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Abstract—As a typical representative of the Internet of Energy
(IoE) intelligent era, consumer electronic (CE) devices continue to
evolve at a remarkable pace. Computers, as typical and essential
CE devices, have been instrumental in enhancing efficiency,
communication, entertainment, and information access. As part
of this evolution, a significant trend in computer design focuses
on achieving low power consumption while maintaining high
performance. For instance, a computer’s central processing
unit (CPU) dynamically modulates its output power in response
to the varying workload demands of running applications.
However, these power efficiency mechanisms may inadvertently
introduce implicit patterns into the operational states of CE
devices. Particularly, the power consumption of a CE device
executing various tasks can manifest distinguishable temporal
patterns, thereby exposing potential vulnerabilities. Thus, this
work aims to investigate the vulnerabilities of CE devices on
power consumption mechanisms. We focus on exploring the
possibility of using alternating current (AC) power consumption
to infer the running applications on a consumer computer. To
achieve that, we construct a physical attack system that employs
data acquisition, processing, classification, and inference stages
to establish a “profiler” for application profiling. The extensive
experiment results on the self-collected power consumption
dataset (36 applications) demonstrate the effectiveness of the
attacking system.

Index Terms—Resilience, Deep learning, Consumer Electronics
Vulnerabilities.

I. INTRODUCTION

THE consumer electronics industry has witnessed rapid
advancements in recent years, propelled by innovations in

technology and an increasing demand for smart and connected
devices. With increasing global consciousness towards energy
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consumption, consumers demand devices that maximize op-
erational efficiency. To address this intricate demand, man-
ufacturers have ingeniously integrated dynamic adjustability
into CE devices. Such a strategy allows these devices to
flexibly adapt their workloads, thereby minimizing energy
consumption during less strenuous operations and efficiently
managing heat production. However, this power management
mechanism may inadvertently introduce implicit patterns into
the operational states of CE devices. For instance, during the
startup stages, different applications (e.g., Chrome, Photoshop,
etc.) initiate a variety of operations (e.g., loading preferences,
user interface rendering, etc.). The varying operational objec-
tives entail differing levels of complexity, which in turn man-
ifest as distinct power consumption patterns, as highlighted
by the arrows in Figure 1. These patterns enable potential
attackers to profile users based on their application usage,
such as determining when a user typically checks their email,
engages in social media activity, or uses financial management
tools. This profiling can lead to inferences about a user’s
daily routine, interests, and even confidential behaviors, which
could be exploited for targeted advertising, social engineering
attacks, or privacy breaches. Under such circumstances, inves-
tigating methods to infer private information from alternating
current (AC) power has become an attractive research question.
Identifying such vulnerabilities can, in turn, stimulate the
development of robust countermeasures.
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Fig. 1. Motivation. The implicit patterns emerging from the power adjust-
ment mechanisms in consumer electronic devices potentially present serious
vulnerabilities that could be exploited by attackers for information theft.

The side-channel attack refers to the exploitation of indi-
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rect information (e.g., power consumption or electromagnetic
emissions) leaked from computing devices to reveal confi-
dential data, and has become a promising approach in the
landscape of cybersecurity threats [1]–[4]. Previous studies
[5]–[7] have demonstrated the potential for adversaries to
extract private information from personal computers (PCs)
through side-channel attacks, exploiting hardware components
including I/O peripherals, keyboards, mice, and internal fans.
Recent studies [8], [9] have started to analyze the energy con-
sumption information so as to infer the electrical appliances
usage and surfed websites. However, the patterns of running
applications are inherently more complex due to the diversity
in software complexity and various optimization strategies
making profiling/attack more challenging. Specifically, the
diverse execution times of applications pose a significant
challenge for the attacker in determining a suitable analysis
window for consistent signal pattern extraction. Moreover,
noise interference originating from either the device or the
operating system introduces instability in profiling.

To address these challenges, we propose a side-channel-
based intelligent profiling system that aims to leverage the
power consumption analysis to continuously infer the running
applications on a CE device (i.e., PC). Specifically, We have
developed an automated workflow for signal collection to
amass power consumption data from 36 applications operating
across various systems and computer platforms. Utilizing a
Current Transformer (CT), we gathered 150 records for each
application, culminating in the first dataset of power consump-
tion specific to PC applications. As shown in Fig. 2, the neutral
wire of the power line is passed through the opening in a CT,
and the other end of the CT is a 3.5mm audio interface. By
attaching the 3.5mm audio interface to the attacker device, the
continuous analog current signal can be obtained for analysis.

Non-invasive AC 
current Sensor

Current Transform Collected power 
consumption signal 

Motherboard Audio Ports
Audio interface 

connecting

Fig. 2. Current Transformer and its audio interface.

Subsequently, we introduce a novel stage segmentation
mechanism to automatically separate the running stage of
the applications, presenting discriminative patterns. By seg-
menting and simultaneously collecting signals, we are able to
capture high-quality signals from the startup stage, which are
essential for advanced pattern learning. Additionally, a classi-
fier based on advanced deep neural networks is introduced to

find and fit the pattern of the running applications for future
attacking inference. Extensive experiments were conducted,
and the promising results suggest the effectiveness of our
approach. In addition to verifying the effectiveness of our
solution, we also discuss the limitations of such attacks. The
main contributions of this paper can be summarized as follows.

• To the best of our knowledge, this is the first attempt to
perform application profiling on the CE domain, which
aims to steal sensitive information from a consumer com-
puter via AC power consumption analysis. Our proposed
profiling system can accurately infer candidate appli-
cations by analyzing unsegmented power consumption
traces. It can continuously analyze AC power signals to
infer the privacy information, e.g., which application is
currently running, and how frequently it is used.

• We design a set of attack scenarios to evaluate the
effectiveness of our profiling system. The results show
that our scheme achieves high accuracy with a mean
average precision of 76.69%. Moreover, our attack sce-
narios are highly feasible and can be applied in a realistic
environment.

• We demonstrate the robustness of our attack under var-
ious computing environments. Our attack results show-
case a high and stable side-channel signal inference rate
across different computer brands, operating systems, and
background noise conditions (e.g., Gaussian noise).

II. RELATED WORK

Power analysis attacks, known as power side-channel at-
tacks [17], have emerged as a significant threat in recent
years. The concept dates back to 1989 when Hart et al. [10]
introduced non-intrusive load monitoring (NILM), laying the
groundwork for activity identification through AC power mea-
surement. Building on this, Kocher et al. [18], [19] pioneered
the application of simple and differential power analysis at-
tacks by measuring AC power fluctuations. Schmidt et al. [13]
detected voltage leakages on embedded device I/O pins, yet
the correlation with basic multiplication operations remained
unclear. Messerges et al. [11], [12] studied simple power
analysis (SPA) and differential power analysis (DPA) attacks
against data encryption standard (DES). By studying the noise
characteristics of power signals, a method of building the
Signal-to-Noise-Ratio (SNR) model is proposed, and the se-
curity of the smart card is destroyed by the proposed multi-bit
attack based on SNR. Clark et al. [8], [15] advanced the field
by recording power consumption through electrical outlets
and analyzing the frequency domain power trajectory, using
SVM classifiers to identify webpages loaded by browsers with
increased precision. Nevertheless, this method necessitated
data pre-segmentation and relied on an impractically altered
electrical outlet, posing risks of physical damage. et al. [16]
and Yan et al. [14] demonstrated that power tracking could
act as an effective side channel to glean sensitive information
from smartphone applications, but their approach fell short
in inferring real-time application loads or mounting viable
attacks in practical settings. Up to now, there has been a gap in
research regarding the vulnerabilities of consumer electronics
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TABLE I
RELATED WORKS ON POWER ANALYSIS ATTACK

Works Side Channel Objective Vulnerability

Hart et al. [10] Utility Power Flows Residential Energy Monitoring and Computerized Surveillance Power Supply
Messerges et al. [11], [12] Power Signal Against Smart Card’s Data Encryption Standard Power Supply
Schmidt et al. [13] Voltage Variations PC’s I/O port Manipulatetion I/O Pin
Yan et al. [14] Power Comsumption Flows App Identification, UI Inference, Password Length Guessing, Geo-location Estimation Power Supply
Clark et al. [8], [15] AC Power Consumption Webpage Loading Inference Power Supply
Michalevsky et al. [16] Mobile Power Consumption Geo-location Estimation Power Supply
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Fig. 3. Threat model. In the network between the victim and the attacker, the side channel attacker starts some applications on the target device. Starting the
target application causes power fluctuation from the target device’s power line, which is faithfully transmitted to the attack device by the transformer. The
attacker is to infer what application the user is running by taking advantage of these emanations.

(CE) devices (e.g., computers) related to power consump-
tion mechanisms, with most existing methods proving non-
practical in real-world scenarios (e.g., non-practical scenes or
laboratory environment). Table I summarizes and compares
the existing works on power analysis attacks.

III. THREAT MODEL

Our side-channel attack are based on the assumption that
only the victim’s device (i.e., computer) is plugged into the
adapter. Under such assumption, the attacker can attach a cur-
rent transformer sensor to the neutral line of the adapter to read
the energy consumption records. Then, it is possible to infer
the running applications on a computer through the analysis
of energy consumption patterns. The threat model depicted in
Fig. 3, can be performed in the following situations:

Situation 1. There are two rooms, A and B. We assume
that the victim user is situated in room A, while a malicious
individual resides in room B. The attacker aims to identify the
applications running on the user’s computer. To accomplish
this, the attacker places a current transformer on the Neutral
wire and collect the current data of the user’s computer to
themselves. The attacker measures the AC signal on the patch
panel to acquire sensitive information from the target device
and subsequently infers the active applications.

Situation 2. Two users share a patch panel in room C, with one
user (b) acting as the attacker. The attacker (b) positions the

current transformer (b) on the Neutral wire of the outlets, en-
abling the acquisition of the AC power consumption data from
the target user’s computer (target-device (b)). Subsequently,
the attacker can deduce the running applications on the target
device (b) by analyzing the collected data.
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Fig. 4. Attack scenarios.
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Fig. 5. Training a deep learning model to analyze the AC power consumption data.

A. Attack Scenarios
Based on the aforementioned threat model, we conduct the

following attack scenarios (as illustrated in Fig. 4).
Known Device Profiling. aims to infer the running application
of seen or known devices. Under this scenario, the attacker
can obtain the power consumption signals from target devices
through invasive or non-invasive methods. Specifically, we
refer to the invasive and non-invasive methods as Signal
Stealing and Signal Imitation, respectively. Under the Signal
Stealing condition, we assume that the attacker accidentally
acquires the information about the running application (e.g.,
through chat or peeping) on target devices. In contrast, Signal
Imitation represents a situation where the attacker uses a
similar device (e.g., with the same brand, operating system,
and hardware configuration) to collect the power consumption
signal of various applications.
Unknown Device Profiling. aims to infer the running ap-
plications of unseen or unknown devices. In this scenario,
the attacker can only obtain power consumption signals from
the target devices, without any supplementary information.
This setting is more representative of real-world situations and
presents greater challenges for attackers. We assume that the
attacker has constructed a power database of certain devices
from previous attacks. Consequently, the attacker can first
analyze the type of the target device based on the power
database when they receive the power signal, and then infer
the running application of the victim.

IV. SIDE-CHANNEL PROFILING

A. Attack Overview
This section presents the details of our proposed side-

channel attack model for inferring running applications. Fig. 5
illustrates the high-level pipeline for executing the side-
channel attack. To differentiate between various applications,
we train a classifier using labeled AC power traces. Once
trained, the model can infer the running applications on the
target device in real-time. During the inference stage, we input
the signal to the model at 10 frames per second (10FPS)
with a specified window length. The trained model provides
predictions and confidence scores for each frame. Predictions
with confidence scores exceeding the threshold are accepted.

B. Data Acquisition
For the experiment usage, we employ a current transformer

to collect power consumption data from laptops and desktops

of various brands and operating systems. By monitoring the
instantaneous current on the socket connected to the computer
charger, we record the power signature for each workload.
The current sensor is connected to both the attack device and
the socket, sampling the AC power signal on the socket and
collecting it through the audio interface of the attack device
(excluding the computer being measured). The data collection
process is automated, outputting the leakage information as
separate sound files for training purposes.

C. Data Processing

To better capture the patterns hidden in the power con-
sumption signals, we propose a stage segmentation approach
to construct input signals with effective power characteristics.
The AC power curve exhibits three patterns corresponding to
three events: 1 Starting, 2 Waiting, and 3 Stopping. During
the starting stage, the application undergoes initialization,
which includes multiple operations such as software path
access, registry reading, and memory allocation. Consequently,
the computer’s power consumption increases in this stage.
At the end of the startup process, the application enters
the waiting stage for further operations, causing the power
consumption to decrease to a stable level. In the application
stopping stage, the computer saves the registry and clears
the memory space, resulting in temporary power consump-
tion fluctuations. Therefore, we divide the complete running
process into three states: start, wait, and stop, as illustrated in
Fig. 6.

starting 

waiting 

stopping 

Fig. 6. There are three different forms of AC power curve in the process of
starting application: (i) starting; (ii) waiting; (iii) stopping.

Upon observing the collected power consumption data,
we noticed that applications exhibit significant differences
in the starting stage (i.e., initialization). For instance, the
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PowerWord pycharm64 QQBrowser QQLive QQMusic QQ QyClient Skype SogouExplorer

Fig. 7. Power curves for several applications during startup. For a specific application, the power curves during initialization are not exactly the same but
similar; whereas for different applications, they start at different speeds and duration. Therefore, the power curves during initialization are different.
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Fig. 8. Power curves for some kinds of applications during startup.

power curves of nine distinct applications during startup are
displayed in Fig. 7, demonstrating clear discrepancies between
them (Additional examples can be found in Fig. 8.). To effec-
tively capture the patterns from the startup states, we develop
a stage segmentation approach that automatically segments
the starting status signals. Fig. 9 demonstrate the workflow
of the segmentation operation. Specifically, we propose to
use the short-term energy as an effective means to preserve
the details and accurately locate the starting point of an
application. The short-term energy measures the continuous
energy consumption over a certain period. We choose one
cycle of the sinusoidal AC current (i.e., 0.02s) to record the
short-term current energy, which provides more fine-grained
signals for further detection. Since the audio sampling rate is
44,100 Hz, the data points covered by the short-term current
energy are 882 (0.02s × 44,100 Hz). When calculating the
short-term energy, the amplitude of the AC signals is first
normalized into a range of -3 to 3. Then, the short-term energy
consumption over 882 points is summed up. Finally, the energy
consumed during the window that exceeds a certain threshold
(i.e., Avg. short-term energy value) is considered the effective
part of the startup curve.

D. Data Classification

The data classification process comprises device classifi-
cation and application classification. Device classification is
designed for the ‘Unknown Device Profiling’ scenario. When
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Fig. 9. Data segmentation process

the target device is unknown, the framework initially utilizes
device classification to infer the device type using the existing
device database. Subsequently, application inference is carried
out based on the identified device type.

1) Application Classification: We formulate the application
classification as a multi-classes classification task. Specifically,
we select two traditional machine learning models, namely
Pearson Correlation-based classifier [20] and Dynamic Time
Warping (DTW) [21] based classifier. DTW allows for more
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accurate comparisons between time series data with vary-
ing lengths or time distortions, enhancing the classification
accuracy by providing a more meaningful similarity metric.
These traditional methods offer advantages such as low com-
putational complexity and ease of implementation. On the
other hand, we also choose two deep learning models, namely
1D-CNN [22] and 2D-CNN [23]. The deep learning models
provide benefits like the automatic extraction of complex
features and improved classification accuracy, especially when
dealing with large and high-dimensional data.

To identify a suitable classifier for application classification,
we conduct experiments on a balanced dataset consisting of 36
application classes, with 10 samples per class. The evaluation
metric is top-N accuracy, where an application is deemed
correctly classified if it appears in the top N guesses of a
classifier. To adapt the input for 2D-CNN models, we convert
the power consumption signal into a gray-scale image. The
final results, displayed in Fig. 10, indicate that the 2D-CNN
model outperforms the other models under the top-N accuracy
evaluation protocol with various N choices. Consequently,
the 2D-CNN model is employed for subsequent experimental
classifications.
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Fig. 10. Average top-n accuracy of a single application, as a function of the
number of guesses, for each classifier.

2) Device Classification: We formulate the target device
classification as a multi-class classification problem, with
different classes representing distinct types of target devices
in the database. Specifically, for device classification, the
k-NN algorithm [24] is employed due to its simplicity,
ease of implementation, and effectiveness in handling high-
dimensional data. The k-NN approach can identify patterns
in the device database by considering the similarity of power
consumption signals. Specifically, we use DTW as the distance
measurement for the k-NN algorithm. By finding the most
similar devices in the database using DTW, the algorithm
classifies unknown devices based on their proximity to known
devices, making it particularly useful for handling large and
diverse datasets. Once the device has been classified, the
aforementioned application classification is performed to infer
the running application.

V. EVALUATION

To evaluate the performance of the side-channel attack
based on power analysis, we conduct a series of experiments

under two scenarios that are mentioned in the previous section.

A. Device configuration

Fig. 11 illustrates the configuration of power consumption
signal collection. The attacker connects the current sensor
(with the other end connected to the audio interface in the
attacker’s computer) to the terminal in the AC socket to collect
power consumption signals. Modern AC sockets have three
terminals: Live (L) wire, Neutral (N) wire, and Earth (E) wire.
Since the current flows from the Live (L) wire to the equipment
and forms a loop at the Neutral (N) wire when the electrical
equipment is operating, the current sensor is attached to the
Neutral (N) wire to collect data.
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Transformer 

L 
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N 

Fig. 11. Collection device configuration

B. Data collection configuration.

1) Application selection: We designed a questionnaire to
gather information about the most frequently used applica-
tions. A total of 356 questionnaires were collected through
the WeChat protocol (a popular communication platform in
China), with participants from diverse occupations, including
both students and office workers. Based on the responses, we
selected the 36 most common applications for our experiments.
The usage distribution of each application is shown in Fig. 12.
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TABLE II
COMPUTERS USED IN THE EXPERIMENTS.

Device Type System f s (Hz)
Lenovo

ThinkPad R480 Laptop Windows 10 44100

Lonovo
Legion Y7000 Laptop Windows 10 44100

ASUS
VM480L Laptop Windows 10 44100

ASUS
ATC705-N91 Desktop Ubuntu 16.04 44100

2) Application data collection: We collect the AC power
traces of each selected application from computers with dif-
ferent brands and different operating systems (as shown in
Table II). In the experiment, 12-bit samples are recorded at a
rate of 44100Hz to capture the AC power trace of the high-
frequency workload. The collected AC power consumption
dataset is available on IEEE Dataport (DOI: 10.21227/v2vf-
3r56) and can be downloaded using this footnote link1. Fig. 13
demonstrates the workflow of the automatic collection process
via bash scripts.

Bash File

TCP/IP 
Packets

Con
ne

ct

1. Establish a Connection 2. Running application

…

Start Waiting/Closing

5s 35s

Fig. 13. Automatic collection process of applications.

At the beginning of the recording, the attack device sends
TCP/IP packets to make the target device connect to a local
area network. When a successful connection is established,
the attack device sends instructions to control the operation
of the applications on the target device. After receiving the
”start” instruction, the target device waits for 5s to execute the
automatic initialization program and then performs the waiting
and closing operation (35 seconds). Recording (using Pyaudio)
is stopped after 5 seconds of application closing, resulting in a
40-second record. For each application, we collect 150 records,
with a 5-second gap between two recordings. The power
curves of 36 applications are measured on each computer, as
shown in Table III.

C. Inference Protocol

For the inference process, we simulate the same con-
figuration as the real-world scenario where the signals are
coming continuously. Specifically, the continuous incoming
signals are first processed into signal segments using a sliding
window. Then, the segmented signals are converted to gray-
scale images for the final inference. The inference results with
a confidence level exceeding a specified threshold (i.e., 0.9)

1https://ieee-dataport.org/documents/ac-power-consumption-dataset

TABLE III
APPLICATIONS COLLECTED IN THE EXPERIMENTS

Application Type Start-up
Time(s)

Collection
times AP

360se Fast 0-5 150 0.691
chrome Fast 0-5 150 0.845
cloudmusic Fast 0-5 150 0.571
Code Fast 0-5 150 0.927
FoxitReader Fast 0-5 150 0.683
iexplore Fast 0-5 150 0.711
JisuPdf Fast 0-5 150 0.768
KuGou Fast 0-5 150 0.915
mailmaster Fast 0-5 150 0.907
MicrosoftEdge Fast 0-5 150 0.829
MSDEV Fast 0-5 150 0.278
notepad++ Fast 0-5 150 0.417
notepad2 Fast 0-5 150 0.804
PowerWord Fast 0-5 150 0.955
QQ Fast 0-5 150 0.524
QQBrowser Fast 0-5 150 0.925
QQLive Fast 0-5 150 0.725
QQMusic Fast 0-5 150 0.88
Skype Fast 0-5 150 0.422
SogouExplorer Fast 0-5 150 0.81
sublime Fast 0-5 150 0.956
TeamViewer Fast 0-5 150 0.833
UCBrowser Fast 0-5 150 0.822
WeChat Fast 0-5 150 0.797
wpspdf Fast 0-5 150 0.894
YoukuDesktop Fast 0-5 150 0.751

baidunetdisk Steady 5-10 150 0.455
EXCEL Steady 5-10 150 0.688
Photoshop Steady 5-10 150 0.625
POWERPNT Steady 5-10 150 0.571
pycharm64 Steady 5-10 150 0.84
QyClient Steady 5-10 150 0.926
WINWORD Steady 5-10 150 0.604
XiamiPC Steady 5-10 150 0.469
YouDaoDict Steady 5-10 150 0.771
devenv Steady 10-15 150 0.681

will be accepted. Fig. 14 presents example inference results
for Skype and Photoshop applications.

D. Evaluation Configuration

We utilize three different metrics to evaluate our classifiers:
• mAP: Mean Average Precision (mAP) reflects the overall

performance of the classifiers. The Average Precision
(AP) for each class is first calculated and then av-
eraged across all classes. The AP for each class can
be computed as the area under the Precision-Recall
curve (AUCPR) [25].

• Accuracy: TP/(TP + FP ) reflects the proportion of
true positive samples among positive instances and is
employed to evaluate the classifier’s capability to exclude
negative examples.

• Recall rate: TP/(TP + FN) reflects the proportion of
true positive cases identified among the total positive
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Time(s)

Real event:Skype time:5.0s
Pred event:Skype time:5.39s confidence:0.99

0 5 10 15 20 25 30 35 40
Time(s)
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Pred event:Photoshop time:4.73s confidence:0.99

Fig. 14. Slide the check box to check the application. For each frame data, input it into the classifier for classification, and the classification result is the
application label corresponding to the waveform and the application start-up time.

cases and is used to assess the classifier’s ability to
recognize positive instances.

VI. RESULT

In this section, we present the performance of AC power
analysis-based side-channel attacks under known and unknown
attacking scenarios (as mentioned in Section 2). Specifically,
we conduct evaluations on four computer models with both
Windows and Linux operating systems installed. The startup
processing time varies between different applications due to
factors such as application size, runtime dependencies, and
others. Some applications start in a very short time, only a few
seconds, while others take longer to initiate the process. This
variability in startup length could result in biased evaluation
metrics if the classifier performs better on either fast or slow
processes. Therefore, we take into account both precision and
recall, and use the mAP to evaluate the performance of side-
channel attacks. The mAP metric provides a more balanced
and comprehensive assessment of the classifier’s performance,
regardless of the startup signal duration. Furthermore, the
variability in start-up times contributes to differing degrees of
time sensitivity in pattern matching. For instance, applications
with rapid start-up times exhibit discriminative features briefly,
whereas those with steadier initiation display their patterns
over an extended period. To accurately reflect the performance
in our evaluation, we have selected window lengths of 5, 10,
and 15 seconds to capture these dynamics. The result of the
inference of a single application in a long continuous signal
was shown in the Fig. 15

A. Known Device Profiling

1) Signal stealing: Fig. 16a presents the experimental re-
sults under the signal stealing situation. Our attack approach
demonstrates superior performance in profiling the running
applications on ThinkPad laptops compared to other computer
models, achieving an mAP of 69.62%, 70.35%, and 76.69%
for window lengths of 5s, 10s, and 15s, respectively. These
differences could stem from factors such as manufacturing
quality, computer configuration, and power management under
various workloads. For instance, the ASUS laptop in this
experiment consumes more power when starting the same
application compared to the other models.

Furthermore, Fig. 16d demonstrates the experimental results
of profiling performance under different operating systems. We

observe that the inference performance on Windows (Windows
10) system is better than that of the Linux (Ubuntu 16.04)
system. Specifically, the mAP for window lengths of 5s, 10s,
and 15s is around 60% for the Windows system, while it
is about 40% for the Linux system. These differences could
arise from variations in system timers, drivers, memory man-
agement, power management, GUI features, and performance
tuning. Therefore, a potential attacker should gather as much
information as possible about attacks under different operating
systems.

2) Signal imitation: In contrast to the previous situation
where the number of labeled data is limited, attackers can
generate sufficient ”realistic” data from devices with similar
configurations (e.g., brand, hardware configuration, etc.) un-
der this scenario. We can observe that even with adequate
samples, the distribution gap between different computers
leads to a decrease in attack performance. From Fig. 16b,
we can observe that under the signal imitation setting, the
application inference performance suffers from a performance
drop of 1∼4% for Lenovo, ThinkPad, and ASUS laptops
under different window lengths. Similarly, the overall mAP
on Windows and Linux operating systems also decreases, as
shown in Fig. 16e. Although we select devices with similar
configurations to generate data, data distribution differences
still exist due to chip variations (e.g., different CPUs with the
same model could exhibit different running frequency rates).

B. Unknown Device Profiling

In the unknown device profiling scenario, the attacker lacks
information about the target device, which makes application
inference more challenging. Under these circumstances, the
attacker must first deduce the model of the target device and
then carry out the application inference process. We assume
that the attacker has already obtained an application start-up
signal dataset (with labels set as device type/model) collected
from various devices. The attacker continuously collects the
target’s power signal and outputs the most likely device model
from the database. To evaluate the situation where the target
device is not in the database, we remove the target device’s
data from the database and save it as independent experimental
data. From Fig. 16c, we observe that the inference performance
is similar to known device profiling under the signal imitation
setting, with a slight performance drop. Similarly, the infer-
ence performance (shown in Fig. 16f) on different operating
systems also experiences a slight decrease compared to the
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Fig. 15. The inference of a single application in a long continuous signal. The location marked by the line segment is the time when the specific application
starts.

0

0.2

0.4

0.6

0.8

1

windowLen=5s windowLen=10s windowLen=15s

m
A

P
 

Window Length 

Lenovo ThinkPad ASUS

(a) Known Device Profiling with ”Sig-
nal stealing” setting.

0

0.2

0.4

0.6

0.8

windowLen=5s windowLen=10s windowLen=15s

m
A

P
 

Window Length 

Lenovo ThinkPad ASUS

(b) Known Device Profiling with ”Sig-
nal imitation” setting

0

0.2

0.4

0.6

0.8

windowLen=5s windowLen=10s windowLen=15s

m
A

P
 

Window Length 

Lenovo ThinkPad ASUS
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0

0.2

0.4

0.6

0.8

windowLen=5s windowLen=10swindowLen=15s

m
A

P
 

Window Length 

windows10 Linux (Ubuntu 16.04)

(d) Known Device Profiling with ”Signal
stealing” setting for different OS.
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(e) Known Device Profiling with ”Signal
imitation” setting for different OS.
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Fig. 16. The performance of side-channel attack in different scenarios, different operating systems and different computers.

previous setting. Although there is a performance drop in this
challenging setting, it still demonstrates its ability to correctly
infer the running application in a real-world environment.

C. 1D-CNN and 2D-CNN Networks

The comparison between two networks is shown in Fig.
17. Although two methods have not shown a big performance
gap at the beginning of training, as the number of training
(epoch) increased, the 2D-CNN reached a smaller loss faster

and began to converge. This result is better than 1D-CNN
because we can achieve better results with fewer training
times. During the training process, the classification accuracy
of 2D-CNN is 99.8%, which is about 2% higher than 1D-
CNN. The exact value of the test is shown in the text. The
classification accuracy of 2D-CNN is 97.4%, which is about
3% higher than 1D-CNN. On our power consumption signal
set, we get the same view as Jun et al., that is, 2D-CNN has
more advantages.
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Fig. 17. Training loss and accuracy of 1D-CNN and 2D-CNN in classification.

D. Training Data Differentiation

We collect 150 power tracks for different applications, but in
the actual attack environment, the attacker may not be able to
collect so much training data. So how many samples do our
model need to achieve a relatively higher inference result?
Therefore, we evaluate the impact of different amounts of
training data on inference. We randomly select a different
proportion from the whole sample for training and compare
the results.

The results are shown in Fig. 18. We find that the number
of samples significantly impacts the inference results. With
the decrease in the number of samples, the mAP gradually
decrease. However, even if only 20% of the samples were
used, the mAP is decreased by 20%. When using 50% of
the samples, we can still guarantee the inference rate of
about 50%. We believe that the current variation of AC
power is irregular, and data enhancement can only make up
for the influence of the diversity and complexity of power
consumption data on inference.
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Fig. 18. The influence of different amount of training data on inference.

E. Inference of Interested Applications

We evaluate the generality of the attack model, in which
attackers only want to infer the applications they are interested
in and ignore the applications that they are not interested
in. We randomly select some applications from the data set
as interesting applications. For the applications attacker is
interested in, it is necessary to accurately infer the name
of an application and its start-up time. The rest are treated
as uninterested applications, classified as other applications.

We chose the applications of interest according to different
proportions and compared the results.

The inference results are shown in Fig. 19. The results show
that when the attacker selects the applications interested from
the whole sample for individual training, a higher mAP can
be obtained. This indicates that the attacker can focus on the
inference of some applications interested.
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Fig. 19. Test results of different proportion of interested applications.

VII. DISCUSSION & LIMITATION

A. Operating System and Machine Diversity

We believe that the differences in inference results between
different brands and operating systems (OS) are reasonable, as
different devices have distinct power dynamic regulation capa-
bilities. For instance, ThinkPad devices are primarily designed
for business offices, boasting longer usage times without exter-
nal power supplies when compared to other devices in terms of
product performance. This suggests that their power dynamic
regulation capabilities are superior. Consequently, devices with
good dynamic regulation will exhibit more pronounced power
consumption when an application starts, outperforming those
with inferior dynamic regulation.

For the difference between the Linux and Windows 10
systems, the kernel differences will affect the application
processing operation. For example, Linux systems are faster
to boot, and many lightweight application start-up curves are
similar, making it harder to infer. The power curves for kinds
of applications during start-up under Windows 10 and Linux
(Ubuntu 16.04) are shown in Fig. 20.

B. Window Length

Different window lengths will result in significant differ-
ences since some applications only take a few seconds to start.
For those applications with fast start-up speed, a small window
length (such as 5s) might contain most signal information. In
contrast, it takes more time to complete the start-up process
for applications with lower start-up speed which means a
smaller window cannot contain more signal information, so
a larger window (such as 10s or 15s) is needed to display
more signal information. However, with a larger window, the
application information with a shorter start-up time cannot be
displayed in detail, which is equivalent to reducing the amount
of information.
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Fig. 20. Power curves for kinds of applications during startup between different brands (systems). Linux systems are faster to boot, and many lightweight
applications startup waveforms are similar in height.

C. Start-up Time

Based on the boot time, we divide the applications into fast
(5 seconds) and steady (more time is needed to complete the
start). Fig. 21 shows that the result of the fast start-up applica-
tion is better than that of the steady start-up application under
different window lengths. The applications with fast start-up
do not need additional plug-ins and load the application in
better order. In contrast, the application that starts at a steady
speed tends to have random effects due to the need to load
more plug-ins, resulting in less favorable results. It should be
noted that when the window length is set to 10s or 15s, both
two types of applications can get better performance results.
A possible conjecture is that the useful information in the
window increases when the window length is expanded.
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Fig. 21. mAP of single application inference for different type.

D. Background Noise

Many factors affect the actual acquisition process for the
analog signal, such as the current’s stability and the acquisition
device’s stability. These factors will be added as a part of the
background noise to the collected signal. We add white noise
to the collected signals to get closer to the complex and diverse
operating environment. The added noise is completely random
Gaussian white noise, and the added degree is increased from
SNR(signal-to-noise ratio) of 20dB, 30dB to 60dB and put into
the noiseless group for comparison. It can be seen from Fig. 22
that under the condition of relatively high SNR, that is, under
the condition of relatively low interference, there is almost no
impact on the inference results of the applications. However, as
noise increases, the interference gradually increases, making
the model almost unpredictable.
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Fig. 22. mAP of single application inference for different noise.

E. Limitation

In our experiments, we make a strong assumption that the
victim’s computer is the only device connected to the adapter.
However, in real-world scenarios, there could be other electric
appliances connected to the same adapter (e.g., light, water
dispenser and etc.), and the power consumption patterns of
those appliances may significantly impact the performance
of our attack. For instance, if a printer is connected to the
same adapter and is actively working, it may consume a
substantial amount of power, resulting in high power con-
sumption peaks. These peaks could overshadow the power
consumption patterns of the computer applications, making
them difficult or even impossible to detect. Such situations
highlight the limitations of our current experimental setup
and suggest that further investigation is needed to account
for potential interference from other devices sharing the same
power source. This would allow for a more comprehensive
assessment of the attack’s effectiveness in realistic conditions.
As part of our future work, we plan to address these limitations
by considering the presence of multiple devices connected to
the same adapter and evaluating the impact of their power
consumption patterns on the performance of our attack.

VIII. CONCLUSIONS

In this work, we investigate potential vulnerabilities in con-
sumer electronics through the power consumption analysis. We
demonstrate that attackers can extract sensitive information—
specifically, identifying running applications—from the anal-
ysis of power consumption, thereby profiling user behavior
for commercial exploitation. This paper presents an appli-
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cation inference framework, thoroughly evaluated on a self-
collected dataset comprising over 21,600 power trajectories
from 36 popular applications. Our model adeptly identifies
unseen power trajectories, achieving a mean Average Precision
(mAP) of 76.69%. We establish the robustness of power
traces across computers with varying operating systems and
brands. Pioneering in its approach, this study quantifies the
extent of information leakage via AC power consumption and
its implications for running application inference, marking a
critical advancement in the understanding of side-channel vul-
nerabilities. In future work, we aim to delve into more intricate
scenarios where multiple devices connected to a single adapter
could introduce noise and complicate recognition and profiling
tasks. Additionally, we plan to extend our exploration of power
consumption vulnerabilities to other consumer electronics.
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