
Toward Cooperative 3D Object Reconstruction with Multi-agent

Xiong Li, Zhenyu Wen, Leiqiang Zhou, Chenwei Li, Yejian Zhou, Taotao Li and Zhen Hong∗

Abstract— We study the problem of object reconstruction
in a multi-agent collaboration scenario. Specifically, we fo-
cus on the reconstruction of specific goals through several
cooperative agents equipped with vision sensors to achieve
higher efficiency than single agents. Our main insight is that
a complete 3D object can be split into several local 3D models
and assigned to different agents. In addition, we can use the
salient characteristics of the collaboration agent itself to help
realize the integration of local models. We develop a novel
pipeline that first restores local 3D models from the images
obtained from different agents, then the relative poses between
collaborative agents are estimated by aligning intrinsic features.
After that, all local models are integrated using the estimated
parameters. Extensive experiments show that our proposed
method is capable of accurately reconstructing 3D objects in
the real world in a multi-agent collaborative manner. The full
reconstruction pipeline is released to the public as an open-
source project.

I. INTRODUCTION

Robotics have been widely used in many areas such as
search and rescue, infrastructure inspection, and exploration
[12], [18], [25]. In recent years, researchers are focusing
on improving the maneuverability of robot clusters, aiming
to collaboratively perform operations such as reconnais-
sance and land surveying [26], [40]. To realize the above-
mentioned operations, multi-agent 3D object reconstruction
is one of the key challenging tasks. Fig. 1 illustrates the high-
level view of the task. Each agent (camera) can only obtain
partial visual information from the target object, and then the
collected visual information is sent to a central server for 3D
object reconstruction.

Previous studies [4], [7], [27], [45] have solved well
the problem of object reconstruction in the case of con-
tinuous shooting by a single agent. However, multi-agent
3D object reconstruction brings the following challenges.
First, it is difficult for multiple agents to achieve highly
consistent scene understanding. In other words, they cannot
accurately perceive the pose relationship between each other
to correlate all visual information. Secondly, the scale error
makes it difficult to correlate the relative pose relationships
between agents with the corresponding viewpoints in the
reconstructed space. In addition, some end-to-end solutions
[22], [35], [38] suffer from the generalization issues that may
be affected by light, and background noise which is naturally
included in real-world applications.

Our key insight is that object reconstruction tasks based
on multi-agent collaboration can be effectively decomposed.
On the one hand, we can decompose a complete object into
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several local 3D models, which can be spliced. On the other
hand, the information needed to infer the local model is
already included in the images taken from each viewpoint.

We find that the integration of local 3D models can be
achieved using only some iconic features of the cooperative
robot itself. We describe it as a registration problem in point
cloud space, which provides a stable and effective way to
estimate the pose conversion relationship between agents. In
order to create a local 3D model of the target object from the
scene, we must also accurately eliminate the interference of
background noise during the 3D mapping of the image. For
example, even if an object has a complex geometric structure
and a high degree of fit with the environment, it can be
accurately extracted from the scene.

We propose a novel two-stage pipeline for reconstructing
specific objects in a scene in the case of difficulties in
continuous image acquisition. First, we generate local 3D
models from all agents’ perspectives with the help of a
stereo-matching network. Secondly, we estimate the mutual
pose relationships by matching the pre-added salient char-
acteristics of the cooperative agents and use them to restore
the complete 3D object. Our key contributions are:

1) To the best of our knowledge, we are the first to
propose a multi-agent collaborative 3D reconstruction
scene, which requires only a few images to achieve
superior 3D reconstruction performance and has sig-
nificant application prospects in the future.

2) We introduce a single-viewpoint object reconstruction
method that enables each agent to reach a consensus on
the target object, overcomes the challenge of environ-
mental interference, and recovers the local 3D model
of the target object at each viewpoint.

3) We develop a marker-based robust point cloud con-
catenation algorithm that leverages the cooperative
relationship between agents to establish stable con-
nections between widely varying viewpoints, and then
quickly integrate all local information together with
low computational cost.

II. RELATED WORK

Traditional 3D Reconstruction. Traditional 3D recon-
struction is usually divided into two stages, namely Structure
from Motion (SfM) and Multi-View Stereo (MVS). The
SfM [8], [13], [27] first estimates the camera motion and
acquires a sparse point cloud model, after which MVS [16],
[33], [43] is responsible for densifying the model to bring it
closer to the real scene. Recently, neural methods for new
view synthesis [17], [32] have also been proven to be able



to replace MVS and achieve the high-quality dense recon-
struction of objects. However, these methods require highly
overlapping views and Lambertian surfaces to better realize
feature extraction and tracking between different views. In
addition, its application scenarios are further limited due to
huge computing resources and time costs.

End-to-end 3D Reconstruction. Object reconstruction
based on deep learning [9], [14] aims to avoid complicated
camera calibration processes and realize end-to-end mapping
from 2D images to 3D models. In this type of method,
the input can be single [20], [36], [39] or multiple [5],
[31], [38] RGB images, and the output has various forms
such as voxel, point cloud, grid, etc. When the input is a
video stream [6], [30], temporal correlation can be used to
improve the smoothness and inter-frame consistency of the
reconstruction. However, the above methods are usually only
trained and evaluated on public datasets. On the one hand,
they still do not have strong generalization capabilities for
real-world applications. On the other hand, the large number
of parameters included in the network model also leads to
expensive computational costs.

In this work, we integrate different views with a low
overlap rate to achieve the complete reconstruction of objects
through a reasonable collaborative observation model and
local feature alignment between collaborative agents, while
saving a lot of time in the reconstruction process.

III. COOPERATIVE OBJECT RECONSTRUCTION

Given the set of simultaneously captured images
{IM}Kk=1 from K collaborative agents (i.e., cameras), our
goal is to recover the 3D model Pobj of the object through
these images from different viewpoints. To this end, we
propose a two-stage pipeline as shown in Fig. 1, including
single-viewpoint object reconstruction (§III-B) and a multi-
viewpoint concatenation (§III-C). First, the single-viewpoint
object reconstruction method takes each agent to reconstruct
a local 3D object (partial 3D information of the target
object) from 2D images. Next, the multi-view concatenation
method estimates the relative poses by aligning the intrinsic
features of collaborative agents in the reconstruction space
and thereby integrates all local information into a complete
3D model.

A. Preliminaries and Core Assumptions

Our method builds on the classic stereo depth estimation
[10] to ensure scale consistency across agents. In addition,
the binocular depth estimation can also help to realize fast
scene reconstruction under fixed-point shooting(i.e., single-
viewpoint). It imitates the human eye to estimate the depth.
After establishing the correspondence between the points in
the left and right views, the 3D coordinate information of the
scene can be calculated according to parallax and geometric
imaging principles. In this paper, we focus on extracting
high-quality local information about the target object from
3D scene representation and then effectively correlating
individual agents under large-scale spatial transformations
and organizing all local information.

Assumption. We assume that the cooperative scenarios
of agents are unknown in advance. Thus, the cooperation
between agents relies on visual observation, i.e., finding the
salience feature of each agent to cooperatively reconstruct a
3D object. Unlike methods [24], [42], we do not enforce the
existence of multiple objects with explicit semantics in the
environment.

B. Reconstruction in Single-Viewpoint

Accurate and smooth 3D representation is an important
prerequisite for effectively correlating different viewpoints,
and also directly determines the reconstruction quality of the
target object. To this end, we utilize an advanced stereo-
matching network to better guide binocular reconstruction.

Let IMk := {imlk, imrk} be the original image pair
produced under the k-th camera, we hope to recover the
scene 3D coordinates Sk ∈ RN×3 (i.e., scene point cloud)
through them. The first is to remove the radial and tangential
distortions, and then we perform the stereo rectification for
the de-distorted images by the Bouguet algorithm [15]. Note
that the camera parameters required in the above process can
be obtained through official inquiry or manual calibration
[44]. The rectified left and right images { ¯imlk, ¯imrk} are
row-aligned, that is, the same object point in the real world
is located in the same row in both images. After that, we need
to find the corresponding point in the right image ¯imrk for
the pixel in the left image ¯imlk and calculate the disparity.
In this work, instead of using traditional stereo-matching
methods, we obtain higher-quality disparity maps end-to-end
based on CF-Net [29]. Taking the rectified stereo images
{ ¯imlk, ¯imrk} as input, the network outputs the disparity
maps {dplk, dprk} with the same resolution. Finally, We
choose one of the left and right views as the datum to calcu-
late the 3D coordinates. Take the left view as an example, for
any pixel point (u, v) of ¯imlk, the 3D coordinates [X Y Z]T

of the corresponding object point can be calculated by the
following formulas.

X =
−B(u− cx)

d− (cx − cx′ )
, Y =

−B(v − cy)

d− (cx − cx′ )
, Z =

−Bf

d− (cx − cx′ )
(1)

where d denotes the value of the corresponding position
of the disparity map dplk. cx, c

′
x denote the abscissa of

the optical center of the left and the right camera in the
respective image planes, respectively. cy is the ordinate of the
left camera’s optical center in its image plane. The baseline
length of the binocular camera is represented by B, and f
is the focal length.

To further obtain the smooth local point cloud of the
target object, we sequentially perform target segmentation
and filtering. We first use YOLACT [1] to extract the coarse
target local point cloud Ek ∈ RNe×3 from the scene point
cloud Sk. Specifically, since the scene point cloud Sk has
a one-to-one correspondence with the pixels in the left
view ¯imlk, we also use the left view ¯imlk as the input
of the network. The network will perform pixel-level object
detection on the input image ¯imlk and generate a class label
and corresponding Mask for each detected object, so we can
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Fig. 1. Several agents detect the target at the same time and upload the observation images from their respective perspectives to the cloud server to
complete the object reconstruction. We first recover the 3D scene under each viewpoint and extract the local model belonging to the target object from it.
Then, We achieve the concatenation of all local 3D models using the pose estimation parameters generated by aligning the intrinsic features of collaborative
agents in the reconstruction space. Note that the figure shows a case where the number of cooperating agents is three.

use this information to easily retrieve and extract the point
cloud of the specified object from the scene point cloud.
Considering the possible noise in the mask and the noise of
the reconstruction process itself, We finally use a statistical
filter to smooth the Ek to obtain the filtered local point cloud
of the target object Pk ∈ RNo×3. The threshold value h of
the filter is defined by the Eq. 2. The filter will sequentially
calculate the average distance Oi between the i-th 3D point
in Ek and its w (custom) nearest neighbors. If Oi is greater
than the threshold, the 3D point will be marked as an outlier
and removed, otherwise is reserved.

h = Ō +m

√√√√ 1

Ne − 1

Ne∑
i=1

(Oi − Ō)2, Ō =
1

Ne

Ne∑
i=1

Oi (2)

where Ō is the average of Oi and m is a custom multiplier.
At this stage, each stereo-pair image can be processed

independently to obtain the target local point cloud Pk under
the corresponding viewpoint.

C. Multi-Viewpoint Concatenation

In this section, we describe how we estimate the relative
poses of the agents under the task of cooperative object
reconstruction. With the estimated parameters, we can easily
associate all participating agents and integrate all local 3D
point clouds to restore the complete target object. Our key
idea to approach the problem is to exploit the mutual visibil-
ity between collaborative agents, because we can make sure
that some of them are visible to each other with controllable
observation positions. Specifically, we introduce a marker
that is pre-added to each participating camera (or agent) so
that it can appear in other camera’s view along with the
target object as shown in Fig. 2. The advantages of using
markers are mainly reflected in the following two aspects:
(1) The marker is carefully handcrafted, can be designed to
be easier to extract features (with strong texture), and be
insensitive to light; (2) Compared with the target object, the
overlapping area between the observed markers from two
adjacent viewpoints is much larger. Therefore, it is easier to
match the makers instead of parts of the target object.

Agent

Marker

Target Object 

FOV 

Fig. 2. Bird’s-eye view: The local 3D models under various viewpoints can
be effectively concatenated through the synchronous alignment of markers.

Thereafter, we perform point cloud matching on the
marker part to establish a more precise and stable connection
between different viewpoints. After the point cloud matching
of markers is completed, We build an optimization model
to find the best transformation parameters to synchronously
align the corresponding markers in the reconstruction space
as much as possible. Simultaneously, the parameters can also
be used to concatenate the local point clouds of the target
object since they represent relative pose transformations
between the collaborative agents.

To conduct marker-based point cloud matching, We first
crop the complete markers from the original images accord-
ing to the masks generated by YOLACT [1]. After obtaining
the markers’ images under all viewpoints, the same marker
is grouped and each type of marker represents a class of
YOLACT [1]. Then, the A-SIFT [21] is used to extract the
key points (features) from markers’ images and match these
key points. When the coordinates and matching relationship
of the key points on the markers’ images are determined,
we further determine their corresponding coordinates on the
original images according to the cropping positions of the
markers. Then, the point clouds corresponding to the key



points (i.e. feature point cloud) can be extracted in the
scene point clouds. We group them by the classes of the
corresponding markers. Finally, a set of matched point clouds
is constructed from these feature point cloud groups.

Let M :=
{
Mk ∈ R2×Nm×3, 1 ≤ k ≤ K

}
be the

set of the matched point clouds, where Mk :={
V ∈ RNm×3 ⊆ S′i,Q ∈ RNm×3 ⊆ S′j | i ̸= j

}
denotes the

feature point cloud groups. We aim to estimate the relative
poses of the agents by aligning all feature point cloud
groups synchronously, including rotation matrices Rk ∈
SO(3) =

{
R ∈ R3×3 | RRT = I, det(R) = 1

}
and transla-

tion vectors tk ∈ R3. Therefore, we first define Γ(Mk) :=∑Nm
n ∥RiV+ti−RjQ−tj∥2

Nm
to denote the Euclidean distance

between the k-th group of feature point clouds. To achieve
synchronous alignment of K groups of feature point clouds,
we transform this problem to minimize the sum of their
Euclidean distances. Furthermore, we set constraints to avoid
possible local optima. Specifically, the case of local optima
is that there may be large differences in the degree of
alignment between different groups, but the overall alignment
is still the best. For this problem, our constraint is that three
groups of feature point clouds are arbitrarily selected, and
the sum of the Euclidean distances of the two groups must
be greater than the third group. The optimization problem
can be expressed as follows:

min
Ri, ti

K∑
k=1

Γ(Mk)

s.t. Γ(Mi) + Γ(Mj) > Γ(Mk),

∀i, j, k ∈ {1, 2, ...,K}, i ̸= j ̸= k

(3)

In the end, we use Particle swarm optimization (PSO)
[19] to solve the above optimization problem. The dimension
of the particle is defined as K ∗ 6. Under the appropriate
population size and particle search space, the algorithm
can find the sub-optimal solution in a relatively short time.
The obtained parameters are used to perform a coordinate
transformation on local point clouds {P}Kk=1 to implement
the concatenation.

IV. EXPERIMENTS

Our experiments aim to verify the effectiveness of the
proposed pipeline. We compare the performance of this
framework with the classical 3D reconstruction pipeline
(SfM+MVS) and deep learning-based reconstruction meth-
ods. The indoor and outdoor scenarios are both considered
for a more comprehensive evaluation. In addition, We quan-
titatively analyze the main factors affecting the performance
of the pipeline. Finally, we provide ablation studies and give
assessments and suggestions for each critical component of
the pipeline.

A. Experimental setup

Experiment configuration. We place three cameras evenly
as a circle and the target object is placed at the center point.
Thus, the cameras are equidistant from each other and the
target. The camera is ZED2 developed by STEREOLABS,

with a field of view (FOV) of 110*70, and the range of
capture depth can reach as far as 20m. ZED2 can gener-
ate 4K (4416*1242 pixel) binocular high-definition images.
Moreover, our experiments are conducted on a Ubuntu server
with an NVIDIA TESLA V100 GPU (16GB).

Baselines. We compare the performance of COLMAP
[28] and deep learning-based methods including 3D-R2N2
[5], AttSets [41], Pix2Vox [37], Pixel2Mesh++ [34], and
Pix2Vox++ [38] with that of our pipeline. COLMAP is a
general-purpose SfM and MVS pipeline with a graphical and
command-line interface and is widely used in many real-
world applications as a representative work of traditional
methods. The selected deep learning-based methods are the
state-of-the-art methods in the 3D object reconstruction task,
with excellent performance on the well-known public dataset
ShapeNet [3].

Evaluation Configuration. Our evaluations consist of two
phases: Reconstruction effect and Ablation study. In Re-
construction effect experiments, six real-world objects are
recorded from indoor and outdoor scenarios. Note that some
baseline solutions are not designed for few-views 3D re-
construction, we obtain more than three views for these
methods. It is very hard to have a quantitative comparison
for real-world tests; following previous works [2], [23], our
comparison is done visually, by observing the structure and
texture of generated 3D models.

B. Results

Indoor objects. Fig. 3 shows that we select a cabinet, chair,
and kettle as the target objects for reconstruction. All the
target objects can be well constructed as 3D cloud points with
only 3 views. In addition, we compare our solution with the
current mainstream multi-view 3D reconstruction methods.
The Colmap is designed for a single camera that collects
sequence views from the target objects in 360 degrees.
Hence its reconstruction quality increases with the increasing
number of input views. Our solution has better reconstruction
quality than Colmap even under unequal contrast conditions,
i.e., 3 views V.S. 96 views. Most deep learning-based meth-
ods focus on constructing the structure of the object, and
their outputs are represented as voxels or grids. All these
deep learning-based solutions can not obtain promising from
images that are directly obtained from real-world scenarios.

Outdoor objects. To further evaluate the proposed method
under different conditions, we conduct the experiments in
an outdoor environment. Test objects include a trashcan,
a motorcycle, and a warning cone. Fig. 4 shows that our
solution can still obtain a high-quality 3D reconstruction and
is not affected by the strong light in the outdoor environment.
The performance of Colmap has not fluctuated much in the
outdoor environment, and the reconstruction results are close
to the indoor environment. However, deep learning-based
methods are sensitive to light. When the target object has
relatively complex structures (e.g., motorcycle), these models
completely fail in the outdoor environment.
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Fig. 3. Comparison of reconstruction effects on indoor objects
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Fig. 4. Comparison of reconstruction effects on outdoor objects

TABLE I
RECONSTRUCTION QUALITY AND TIME-CONSUMING COMPARISON OF

DIFFERENT METHODS.

COLMAP Pix2Vox++ etc. Ours
(96 views) (3 views) (3 views)

Average time(s) 7956 17 50
Structure ✓ ✓ ✓
Texture ✓ N/A ✓
Scale ✓ N/A ✓

Effectiveness. We also evaluate the effectiveness of our
proposed solution in terms of execution time and supported
visual features. Table I shows that deep learning-based
solutions outperform the other two solutions in terms of
time-consuming. However, these methods are not able to
reconstruct the texture and scale information of the target
objects. Our proposed method achieves the best reconstruc-
tion quality, but the execution latency is about 1 minute. In
future work, we develop a faster optimization algorithm to
replace PSO to achieve online 3D reconstruction.

C. Robustness Analysis

We define the average distance between point cloud pairs
of well-matched marker regions Bias :=

∑K
k=1 Γ(Mk)

K to
reflect the reconstruction effect of the proposed pipeline
quantitatively. Smaller Bias means better alignment of the

markers and thus smaller connection gaps between the local
point clouds.
The Impact of Viewpoint Allocations. The relative pose
relationship between cooperating agents is an important
factor affecting its robustness. The ideal position is that the
cooperative cameras are distributed in a regular polygon so
that the pose changes between every two adjacent viewpoints
are the same. To evaluate the robustness of our solution
under non-ideal observation positions, as shown in Table II,
we change the cameras’ placement and compare the perfor-
mance of reconstructing a carton under different viewpoint
assignments (including ideal and non-ideal positions). The
experimental results demonstrate that our proposed solution
is almost unaffected by the variety of poses between co-
operating agents. Our proposed pipeline works even if the
position and pose distributions among the cooperating agents
are not so canonical. As a result, our proposed solution
is usable as long as the markers can be observed by the
corresponding agents.
Specifications of Markers. The size of the markers deter-
mines the upper limit of the size of objects that our method
can reconstruct. First, the YOLCAT algorithm requires the
marker to occupy a sufficient proportion of pixels in the
image to successfully detect it. In addition, we also need to
ensure that the ASIFT algorithm can extract feature points in



TABLE II
NON-UNIFORM VIEWPOINT ASSIGNMENT TESTS: [Tx, Ty , Tz ] AND

[α, β, γ] DENOTE THE TRANSLATION AND ROTATION OF THE CAMERA

RELATIVE TO THE REFERENCE CAMERA (C1), RESPECTIVELY. THE G1

(I.E. IDEAL DISTRIBUTION) SERVED AS THE REFERENCE GROUP FOR

THE EXPERIMENT.

Cam-Pan Cam-Rotation Bias Time(s)
[Tx, Ty , Tz ] [α, β, γ]

C1 [0, 0, 0] [0, 0, 0] - -

G1
C2 [1.2, 2.08, 0] [0, 0, 120] 57.6 49
C3 [−1.2, 2.08, 0] [0, 0, 240]

G2
C2 [1.2, 2.08, 0] [0, 0, 120] 56.9 50
C3 [−1.39, 1.39, 0] [0, 0, 270]

G3
C2 [1.1, 2, 0] [0, 0, 120] 57.2 53
C3 [−1.3, 2.2, 0] [0, 0, 240]

G4
C2 [1.2, 2.08, 0] [0, 0, 120] 58.1 47
C3 [−2.08, 2.08, 0] [0, 0, 250.5]

G5
C2 [1.2, 2.08, 0.1] [20, 10, 120] 57.4 51
C3 [−2.08, 2.08, 0.2] [30,−10, 250.5]

TABLE III
COMPARISON OF THE MAXIMUM SIZE OF OBJECTS THAT CAN BE

RECONSTRUCTED BY MARKERS OF DIFFERENT SIZES.

Marker
size

Detection
distance(m)

Feature
points

Maximum
radius

(mm×mm) accuracy ≥50% (pcs) (m)
148×209 0∼4.72 ≥19 1.36
274×463 0∼6.86 ≥21 1.98
413×694 0∼9.84 ≥25 2.84
507×891 0∼13.21 ≥29 3.81

the marker area. Therefore, we select markers with different
sizes (take white paper as an example), count the critical
values separately, and infer the maximum object size that
the proposed pipeline can allow. The resolution of the image
is fixed at 2208*1242, and the results are shown in Table
III. The detection distance refers to the straight-line distance
between the camera and the markers of the collaborative
agents. To this end, the choice of markers should be based
on the actual situation.

D. Ablation studies

Parallax optimization. Obtaining the disparity map of the
target object is an essential step for the entire pipeline. We,
therefore, study the impact of various parallax generation
algorithms on the pipeline. Fig. 5 shows the comparison of
the reconstruction process using CF-Net and SGM respec-
tively. SGM [11] is the most widely used stereo-matching
algorithm in commercial software. The experimental results
demonstrate that the disparity map obtained by SGM has
relatively poor quality. Although the hollow part can be
culled during the filtering process, resulting in the destruction
of the integrity of the object reconstruction, the smoothness
of the obtained marker directly affects the final stitching
result.
Point cloud pairing. A reasonable pairing of point clouds is
a prerequisite for the pipeline to achieve marker alignment.
We also tested the method of uniformly selecting or ran-
domly sampling several point clouds from the marker point
cloud set for pairing and solving the optimal parameters.
Fig. 6 shows a set of comparison results. Compared with
the feature-level pairing used in the pipeline, the biases
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Fig. 5. Comparison of the work of the proposed pipeline under two different
parallax acquisition methods.
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Fig. 6. Stitching test under different point cloud pairing methods.

of the other two methods are 30.82% and 16.68% higher
respectively. However, in practical systems, they can be
used as a temporary alternative when the feature-matching
algorithm fails and the peer-to-peer pairing fails.

V. CONCLUSIONS

In this paper, we develop a novel object reconstruction
pipeline based on multi-agent collaboration, which can re-
store the 3D model of the target object in a scene from
observed images from a few agents. First, the pipeline will
perform local 3D restoration of the target object in each
viewpoint, and then estimate the relative poses between all
viewpoints and perform point cloud stitching based on the
estimated parameters to obtain the final reconstruction result.
Experiments show that our proposed pipeline can effectively
deal with various objects in the real world, and has signif-
icant advantages over other methods in the comprehensive
evaluation of reconstruction quality and time-consuming.

A primary limitation that can cause reconstructing failures
is when the instance segmentation network cannot accurately
identify and extract targets from the image, e.g. unseen
objects. In future work, it would be interesting to use
limited agents to efficiently reconstruct objects in a complex
scenario. To this end, the proposed algorithm needs to plan
a strategy to obtain the images with the smallest efforts for
reconstructing multiple scattered objects.
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