

where 𝐶𝑢 denotes the unknown (unseen) classes, I[𝑐 𝑗 ∈𝐶𝑢 ] ,I[𝑐𝑖 ∈𝐶𝑢 ] is an indicator function, (i.e., it is 1 when 𝑐𝑖
or 𝑐 𝑗 is unseen class, otherwise -1). Intuitively, LACE encourages assigning non-zero probabilities to unknown
classes during training, enabling IMUZero to generate a significant non-zero probability for true unknown classes
when encountering test samples from unknown categories.

Furthermore, to mitigate axis bias (as demonstrated in Fig. 6) introduced by variations in users’ wearing
behaviors, we introduce the Shuffle Channel Order Constraint (SCOC). This constraint encourages the model to
extract consistent activity information by maximizing the mutual information between the attribute-integrated
feature of original (i.e., 𝑥𝑠 ) and randomly permuted input signals (i.e., shuffle(𝑥𝑠 )). Specifically, we randomly
shuffle the accelerometer channels of the input signal to produce channel-shuffled augmentations, and then
optimize the mutual information between their attribute-integrated feature (i.e., 𝑧𝑐𝑟 and 𝑧𝑐𝑟 ):

LSCOC =


 𝑧𝑐𝑟 − 𝑧𝑐𝑟 

22 (13)

where shuffle(·) denotes the channel shuffle operation.
Total Loss. Finally, we integrate Eq. 10, 11, 12 and 13 to obtain a final loss function as

Ltotal = LSCOC + LACE + 𝜆ARLAR + 𝜆SCLSC, (14)

where 𝜆AR and 𝜆SC are the weighting factor.

5 Experiment

5.1 Dataset
To evaluate the effectiveness of our IMUZero framework, we perform it on four public datasets: PAMAP2 [47],
DSADS [3], MHEALTH [1] and GOTOV [40].More details of the evaluated datasets can be found in Table 1.

• PAMAP2 Dataset. records 18 daily physical activities which include 12 protocol activities (walking,
running, vacuum cleaning, rope jumping, etc.) and 6 optional activities (watching TV, computer work,
folding laundry, etc.).The activity data were captured for 9 subjects from all the sensors (a Heart rate
monitor and 3 inertial measurement units) The data recorded comprised the measurements of gyroscopes,
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Dataset #Subject #Activity Frequency #Sample #Dim Seen Activity Pool Unseen Activity Pool

PAMAP2 9 18 100Hz 2.84M 52 Rope Jumping, Lying, Sitting,
Standing, Walking, Running, Ironing

Vacuum Cleaning, Cycling, Nordic Walking,
Ascending Stairs, Descending Stairs

DSADS 8 19 25Hz 1.14M 45

Sitting, Standing, Lying on Back,
Lying on Right Side, Ascending Stairs,

Descending Stairs, Standing in an Elevator Still,
Moving Around in an Elevator, Walking in a Parking Lot,

Walking on a Treadmill (Flat),
Walking on a Treadmill (15 deg),

Running on a Treadmill (8 km/h), Exercising on a Stepper,
Exercising on a Cross Trainer

Playing Basketball, Jumping, Rowing,
Cycling (Horizontal), Cycling (Vertical)

MHEALTH 10 12 50Hz 0.34M 23
Standing Still, Sitting and Relaxing,

Lying Down, Walking, Climbing Stairs,
Waist Bends Forward, Frontal Elevation of Arms

Jumping, Running, Jogging,
Cycling, Knees Bending

GOTOV 35 16 83Hz 5.9M 3 Jumping, Standing, Step,
Lying, Sitting, Walking Stairs Up

Washing Dishes, Stacking Shelves,
Vacuum Cleaning, Walking, Cycling

Table 1. Description of the four public HAR datasets used in our study

accelerometers, magnetometers, heart rate monitor, and temperature. The dataset has a total of 52 features
and was captured at a sampling rate of 100 Hz.

• DSADS Dataset. contains 19 physical activities performed by 8 subjects (4 female, 4 male, aged 20-30) for
5 minutes each. The activities, which include various daily movements and exercises, were recorded using
five sensor units (torso, arms, and legs) equipped with accelerometers, gyroscopes, and magnetometers.
The data was captured at a sampling rate of 25 Hz and is organized into segments, resulting in a total of 45
features per segment.

• MHEALTH Dataset. contains recordings of 12 physical activities performed by 10 volunteers using
wearable sensors placed on the chest, right wrist, and left ankle. The data includes measurements of
acceleration, rate of turn, magnetic field orientation, and 2-lead ECG from the chest sensor. Captured at a
sampling rate of 50 Hz, the dataset provides insights into body motion and vital signs.

• GOTOV Dataset. contains 16 daily activities collected from thirty-five elder-age participants. The subjects
were instructed to wear accelerometer sensors at three locations: ankle, chest, andwrist with a 9-dimensional
recording, at the sampling rate of 83Hz.

5.2 Experiment Setting.
Data Segmentation. In our study, we follow previous work [27] by employing a sliding window approach to
segment the raw sensory data streams from each dataset into smaller segments. Specifically, for the PAMAP2
dataset, the sliding window is configured with a window length of 5.12 seconds (170 timesteps) and a slide length
of 1 second (33 timesteps). The DSADS dataset uses a window length of 5 seconds (125 timesteps) and a slide
length of 1 second (25 timesteps). For the MHEALTH dataset, the sliding window is configured with a window
length of 1.2 seconds (timesteps not specified) and a slide length of 0.6 seconds (25 timesteps). Lastly, for the
GOTOV dataset, the sliding window is set with a window length of 5 seconds (25 timesteps) and a slide length of
2.5 seconds (25 timesteps). These segments can be fed directly into the network without the need for hand-crafted
feature engineering or transformation.
Zero-Shot Class Partition. For zero-shot class separation, we create four partition choices corresponding to 2,
3, 4, and 5 unseen classes from the aforementioned datasets. The increasing number of unseen classes makes
model prediction more challenging, thereby reflecting the model’s generalization ability. The seen and unseen
activity pool is detailed in Table 1, and the first two, three, and four classes are designated for the 2, 3, and 4
settings, respectively. For the rest classes that are not used in each setting will be added to the seen class set.
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Dataset Setting Class Split Unseen Only Both Seen and Unseen

#Sample

Seen Unseen Train Test Train Test(Seen) Test(Unseen)

PAMAP2

5-class 7 5 11415 8452 6845 4570 8452
4-class 8 4 13342 6525 8001 5341 6525
3-class 9 3 14545 5322 8722 5823 5322
2-class 10 2 15624 4243 9369 6255 4243

DSADS

5-class 14 5 6720 2400 4032 2688 2400
4-class 15 4 7200 1920 4320 2880 1920
3-class 16 3 7680 1440 4608 3072 1440
2-class 17 2 8160 960 4896 3264 960

MHEALTH

5-class 7 5 7044 4394 4223 2821 4394
4-class 8 4 8022 3416 4809 3213 3416
3-class 9 3 9046 2392 5423 3623 2392
2-class 10 2 10070 1368 6037 4033 1368

GOTOV

5-class 6 5 12610 15371 7562 5048 15371
4-class 7 4 14697 13284 8814 5883 13284
3-class 8 3 16570 11411 9937 6633 11411
2-class 9 2 18387 9594 11027 7360 9594

Table 2. Detailed evaluation setting for "Unseen Only" and "Both Seen and Unseen" tasks.

Evaluation setting. To make the evaluation more realistic, we conduct two settings: "Unseen Only" (often
referred to as the zero-shot learning setting) and "Both Seen and Unseen":(often referred to as generalized
zero-shot learning [30]). The "Unseen Only" setting measures performance exclusively on classes never seen
during training. This simulates cases like a detector deployed to identify entirely new product types or newly
observed species. The "Both Seen and Unseen" setting measures performance when the test set contains a mix of
seen and unseen classes (a more realistic setting), so the model must recognize familiar categories while also
handling novel ones. This simulates cases like a production-line anomaly detector, where most defects are familiar
but novel failure modes occasionally appear; GZSL can identify or prompt unseen failure types by utilizing
existing defect attributes and sensor metadata. For the “Unseen Only” setting, we train on all samples of seen
classes and test on all samples of unseen classes. For the “Both Seen and Unseen” setting, we reserve 40% of
each seen class’s samples as the seen test set, while using the same unseen test samples as in the “Unseen Only”
setting. Details of the train/test splits are summarized in Table 2.
Evaluation metrics. We evaluate all models using average per-class accuracy and F1 score for multi-class
activity classification in the ZSL framework. Accuracy represents the average proportion of correctly classified
samples across classes, while the F1 score, capturing class imbalances, is the harmonic mean of precision and
recall, computed as

F1 =
2 · TP

TP + FP + FN
, (15)

where TP, FP, and FN denote true positives, false positives, and false negatives for class 𝑖 , respectively. For the
setting of "Both Seen and Unseen", we apply the harmonic mean (H), which is a way to balance the performance of
a model on seen and unseen classes, providing a more holistic measure than just looking at individual accuracies.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: September 2018.



14 • Trovato et al.

which could be computed as

𝐻 =
2 × 𝑎𝑐𝑐𝑠𝑒𝑒𝑛 × 𝑎𝑐𝑐𝑢𝑛𝑠𝑒𝑒𝑛
𝑎𝑐𝑐𝑠𝑒𝑒𝑛 + 𝑎𝑐𝑐𝑢𝑛𝑠𝑒𝑒𝑛

(16)

where 𝑎𝑐𝑐𝑠𝑒𝑒𝑛 and 𝑎𝑐𝑐𝑢𝑛𝑠𝑒𝑒𝑛 represent the accuracy on seen and unseen classes respectively. Models are trained
on the source dataset (seen classes) and tested on the target dataset (unseen classes), with source dataset results
reported. For robustness and better reproducibility, experiments are conducted ten times with different random
seeds. Random seeds are used to initialize the random number generators (RNGs) that influence many stochastic
operations during training. Setting a random seed ensures that these operations behave deterministically (i.e.,
produce the same output each time the code is run under the same conditions). Furthermore, by repeating
experiments with different seeds, we can evaluate whether the proposed model consistently performs well. The
results are averaged across all runs for both metrics.
Implementation details. Our model is designed in an end-to-end manner, utilizing the Adam optimizer with
specific hyperparameters (weight decay of 0.0001) for optimization. We have also set the same parameters for
all comparison methods except IMUGPT. For IMUGPT, we used GPT4o to generate motion descriptions. We
provided the activities from all four datasets, along with the descriptions of the samples, as text to the LLM. Then
we asked the LLM to describe the person performing the activity. The generation of one thousand descriptions
for each activity was completed in 50 batches. For all datasets, we empirically set 𝜆SC to 0.3 and 𝜆AR to 0.05. Both
the encoder and decoder are configured with a single layer and one attention head.

5.3 Comparison Methods
To validate the effectiveness of the proposed approach, we compared our proposed IMUZero framework with
the closely related baselines. DeepConvLSTM [27] is the state-of-the-art feature learning approach for human
activity recognition; Composer [15] is the conventional ZSL approach that aims to compose features of unseen
classes from only relevant training samples so to increase the unseen prediction performance. DAZLE [16]
is an attention-based approach that introduces a dense attribute-based attention mechanism, allowing each
attribute to focus on the most relevant regions of the image. HSVA [5] is an adaptation-based approach that
applies distribution adaptation to solve distribution-aligned space-shifting problems so to improve generalization
ability. TransZero [4], HRT [6], and SHIP [39] are three newly and state-of-the-art transformer-based ZSL
approaches. IMU2CLIP [25] leverages contrastive learning to align IMU sensor data with visual and textual
modalities in a shared representation space, enabling zero-shot human activity recognition by transferring
knowledge across modalities. IMUGPT [22] generates diverse virtual IMU data using LLM and motion synthesis,
providing augmented training samples to enhance zero-shot HAR performance. HARGPT [17] employs LLM with
role-playing and chain-of-thought prompting to directly process raw IMU data for zero-shot activity recognition,
offering a non-fine-tuned alternative to traditional methods. For all baseline methods, we used the released code
if available, and reproduced the unavailable methods using Pytorch [28].

5.4 Empirical Result
In this section, we present a series of empirical results and test the proposed IMUZero framework with the
aforementioned representative methods. Through experiments, we have the following observations:

• The proposed IMUZero framework demonstrates significant improvements over baseline approaches across
four datasets. Specifically, IMUZero achieves a 3~5% enhancement over SOTA ZSL methods in complex
settings (i.e., 4-5 unseen classes).

• For a more realistic setting, where the test set contains both seen and unseen classes, the proposed IMUZero
framework still achieves competitive performance compared to other methods, even under complex settings.
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Dataset Class DeepConvLSTM [27] Composer [15] DAZLE [16] HSVA [5] HRT [6] SHIP [39] IMU2CLIP [25] IMUGPT [22] HARGPT [17] IMUZero

Pamap2

2-class 71.97% 81.30% 55.66% 80.39% 81.86% 91.83% 90.13% 90.12% 85.60% 92.51%±0.3%
3-class 60.42% 68.59% 31.13% 62.55% 55.24% 80.51% 80.31% 78.35% 72.80% 82.03%±0.3%
4-class 49.36% 53.56% 23.25% 54.10% 48.91% 56.45% 57.25% 55.83% 53.40% 57.87%±0.4%
5-class 42.92% 45.05% 30.15% 45.50% 28.04% 51.92% 51.10% 49.70% 47.25% 52.55%±0.3%

DSADS

2-class 91.11% 93.16% 94.15% 94.22% 93.72% 94.07% 92.88% 93.20% 93.50% 95.10%±0.5%
3-class 85.80% 85.94% 83.70% 86.19% 85.39% 89.21% 89.30% 88.45% 87.20% 90.33%±0.3%
4-class 54.43% 55.00% 44.27% 55.53% 51.34% 66.36% 66.12% 65.20% 60.85% 68.50%±0.6%
5-class 39.12% 41.20% 42.06% 42.05% 33.19% 50.55% 52.30% 52.00% 48.30% 54.33%±0.8%

Mhealth

2-class 80.58% 80.34% 83.98% 82.26% 66.59% 86.52% 85.37% 84.58% 82.40% 86.63%±0.2%
3-class 65.30% 68.06% 54.74% 68.45% 51.00% 78.78% 72.52% 70.15% 71.60% 73.81%±0.3%
4-class 55.63% 54.47% 40.73% 57.62% 46.38% 61.92% 60.01% 62.10% 57.90% 62.57%±0.3%
5-class 41.41% 40.17% 16.76% 41.60% 31.32% 51.90% 48.33% 46.20% 41.80% 49.16%±0.3%

GOTOV

2-class 82.20% 85.48% 77.93% 81.15% 80.66% 90.15% 89.45% 90.20% 86.90% 91.26%±0.3%
3-class 71.91% 73.45% 56.57% 72.79% 63.93% 86.54% 85.03% 86.00% 84.30% 88.12%±0.3%
4-class 51.78% 53.97% 36.06% 55.48% 50.42% 58.61% 60.70% 60.50% 60.50% 62.79%±0.2%
5-class 43.36% 43.37% 29.68% 40.60% 30.77% 51.81% 51.92% 52.50% 52.90% 53.25%±0.3%

Table 3. Performance comparison (accuracy %) on different datasets and classification settings. Best results are highlighted
in bold, and second best results are underlined.

Dataset Class DeepConvLSTM [27] Composer [15] DAZLE [16] HSVA [5] HRT [6] SHIP [39] IMU2CLIP [25] IMUGPT [22] HARGPT [17] IMUZero

Pamap2

2-class 68.1% 76.5% 48.7% 74.8% 75.3% 84.9% 83.7% 82.4% 78.6% 85.2%±0.4%
3-class 54.7% 61.2% 25.3% 55.6% 47.5% 72.1% 71.6% 69.1% 64.3% 74.6%±0.5%
4-class 41.3% 44.9% 18.2% 45.2% 40.1% 48.3% 49.1% 47.5% 44.2% 50.3%±0.5%
5-class 33.8% 36.4% 22.9% 37.1% 21.8% 43.2% 42.5% 40.3% 38.5% 45.1%±0.6%

DSADS

2-class 87.9% 88.7% 87.6% 88.3% 87.4% 87.5% 86.1% 86.3% 85.9% 88.9%±0.6%
3-class 79.4% 79.8% 75.8% 79.1% 78.2% 81.7% 81.2% 80.5% 79.1% 83.4%±0.4%
4-class 46.2% 47.6% 36.4% 47.9% 43.1% 56.4% 56.9% 56.1% 51.7% 59.8%±0.6%
5-class 30.5% 33.1% 33.5% 34.0% 26.3% 42.1% 43.6% 42.9% 39.4% 46.5%±0.9%

Mhealth

2-class 75.2% 74.3% 76.1% 75.8% 58.7% 79.6% 78.5% 77.2% 75.1% 80.7%±0.3%
3-class 57.6% 60.8% 45.9% 60.3% 43.2% 64.4% 64.3% 61.8% 63.1% 67.3%±0.4%
4-class 47.5% 45.3% 32.8% 48.7% 38.4% 52.8% 51.2% 53.1% 48.9% 54.6%±0.5%
5-class 32.9% 31.6% 11.5% 33.5% 23.9% 40.1% 39.7% 38.2% 40.8% 43.9%±0.5%

GOTOV

2-class 76.8% 79.9% 70.2% 74.1% 73.8% 83.2% 81.9% 83.1% 79.3% 84.3%±0.3%
3-class 64.1% 65.4% 48.3% 64.5% 55.6% 77.8% 76.3% 77.1% 74.9% 80.5%±0.4%
4-class 43.1% 45.6% 29.1% 46.4% 41.5% 49.6% 51.4% 51.3% 50.6% 55.1%±0.3%
5-class 34.7% 34.8% 22.4% 32.9% 24.1% 42.7% 43.0% 43.5% 43.7% 45.8%±0.4%

Table 4. Performance comparison (F1 Score %) on different datasets and classification settings. Best results are highlighted
in bold, and second best results are underlined.

• The attributes generated by the LLM enable the transfer of the vision-based ZSL framework to the HAR
task. Moreover, the quality of semantic embeddings is crucial for zero-shot recognition tasks, as label-level
word embeddings often fail to capture fine-grained semantic attributes, thereby diminishing the ability to
predict unseen classes.

• Through ablation studies, we demonstrate that each component in IMUZero contributes to recognition
performance. Specifically, the Shuffle Channel Order Constraint (SCOC) contributes comparably to the
attribute regression constraint, underscoring that biases introduced by wearing patterns can significantly
impact data quality and, consequently, performance.

• The “Test-Time" Zero-Shot HAR setting (i.e., the semantic information, like labels and attributes, of unseen
classes is not given) remains a significant challenge for SOTA ZSL approaches.

5.4.1 "Unseen Only" Setting Result. We evaluated the proposed IMUZero framework on four public HAR
datasets. Table 3 reports the average accuracy of both baseline models and our IMUZero framework under four
zero-shot settings on the PAMAP2, MHEALTH, DSADS, and GOTOV datasets. The results show significant
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(a) PAMAP2 (b) DSADS

(c) MHEALTH (d) GOTOV

Fig. 7. Confusion matrix of "Seen Only" task for the proposed IMUZero framework in four datasets under 5-class setting.
(best viewed in color)

improvements—an average gain of 2% in accuracy—across all settings achieved by IMUZero . Furthermore, we
evaluate the F1 score (as presented in Table 4), which penalizes class imbalance more strongly, on all four datasets.
Compared to accuracy, IMUZero demonstrates an even larger average performance gain of 3%, achieving the best
F1 scores in every setting. Such observations demonstrate the effectiveness of integrating semantic descriptions
for generalizable latent space construction together with frequency-domain information support.
It is important to note that as the number of unseen classes increases, the inference for these unseen classes

becomes more complex and challenging, leading to a significant degradation in performance for all methods. As
the number of target classes grows, a zero-shot model must carve its feature space into ever more finely divided
regions—each corresponding to one unseen activity prototype—using only indirect knowledge from seen classes.
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Pamap2 DSADS Mhealth GOTOV
4-class 5-class 4-class 5-class 4-class 5-class 4-class 5-class

DeepConvLSTM [27]
U 33.0% 30.1% 25.0% 20.0% 39.3% 33.7% 40.0% 37.8%
S 39.6% 36.1% 44.7% 38.8% 60.9% 52.2% 60.0% 56.7%
H 36.0% 33.0% 32.1% 26.4% 47.6% 40.9% 48.0% 45.5%

Composer [15]
U 35.0% 31.9% 39.0% 25.0% 40.3% 34.5% 43.7% 40.9%
S 42.0% 38.3% 47.0% 39.8% 62.5% 53.5% 65.8% 61.4%
H 38.3% 34.8% 42.6% 30.7% 48.8% 41.9% 52.4% 49.0%

DAZLE [16]
U 20.8% 19.1% 39.5% 25.0% 16.5% 13.5% 30.2% 27.8%
S 25.0% 22.2% 47.5% 40.2% 25.6% 20.9% 45.3% 41.7%
H 22.7% 20.8% 43.1% 30.8% 20.0% 16.4% 36.2% 33.3%

HSVA [5]
U 34.1% 31.2% 39.5% 37.8% 40.5% 34.6% 39.4% 36.7%
S 40.9% 37.4% 47.5% 40.0% 62.8% 53.6% 59.1% 55.1%
H 37.2% 34.2% 43.1% 38.9% 49.0% 42.0% 47.3% 44.0%

HRT [6]
U 20.1% 18.4% 25.0% 29.9% 24.7% 21.2% 39.1% 35.8%
S 24.1% 22.1% 37.9% 32.0% 29.2% 32.9% 35.2% 53.7%
H 22.0% 20.1% 30.1% 30.9% 26.8% 25.7% 37.0% 42.8%

SHIP [39]
U 49.8% 48.2% 49.0% 50.5% 52.5% 48.8% 50.9% 47.3%
S 59.8% 56.7% 51.0% 48.0% 81.4% 45.3% 76.4% 44.8%
H 54.3% 50.6% 50.0% 49.2% 63.3% 46.5% 61.1% 46.0%

IMU2CLIP [25]
U 48.9% 47.4% 50.0% 49.7% 51.7% 48.0% 42.9% 39.1%
S 58.7% 54.4% 49.0% 47.0% 80.1% 45.5% 64.4% 62.6%
H 53.3% 45.5% 49.5% 48.3% 62.3% 46.7% 51.5% 48.2%

IMUGPT [22]
U 47.5% 46.2% 46.0% 49.4% 50.1% 46.5% 46.8% 43.6%
S 57.0% 53.6% 49.0% 47.0% 77.7% 44.0% 70.2% 60.8%
H 51.9% 44.3% 47.5% 48.2% 60.5% 45.2% 56.2% 50.8%

HARGPT [17]
U 44.8% 43.9% 47.0% 45.9% 47.3% 44.0% 41.8% 38.7%
S 53.8% 50.2% 47.5% 44.0% 73.3% 41.5% 62.7% 61.9%
H 48.8% 42.0% 47.2% 44.9% 57.6% 42.7% 50.2% 47.6%

IMUZero
U 51.1%±0.7% 46.4%±0.5% 50.1%±0.8% 49.0%±1.2% 53.5%±0.7% 35.3%±0.8% 53.5%±0.7% 46.5%±0.8%
S 61.3%±0.5% 58.2%±0.5% 55.0%±0.5% 51.6%±0.5% 82.9%±0.5% 54.7%±0.6% 80.3%±0.4% 64.0%±0.5%
H 55.6%±0.4% 47.4%±0.5% 52.4%±0.5% 50.3%±0.7% 64.3%±0.6% 43.0%±0.7% 64.2%±0.6% 53.3%±0.5%

Table 5. Performance comparison (U: Unseen accuracy %, S: Seen accuracy %, H: Harmonic mean %) on different datasets for
4-class and 5-class settings in "Both Seen and Unseen" setting. Best results are highlighted in bold, and second-best results
are underlined. More detailed performance can be seen in Appendix A (Table 8,9)

This “crowding” makes it harder to keep inter-class distances large enough for reliable discrimination: prototypes
for different activities end up closer together, decision boundaries become more fragile, and small shifts in the
embedding can cause a sample to be assigned to the wrong class. Moreover, with more classes there’s inevitably
greater semantic diversity (and often imbalance) among activities, so the transfer of alignment learned on seen
classes becomes less precise for each new unseen class. In short, finer-grained multi-class splits demand higher
resolution in the learned representation—something inherently limited when you have zero direct examples of
the target categories—so zero-shot performance naturally degrades as class count increases.
Although increasing the number of unseen classes poses significant challenges for zero-shot recognition,

the proposed IMUZero framework still delivers promising results. In Table 3, we note a performance drop on
the MHEALTH dataset under the 3- and 5-class ZSL settings. This may be attributed to the limited size of
MHEALTH, which constrains model training and degrades generalization. Furthermore, Fig. 7 presents confusion
matrices of unseen activity recognition under the "Unseen Only" setting for the proposed framework (5-class
setting).While highly discriminative classes are classified accurately, activities with similar motion patterns exhibit

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: September 2018.



18 • Trovato et al.

(a) PAMAP2 (b) DSADS

(c) MHEALTH (d) GOTOV

Fig. 8. Confusion matrix of "Both Seen and Unseen" task for the proposed IMUZero framework in four datasets under 5-class
setting. (label number can refer to Table 6, best viewed in color)

higher misclassification rates. For example, in the PAMAP2 and DSADS datasets, ascending versus descending
stairs and horizontal versus vertical cycling show increased confusion. Such errors likely stem from the limited
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PAMAP2 DSADS MHEALTH GOTOV
No. Activity No. Activity No. Activity No. Activity
1 Rope Jumping (S) 1 Sitting (S) 1 Standing Still (S) 1 Jumping (S)
2 Lying (S) 2 Standing (S) 2 Sitting and Relaxing (S) 2 Standing (S)
3 Sitting (S) 3 Lying on Back (S) 3 Lying Down (S) 3 Step (S)
4 Standing (S) 4 Lying on Right Side (S) 4 Walking (S) 4 Lying (S)
5 Walking (S) 5 Ascending Stairs (S) 5 Climbing Stairs (S) 5 Sitting (S)
6 Running (S) 6 Descending Stairs (S) 6 Waist Bends Forward (S) 6 Walking Stairs Up (S)
7 Ironing (S) 7 Standing in Elevator (S) 7 Frontal Elevation of Arms (S) 7 Washing Dishes (U)
8 Vacuum Cleaning (U) 8 Moving in Elevator (S) 8 Jumping (U) 8 Stacking Shelves (U)
9 Cycling (U) 9 Walking in Parking Lot (S) 9 Running (U) 9 Vacuum Cleaning (U)
10 Nordic Walking (U) 10 Walking on Treadmill (Flat) (S) 10 Jogging (U) 10 Walking (U)
11 Ascending Stairs (U) 11 Walking on Treadmill (15 deg) (S) 11 Cycling (U) 11 Cycling (U)
12 Descending Stairs (U) 12 Running on Treadmill (S) 12 Knees Bending (U) – –
– – 13 Exercising on Stepper (S) – – – –
– – 14 Exercising on Cross Trainer (S) – – – –
– – 15 Playing Basketball (U) – – – –
– – 16 Jumping (U) – – – –
– – 17 Rowing (U) – – – –
– – 18 Cycling (Horizontal) (U) – – – –
– – 19 Cycling (Vertical) (U) – – – –

Table 6. Activity Reference for "Both Seen and Unseen" Confusion Matrix (i.e., Fig. 8), Seen: S, Unseen: U

discriminative information in frequency-domain descriptions, which differ only by axis for these pairs. These
findings underscore the urgent need for more fine-grained attribute descriptions to further improve zero-shot
activity recognition.

5.4.2 "Both Seen and Unseen" Setting Result. To evaluate the proposed method in a more realistic scenario,
we conduct experiments on a test set containing both seen and unseen classes. This setting is more challenging
than the “Unseen Only” setting, as similarities between seen and unseen classes can significantly affect decision
boundary formation, resulting in an accuracy drop compared to "Unseen Only". Table 5 (full result is in the
appendix) presents the average accuracies for seen and unseen classes, along with the harmonic mean for the
proposed IMUZero framework. Specifically, in the simpler settings (2–3 unseen classes), unseen class accuracy
drops by nearly 30%, whereas in the more complex settings (4–5 unseen classes), the drop is only around 8%.
One possible explanation is that when there are fewer unseen classes, the prior probability mass of seen classes
overwhelms the unseen ones—causing even well-separated unseen examples to be misclassified. The results
also show that, even under this more complex inference setting, our approach achieves a 3–5% improvement
over the SOTA. These findings demonstrate that the generated semantic information substantially enhances the
generalization ability of our framework in real-world scenarios.
It should be noted that the model can overfit to seen classes during semantic mapping, which may degrade

inference performance. However, the proposed framework applies the self-calibration loss 𝐿𝑆𝐶 to explicitly shift
some predictive probability from known to unknown classes. Consequently, in most cases, IMUZero achieves
balanced accuracy on both seen and unseen classes. Furthermore, Figure 8 presents confusion matrices of activity
recognition under the “Both Seen and Unseen” setting (5 classes) for our proposed framework. We observe that
inference on unseen classes is indeed affected by interference from seen classes. For example, in the MHEALTH
dataset, the model frequently confuses Running, Jogging, and Walking, as well as Climbing, since these activities
share similar leg movement patterns. Similar patterns of misclassification occur in the other datasets. In contrast,
the DSADS dataset shows better overall classification performance and fewer misclassifications between seen

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: September 2018.



20 • Trovato et al.

and unseen classes. One possible explanation is that DSADS has more balanced samples and more discriminative
raw-signal patterns.

5.5 Ablation Study on Key Components
To provide further insight into IMUZero , we conduct ablation studies to evaluate the effects of the: 1) Frequency
modality fusion; 2) Shuffle Channel Order Constraint L𝑆𝐶𝑂𝐶 ; 3) Self Calibration Loss L𝑆𝐶 ; and 3) Attribute
Regression Loss L𝐴𝑅 . Due to the computational limitation, we used the PAMAP2 dataset with different ZS
settings (from 2 to 5 classes). From Fig. 9a, we can observe that each key components earn its own credit for
the final performance. Specifically, the attribute regression loss L𝐴𝑅 gains more credits compared to other
components, as it aims to construct better signal-to-semantic mapping by narrowing the distance between
the textual attributes of the signal feature domains. The Shuffle Channel Order Constraint L𝑆𝐶𝑂𝐶 and Self
Calibration Loss L𝑆𝐶 contribute similarly to the overall framework, suggesting that extracting channel-invariant
information and implementing constraints to prevent overfitting on seen classes can significantly enhance the
model’s generalization ability. The fusion of frequency modalities also demonstrates significant improvements in
more complex zero-shot (ZS) settings (i.e., 3-4 classes). The incorporation of frequency modalities substantially
enhances the semantic connection between signals and frequency-related movement attributes.

5.6 Ablation Study on Semantic Embedding Assessment
The quality of semantic attributes critically shapes the semantic embedding space and thus determines how
well unseen activities can be generalized. To evaluate the fidelity of LLM-generated attributes, we perform a
comprehensive quantitative analysis across several attribute formats—including: numerical attribute (i.e., 𝑧𝑐 ),
continuous versus discrete outputs from different LLM, and statistical feature–based descriptors. The results are
summarized in Figure 9b and discussed below:
Numerical Attribute vs. Attribute Description.We observe that direct use of the numerical attribute (i.e.,
𝑧𝑐 ) leads to substantial performance degradation. For example, for Qwen-generated attributes, the performance
gap between using purely numerical values and language descriptions can be as high as 10%. This suggests that
language descriptions supply additional semantic information, enabling the generation of more discriminative
decision boundaries for classification. Furthermore, we provide a t-SNE visualization to investigate interpretability.
We observe that, with language descriptions, the latent space is more separable than with purely numerical
attributes, further validating our assumption.
Continuous vs. Discrete Semantics. We observe that most LLM-generated attribute descriptions tend to favor
discrete semantics. For instance, GPT4o and GPT3.5 exhibit discrete proportions of 54.4% and 53.8%, respectively,
both higher than their continuous counterparts. This suggests that LLM inherently generate attribute semantics
that emphasize categorical separability, which may enhance the discriminability of unseen classes. However,
models such as Claude demonstrate a more balanced distribution (49.3% continuous vs. 52.4% discrete), potentially
offering a compromise between generalization and specificity.
Statistical vs. LLM-Generated Attributes. To demonstrate the reliability of LLM-generated attributes, we
compare them with statistical features extracted from accelerometer readings across different activities (see
Fig. 10). For consistency, the mean value is used as the representative statistical attribute. These statistical
descriptors exhibit a high continuous ratio (49.9%), indicating smooth semantic transitions that can support more
nuanced mappings in complex activity distributions. In contrast, LLM-generated attributes lean toward discrete
categorization, providing clearer semantic anchors that enhance zero-shot recognition performance, albeit with a
potential trade-off in generalization across fine-grained action variations.
LLM Variant Differences. All evaluated LLM generate semantically coherent attribute descriptions that yield
strong zero-shot recognition performance, confirming the reliability of LLM-driven semantics. Although there
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Fig. 9. Ablation Study on IMUZero Key Components and Semantic Quality. (best viewed in color)

are minor variations in how each model balances continuous versus discrete attributes—Claude remains nearly
balanced while qwen skews slightly toward discrete—GPT4o achieves the best overall trade-off, combining clear
class separability with sufficient continuous nuance. Therefore, GPT4o is selected to produce the final semantic
attributes in our framework.

5.7 Latent Space Analysis
To further verify the effectiveness of our IMUZero framework–(whether it presents better unseen semantic
latent space), we applied t-SNE to generate visualizations of latent features for the PAMAP2 dataset. These
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Fig. 10. Statistical Representation of Attributes

visualizations are based on the penultimate layer (i.e., the last layer before the final classifier) for our method and
all baselines Fig. 11 illustrates the t-SNE plot for unseen activity distribution for the raw unseen activity data,
HRT encoded features, SHIP encoded features, and IMUZero encoded features. We observe that the clusters of
activity embeddings from IMUZero (see Fig. 11g) are more distinct and organized compared to those derived from
HRT and SHIP features. In the case of SHIP-encoded features (see Fig. 11c), the decision boundaries between
different classes are unclear, leading to potential confusion between activities such as "Vacuum Cleaning" and
"Ironing," as well as "Ascending Stair" and "Descending Stair." The decision boundaries for HRT-encoded features
are even less defined, resulting in smaller inter-class distances, which can lead to failures in inferring unseen
activities. Additionally, the absence of extra frequency-sensitive information makes it challenging to extract
discriminative and generalizable features from the raw activity signals.

5.8 Future Work Discussion: Test-time Zero-Shot Recognition
Although current zero-shot action recognition can address the issue of analyzing unknown motion categories
to some extent, it relies too heavily on pre-defined labels or attribute descriptions, limiting its flexibility in
responding to unknown motion categories in real life. Meanwhile, such methods are overly dependent on the
quality of the attribute descriptions, and any bias in the descriptions can lead to significant differences in results.
An ideal solution is one in which unseen activity recognition does not rely on predefined labels or attribute
spaces (i.e., the labels or descriptions of unseen classes are not available during training). Instead, the model can
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Nordic Walking Ascending Stairs Decending Stairs Vacuum Cleaning Ironing

(a) Before Training (b) HRT (c) SHIP (d) IMU2CLIP

(e) IMUGPT (f) HARGPT (g) IMUZero

Fig. 11. Feature visualization: t-SNE plot of raw unseen activity feature, HRT encoded features, SHIP encoded features,
IMU2CLIP encoded features, IMUGPT encoded features, HARGPT encoded features and IMUZero encoded features on
PAMAP2 Dataset. We use different colors to denote different categories. (Best viewed in color.)

generate these descriptions during inference time for label/description/attribute nearest search. We define this
setting as "Test-time" Zero-Shot Recognition. To investigate the performance of current state-of-the-art (SOTA)
ZSL approaches, as well as the proposed IMUZero , we conduct experiments under the Test-time Zero-Shot
Recognition setting using the PAMAP2 dataset. Table 7 demonstrates the performance of test-time zero-shot
recognition, and we observe that all methods fail to generalize to unseen classes. This phenomenon indicates that,
without prior knowledge, the ZSL system is prone to significant failures. Such challenges present a novel and
urgent opportunity for the HAR community and could encourage the development of a universal HAR system.

6 Conclusion
In summary, this work introduces IMUZero, a fine-grained end-to-end zero-shot human activity recognition
framework designed to enhance the recognition of unseen and novel activity classes. The proposed framework
integrates three major components: the LLM-based Attribute Generation component that leverages predefined
category information to produce fine-grained attributes through prompt engineering; the Multi-Scale Time-
Frequency Fusion module that effectively consolidates semantically related information from both the input
activity signals and their frequency representations, facilitating precise signal-to-semantic mapping; and the
Sig2Text Alignment module, which aligns fused cross-modality features with encoded attributes while addressing
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Method Pamap2
2-class 3-class 4-class 5-class

DeepConvLSTM [27] 50.47% 30.71% 25.00% 20.00%
Composer [15] 48.21% 36.57% 28.96% 21.20%
DAZLE [16] 47.60% 33.33% 24.89% 14.76%
HSVA [5] 49.83% 37.57% 29.95% 19.09%
HRT [6] 50.35% 44.75% 33.23% 18.56%
SHIP [39] 46.57% 37.65% 30.33% 24.52%

IMU2CLIP [25] 49.80% 38.20% 31.50% 20.30%
IMUGPT [22] 52.10% 41.90% 33.80% 22.50%
HARGPT [17] 50.50% 42.80% 31.90% 20.10%

Ours 51.22% 43.66% 35.63% 19.86%
Table 7. Experimental Test on Test-time Zero-Shot Recognition Setting

the axial bias problem through a channel shuffle constraint to promote channel-invariant information extrac-
tion. Through our extensive experimental evaluation, we have demonstrated the effectiveness of the IMUZero
framework, particularly in its ability to bridge the gap between activity signals and fine-grained attributes
generated by LLM. The introduction of a novel cross-modality multi-stage fusion mechanism enables fine-grained
semantic alignment, while our investigation into ’axis bias’ and the implementation of a channel shuffle order
constraint effectively enhance the model’s generalization capabilities. The promising results of our experiments
underscore IMUZero as a versatile and robust solution for the HAR research community, paving the way for
broader applications in real-world scenarios.
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A GZSL result

Pamap2 DSADS
2-class 3-class 4-class 5-class 2-class 3-class 4-class 5-class

DeepConvLSTM [27]
U 36.2% 34.5% 33.0% 30.1% 44.8% 48.0% 25.0% 20.0%
S 43.4% 41.4% 39.6% 36.1% 79.5% 60.0% 44.7% 38.8%
H 39.5% 37.6% 36.0% 33.0% 57.4% 53.3% 32.1% 26.4%

Composer [15]
U 37.2% 35.4% 35.0% 31.9% 46.7% 41.8% 39.0% 25.0%
S 44.6% 42.5% 42.0% 38.3% 81.8% 61.9% 47.0% 39.8%
H 40.0% 38.0% 38.3% 34.8% 59.5% 49.9% 42.6% 30.7%

DAZLE [16]
U 22.9% 21.8% 20.8% 19.1% 46.3% 41.7% 39.5% 25.0%
S 27.5% 26.2% 25.0% 22.2% 81.7% 61.3% 47.5% 40.2%
H 25.0% 23.9% 22.7% 20.8% 59.1% 49.4% 43.1% 30.8%

HSVA [5]
U 37.4% 35.7% 34.1% 31.2% 47.2% 42.3% 39.5% 37.8%
S 44.9% 42.8% 40.9% 37.4% 82.3% 62.7% 47.5% 40.0%
H 40.3% 38.3% 37.2% 34.2% 59.8% 50.7% 43.1% 38.9%

HRT [6]
U 22.1% 21.1% 20.1% 18.4% 48.1% 43.2% 25.0% 29.9%
S 26.5% 25.3% 24.1% 22.1% 82.9% 62.8% 37.9% 32.0%
H 24.2% 23.1% 22.0% 20.1% 60.7% 51.0% 30.1% 30.9%

SHIP [39]
U 54.8% 52.2% 49.8% 48.2% 49.3% 48.2% 49.0% 50.5%
S 65.8% 62.6% 59.8% 56.7% 84.2% 64.3% 51.0% 48.0%
H 59.8% 56.9% 54.3% 50.6% 62.0% 54.8% 50.0% 49.2%

IMU2CLIP [25]
U 53.8% 51.3% 48.9% 47.4% 48.7% 47.1% 50.0% 49.7%
S 64.6% 61.6% 58.7% 54.4% 83.4% 63.7% 49.0% 47.0%
H 58.8% 55.9% 53.3% 45.5% 61.2% 54.0% 49.5% 48.3%

IMUGPT [22]
U 52.2% 49.8% 47.5% 46.2% 49.6% 50.2% 46.0% 49.4%
S 62.6% 59.8% 57.0% 53.6% 84.7% 65.1% 49.0% 47.0%
H 57.2% 54.4% 51.9% 44.3% 62.3% 56.5% 47.5% 48.2%

HARGPT [17]
U 49.2% 46.9% 44.8% 43.9% 49.0% 48.4% 47.0% 45.9%
S 59.0% 56.3% 53.8% 50.2% 84.0% 64.4% 47.5% 44.0%
H 53.9% 51.2% 48.8% 42.0% 61.8% 55.2% 47.2% 44.9%

IMUZero
U 56.2%±0.5% 53.5%±0.6% 51.1%±0.7% 46.4%±0.5% 50.8%±0.8% 62.2%±0.9% 50.1%±0.8% 49.0%±1.2%
S 67.4%±0.3% 64.2%±0.4% 61.3%±0.5% 58.2%±0.5% 86.1%±0.5% 66.3%±0.6% 55.0%±0.5% 51.6%±0.5%
H 61.3%±0.5% 58.3%±0.5% 55.6%±0.4% 47.4%±0.5% 63.9%±0.7% 64.2%±0.8% 52.4%±0.5% 50.3%±0.7%

Table 8. Performance comparison (U: Unseen accuracy %, S: Seen accuracy %, H: Harmonic mean %) on Pamap2 and DSADS
datasets for 2,3,4,5-class settings in "Both Seen and Unseen" setting. Best results are highlighted in bold, and second-best
results are underlined.
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MHEALTH GOTOV
2-class 3-class 4-class 5-class 2-class 3-class 4-class 5-class

DeepConvLSTM [27]
U 43.9% 47.8% 39.3% 33.7% 44.7% 47.2% 40.0% 37.8%
S 68.0% 43.0% 60.9% 52.2% 67.1% 42.5% 60.0% 56.7%
H 53.2% 45.3% 47.6% 40.9% 53.6% 44.7% 48.0% 45.5%

Composer [15]
U 44.9% 42.6% 40.3% 34.5% 48.7% 46.2% 43.7% 40.9%
S 69.6% 66.0% 62.5% 53.5% 73.1% 69.3% 65.8% 61.4%
H 54.4% 51.6% 48.8% 41.9% 58.4% 55.3% 52.4% 49.0%

DAZLE [16]
U 18.3% 17.4% 16.5% 13.5% 33.7% 31.9% 30.2% 27.8%
S 28.4% 27.0% 25.6% 20.9% 50.6% 47.9% 45.3% 41.7%
H 22.2% 21.1% 20.0% 16.4% 40.4% 38.2% 36.2% 33.3%

HSVA [5]
U 45.1% 42.8% 40.5% 34.6% 44.0% 41.7% 39.4% 36.7%
S 69.9% 66.3% 62.8% 53.6% 66.0% 62.6% 59.1% 55.1%
H 54.6% 51.8% 49.0% 42.0% 52.8% 49.8% 47.3% 44.0%

HRT [6]
U 27.5% 26.1% 24.7% 21.2% 43.6% 41.3% 39.1% 35.8%
S 42.6% 40.5% 29.2% 32.9% 65.4% 37.2% 35.2% 53.7%
H 33.3% 31.6% 26.8% 25.7% 52.3% 39.1% 37.0% 42.8%

SHIP [39]
U 58.5% 55.5% 52.5% 48.8% 56.7% 53.8% 50.9% 47.3%
S 90.7% 86.0% 81.4% 45.3% 85.1% 80.7% 76.4% 44.8%
H 70.8% 67.5% 63.3% 46.4% 67.8% 64.5% 61.1% 46.0%

IMU2CLIP [25]
U 57.5% 54.6% 51.7% 48.0% 47.8% 45.3% 42.9% 39.1%
S 89.1% 84.6% 80.1% 45.5% 71.7% 68.0% 64.4% 62.6%
H 69.8% 66.5% 62.3% 46.7% 57.3% 54.3% 51.5% 48.2%

IMUGPT [22]
U 55.8% 52.9% 50.1% 46.5% 52.3% 49.5% 46.8% 43.6%
S 86.5% 82.0% 77.7% 44.0% 78.5% 74.3% 70.2% 60.8%
H 67.8% 64.5% 60.5% 45.2% 62.6% 59.6% 56.2% 50.8%

HARGPT [17]
U 52.7% 50.0% 47.3% 44.0% 46.7% 44.2% 41.8% 38.7%
S 81.7% 77.5% 73.3% 41.5% 70.1% 66.3% 62.7% 61.9%
H 64.0% 60.8% 57.6% 42.7% 56.0% 53.0% 50.2% 47.6%

IMUZero
U 59.6%±0.5% 56.5%±0.5% 53.5%±0.7% 35.3%±0.8% 59.6%±0.5% 52.6%±0.6% 53.5%±0.7% 46.5%±0.8%
S 92.4%±0.3% 87.6%±0.4% 82.9%±0.5% 54.7%±0.6% 89.4%±0.3% 78.9%±0.4% 80.3%±0.4% 64.0%±0.5%
H 71.8%±0.4% 68.6%±0.4% 64.3%±0.6% 43.0%±0.7% 71.5%±0.4% 63.3%±0.5% 64.2%±0.6% 53.3%±0.5%

Table 9. Performance comparison (U: Unseen accuracy %, S: Seen accuracy %, H: Harmonic mean %) on MHEALTH and
GOTOV datasets for 2,3,4,5-class settings in "Both Seen and Unseen" setting. Best results are highlighted in bold, and
second-best results are underlined.
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