
Hetero2Pipe: Pipelining Multi-DNN Inference on Heterogeneous Mobile Processors under
Co-Execution Slowdown

Abstract—The emerging multi-modal applications exemplified by
multi-DNN inference have renewed interests for mobile intelligence.
The goal is to utilize heterogeneous processors on-board to
maximize throughput and resource utilization. Among a variety
of options, building model-paralleled pipelines across different
processors is a promising way. However, the existing efforts either
focus on optimizing homogeneous DNN executions or simply ignore
co-execution slowdown on the shared memory bus. Based on
extensive empirical studies and insights with various degrees of
resource contention, in this work, we introduce Hetero2Pipe, a
two-step pipeline planner based on dynamic programming, and
contention-mitigated pipeline bubble minimization to make the
problem tractable within manageable search space. The extensive
evaluation across three commercial SoCs demonstrates 2-8×
speedup compared to the state-of-the-art schemes.

Keywords-Pipeline parallelization; emerging multi-DNN infer-
ence; co-execution memory interference; consumer mobile devices.

I. INTRODUCTION

Recently, we have witnessed tremendous applications of on-
device intelligence, that drives performance beyond the real-time
processing speed for mobile devices. For example, inference
of MobileNetV2 on Snapdragon 778G at 76 FPS, ResNet50
(FP16) at 30 FPS on CPUs, and over 100 FPS for ResNet50 on
the Kirin 990 Neural Processing Unit (NPU). On the other
hand, the emerging multi-modal applications are reshaping
system design with a transition from the canonical single-DNN
inference towards multi-DNN inference for different downstream
tasks and applications. For example, a scene understanding
app could be comprised of YOLOv4 for object detection [1],
FaceNet [2], Age/GenderNet [3] for facial, age and gender
recognition and ViT-GPT2 for scene-to-text captioning [4].
Although heterogeneous processors such as embedded GPU
and NPU create new opportunities to share the workloads, the
existing computing paradigm on mobile devices is still CPU-
centric with serial execution and resource under-utilization [5].

Problem. Pipeline parallelism is a typical way to improve
resource utilization, as evidenced by its recent success in model-
paralleled training of large language models [6]–[8], in which
the model is partitioned onto different GPUs to overcome the
memory limit and training data are fed in micro-batches to form
a pipeline to maximize resource utilization. For mobile devices,
we are curious to answer a similar question:
§“Given an array of heterogeneous mobile processors, can we
migrate the paradigm of model-paralleled training from cloud
GPUs to support multi-DNN inference on mobile devices? If
yes, what adaptations are needed?”

Challenges. Although multi-DNN inference is free from the
long-range dependencies of backpropagation in model-paralleled
training (i.e., inference does not need additional memory space
for gradient storage like training), we are still facing a cohort
of new challenges with multi-faceted heterogeneity across

the micro-architecture as well as the algorithmic levels from
processors and models (hence the name Hetero2). Specifically,
mobile processors exhibit distinct processing power, thermal and
throttling behaviors with diverse programmability and operator
support from the CPU, GPU and specialized processors such as
NPU or TPU. For programmability, most mobile inferences are
executed on the CPU cores, but subject to high throttling [9];
embedded GPUs such as ARM Mali and Qualcomm Adreno are
accelerated by OpenCL, with fewer GPU cores and optimization
compared to Nvidia GPUs powered by CUDA; NPU is the ideal
processor, but it only supports very limited number of operators
– any model with an unsupported operator would have to fall
back to the CPU, which creates additional overhead of memory
copy.

����
#! �����%�$$ �����(&�� �������#&�#
� +)'! & ',*��)'� **')*

�

���

���

����

����

����

����

��
+
&�
.�
�%

*�

��+ &�.�'&�" +)'! & ',*�()'� **')*���#)#&		��
� *� +��
�'�#$ � +��
�&� (+#'&-�
����-�

��

�����#! �����%�$$ �����(&��
� +)'! & ',*��)'� **')*

�

���

���

����

����

����

����

��
+
&�
.�
�%

*�

��+ &�.�'&�" +)'! & ',*�()'� **')*���&�(�)�!'&		
!�
� *� +��
�'�#$ � +��
�&� (+#'&-�
����-�
���

Fig. 1: Processing latency of different models on heterogeneous
processors. For mobile SoCs, the Big CPU cores are generally
on par with OpenCL GPU, while the Small cores pose high
performance degradation. NPU has the fastest speed but very
limited support for a diverse set of operators and an error is
reported due to unsupported operators in the MNN framework
for both YOLOv4 and BERT [10].

More importantly, unlike GPU clusters with high-bandwidth
interconnections (NVLink over 200 Gbps), mobile SoCs couple
computing units on the same die with shared bus and memory
controller. Energy efficiency also demands low bandwidth de-
signs with active memory frequency throttling based on workload
intensity. These have effectively reduced the memory bandwidth
below 20 Gbps [11]. Different from cloud GPUs, co-execution
of inference on heterogeneous processors simultaneously would
lead to competition for shared resources on the memory bus
with various degrees of slowdown [12], [13]. For different
models, intermediate dimensions directly affect data locality and
hardware affinity [14], that vary significantly between different
generations of model architectures such as Convolutional and
Transformer networks as shown in Fig. 1. For example, while
small convolutional kernels have better computational efficiency
and data locality, the multi-head attention and quadratic com-
putational complexity in Transformers necessitate large matrix
multiplications that often exceed the L2 cache size of mobile
CPUs, thereby causing high memory access, processing latency

and energy overhead. Such heterogeneity makes it difficult to
find an appropriate mapping of workloads to different processors.

Hence, the response to our previous query remains to further
tackle a series of intertwined modeling and system design
questions of how to split each model into pipeline stages
and map them to heterogeneous processors optimally? How to
efficiently model resource contention under manageable profiling
efforts? How to balance workloads across different processors
under potential memory interference? The main inefficiency
of pipeline execution stems from unbalanced loads between
different stages because throughput is always bottlenecked by
the slowest stage. Though there is a long list of works on
model-paralleled training in cloud GPUs [6]–[8], [15], their
formulation and solution are generally limited to homogeneous
GPUs. In contrast, mobile devices exhibit unique challenges
of memory interference when workloads are co-executed on
different processors. This diminishes the optimization effort of
pipeline schedules – in fact, very few of the existing works have
actually considered planning under co-execution slowdown [12]–
[14], especially on mobile devices. As a result, to pipeline
heterogeneous processors, the resonance between resource under-
utilization and runtime contention poses a dilemma: increasing
the utilization often exacerbates the contention problem and
load unevenness across different stages.

Solution. This paper proposes a new approach, called
Hetero2Pipe, that organizes multi-DNN requests on heteroge-
neous processors with a contention mitigation strategy. Upon
realizing the fact that a single-step problem formulation in most
of the previous works such as [6], [7], [16] cannot fully capture
the dual heterogeneity in our system, we decouple pipeline
planning into a more tractable two-step optimization problem
along the horizontal and vertical directions of the processing
pipeline. First, the horizontal model slicing is optimally solved
by dynamic programming. Then we propose a work stealing
strategy to align execution time across different stages in order
to minimize the pipeline bubbles along the vertical direction.
We also supplement the vertical optimization with a new
contention-mitigation strategy based on the polynomial-time
Linear Assignment Problem. The main contributions of this
paper are summarized as follows:

G Motivation: We conduct extensive empirical studies to
analyze the impact the dual heterogeneity of processors and
network models, and resource contention on shared memory
bus through performance counters. We discover counter-
intuitive phenomenons that some lightweight models are
actually memory-bound, thereby leading to high memory
interference to concurrent executions. Based on these ob-
servations and measurements, we characterize such model-
specific contention footprints via an effective regression
model, without external efforts to profile a large number
of co-execution combinations.

G Methodology: We propose a two-step pipeline planning
approach to minimize the pipeline bubbles. To our best
knowledge, this is the first work that considers co-execution
slowdown in pipeline planning for resource-constrained
edge devices. Our strategy incorporates a contention
window to re-arrange incoming request at the minimum
displacement cost. It transforms the complex contention
mitigation problem into the classic Linear Assignment

Problem with polynomial-time solutions and employs
working stealing between different pipeline stages to
minimize pipeline bubbles and improve resource utilization.

G Evaluation: We provide extensive evaluations on three
commodity SoCs of Snapdragon 778G, 870 and Kirin
990 with large model combinations from the earliest
CNN models, YOLOv4 object detectors [1] to the latest
transformer architectures such as BERT [17] and ViT [18].
The results demonstrate 4-8� and 2-3� speedup compared
to vanilla MNN [10] and Pipe-it [19]. Confronting the
competitive SOTA scheme of Band [20], our strategy
also achieves additional 5% gain due to extra pipelining
optimizations.

II. BACKGROUND AND RELATED WORKS

A. Heterogeneous Mobile Computing
ARM Big.LITTLE is the de-facto standard to achieve energy-

efficiency in mobile devices. However, with the increasing
computational demand and limited thermal-area budget, mobile
CPUs are no longer capable of handling the variety of on-device
computational loads alone. Thus, considerable efforts from the
vendors are devoted to strengthening the computational power
with heterogeneous processors such as embedded GPU and NPU,
with a growing number of works exploring the design space on
heterogeneous processors. Pipe-it leverages the Big and Small
CPU cores for fine-grained partition of the convolutional models
with a flexible pipeline of different CPU cores [19]. However,
as validated by this work, an in-cluster partition of the CPU
cores leads to evictions and conflicting cache misses down the
cache hierarchy. MASA proposes a technique to reduce the
peak memory footprint and page faults while executing multiple
DNN inference [21]. Blasnet supports real-time DNN model
inference on CPU-GPU platforms through block-level model
optimization and scheduling [22], but lacks a pipelining strategy
to handle multi-DNN requests.

Another acceleration strategy is called intra-operator partition.
�Layer develops a cooperative strategy leveraging the mobile
CPU-GPU to partition the DNN in a channel-wise manner [23].
Intra-operator partition has been also implemented by [5], [24]
on different granularities. For example, NN-Stretch proposes
branch-parallelism that transforms a network into multiple
paralleled branches on different processors [5]. However, the
intermediate results from different processors are deemed to
be merged with additional overhead of significant communi-
cation/memory copy per split. The closest work to ours is
Band [20], which takes advantage of the superiority of the
NPU and rolls back unsupported operators to the CPU or
GPU. However, it only involves impromptu subgraph-processor
mapping with an unoptimized strategy without effective pipeline
planning.

B. Pipeline Planning
Model partition is a common strategy to distribute workloads

on various computing units. A handful of previous efforts have
explored DNN partitioning with Dynamic Programming [6]–
[8], [16], [25], Branch and Bound [26] and other heuris-
tics/solvers [19], [27]–[30], that a majority of them focus on
building an efficient pipeline for model-paralleled training [6]–
[8], [27], [28]. Gillis considers partitioning a large model

TABLE I: State-of-the-art methods for on-device inference

Related Work Processors multi-DNN DNN Hetero. Pipeline Contention Algorithm

Pipe-it [19] CPU ✓ � ✓ � Local Search
MASA [21] CPU ✓ ✓ � � BinPacking

EdgePipe [25] CPU ✓ � ✓ � DP
Gillis [16] CPU ✓ � ✓ � DP

B&B Parition [26] CPU, GPU � � � � Branch&Bound
�Layer [23] CPU, GPU � � � � —

TVMPipe [30] CPU, GPU ✓ � ✓ � Exhaustive Search
PICO [31] CPU ✓ � ✓ � DP
DART [32] CPU, GPU ✓ � ✓ � DP

BlasNet [22] CPU, GPU ✓ � � � DARTS
Band [20] CPU, GPU, NPU ✓ ✓ � � Greedy

Hetero2Pipe (Ours) CPU, GPU, NPU ✓ ✓ ✓ ✓ DP+Work Stealing

across multiple serverless functions and reduces the memory
footprint for each function [16]. EdgePipe and PICO propose
distributed frameworks on multiple heterogeneous devices with
dynamic programming-based optimal partitioning strategy [25],
[31]. A simple two-stage pipeline is considered in [30] that
the optimal solution is found by searching over all possible
device orders. In addition, a genetic algorithm is proposed
to schedule the task graph for maximal throughput in [29].
However, these works only focus on optimizing inference
requests with homogeneous model structures. DART leverages
data parallelism for CPU/GPU platforms [32], but co-execution
contention is not considered and the implementation is only
based on homogeneous models as well. In this work, we
consider a more difficult and realistic scenario of multiple
heterogeneous model requests on different processors with co-
execution slowdown and bubble minimization, which extends
towards a much larger search space that has not been studied
before. A detailed comparison is available in Table I.

III. RESOURCE CONTENTION ON HETEROGENEOUS SOC

We first motivate our study by showcasing the benefits of
utilizing the heterogeneous processors in Fig. 2(a). Obviously,
for multi-DNN inferences, canonical implementations with
serial processing on the Big CPU cores is subject to large
queuing delay and introducing heterogeneous processing power
alleviates the performance bottleneck. However, co-execution
leads to resource competition and the dependencies on model
combinations pose unique contention profiles.

Our initial finding is that the interference between CPU-GPU
is much higher than CPU-NPU or GPU-NPU. For example, co-
executing YOLOv4 and BERT results in 18%, 21% slowdown
on CPU-GPU, while only 3%, 4.5% on CPU-NPU and 2%, 2.3%
on GPU-NPU. This is possibly due to specialized design of NPU
and dedicated memory path, which is less prone to resource
contention. For CPU and GPU co-execution, the slowdown ratio
is summarized below.

Observation 1 (Slowdown Consistency on CPU/GPU)
The slowdown ratios across the CPU and GPU are generally
consistent, i.e., equal-priority execution suffers from identical
slowdown across the CPU-GPU. In other words, for different co-
execution model pairs, it is less likely to have a large slowdown
on the CPU but little on the GPU, or vice versa.

In fact, this is guaranteed by the fairness-aware scheduling
policies in most commercial SoCs, and the memory controller
often prioritizes requests with higher row-hit to maximize the
total bandwidth [12]. As a result, when such a high row-buffer
hit rate is no longer sustained under contention, a slowdown
is observed on both CPU-GPU even though the peak memory

(a)

�(�
�%1�%2���

�-"(*%�%2�	
�,#%.2(-,�4�
����4�
����

�--&�%�%2
�/3%%6%�%2
�����

���
�2!**%$��5#*%1��!#)%,$

�!#'%��(11��!2%
�-,2%,2(-,��,2%,1(25

�
-0

+
!*

(6
%$

��
!*

3%
���

���

���

��	

���

��

���

���
�!#'%��(11��!2%
�2!**%$��5#*%1��!#)%,$
�-,2%,2(-,��,2%,1(25

�%1-30#%��%+!,$��"1%04!2(-,�	�
�

(b)

Fig. 2: Empirical results on Kirin990 SoCs: (a) The queuing
delay accumulates with serial execution on the CPU big cores
(CPUB) and bringing heterogeneous processors reduce the
performance bottlenecks substantially; (b) Resource demands of
executing different models (Observation 2/3). y-axis is ranked
according to the contention intensity, explained in Eq. (1).

bandwidth is not reached. Thus, it is sufficient to measure
the resource demands from solo executions as a proxy to
indicate co-execution slowdown [13]. For DNNs, in addition to
compute intensities, resource contention originates from the inner
structures such as tensor dimensions, operators and precedence
relations, and we describe the impact from these latent factors
as explained below.

TABLE II: Slowdown comparison of SqueezeNet and ViT

Model Processor Solo-Exec
Time(ms)

Co-Exec
Time(ms) Slowdown

SqueezeNet CPU B 13.46 17.02 26.43%
BERT GPU 1109.23 1233.36 11.22%

BERT CPU B 553.91 670.31 21.01%
SqueezeNet GPU 18.83 21.12 12.16%

ViT CPU B 453.37 504.56 11.29%
BERT GPU 1109.23 1171.39 5.60%

BERT CPU B 553.91 613.57 10.77%
ViT GPU 1474.53 1612.87 9.38%

We read the Processor Monitor Unit (PMU) of perf event
from the CPU to indicate the interference on the GPU 1. In par-
ticular, we examine Instructions Per Cycle (IPC),
Cache Misses Rate and Stalled Cycles Backend
shown in Fig. 2(b). 1) IPC measures how efficiently the CPU
executes instructions; higher values indicate better efficiency
and less time spent on accessing external memory, thus less
interference to other processes. 2) High cache miss rate indicates
poor locality with higher memory access, which contends for
limited memory bandwidth. This could be caused by sub-optimal
implementation of matrix multiplications where the tensors do
not fit into the L2 cache. 3) High backend stall suggests that
the CPU frequently waits for resources, which is exacerbated
by resource contention.
Observation 2 (Contention from Heavyweight Models).
Matrix multiplication (MatMul) with large dimensions have

1Embedded GPUs such as ARM Mali and Qualcomm Adreno also lack the
variety of performance counters compared to CPUs.

A man is
throwing a
baseball.

Object Detection

Skeleton-Based
Activity Recognition

Downstream Tasks

Video Clip

Image Captioning

 System Inputs Multi-DNN Request

ARM
Cortex

A76

2MB L2 Cache Proprietary
Interface

Memory Controller

LPDDR4X

Heterogeneous Processors (Kirin 990)

4MB L3 Cache

2MB L2 Cache

AMBA 4

Cache Coherent Interconnect

ARM
Cortex

A55

Mali
G76

MP16

DaVinci
NPU

I/Os and
Peripherals

Screen
Display

�����1

�����2

�����3

�����4

NPU
DaVinci

 CPU Big
Core

CPU Small

Core
GPU

OpenCL

Horizontal Model Partitioning(DP)

H H L L LH L L

Relocate Low Contention Models

Contention Mitigation

1

1

1

1

Model Slices

2

2

3 4

2

2

3

3

4

4

3 4

Bubbles

Work stealing to
fill bubbles

CPU Small

CPU Big

NPU

GPU OpenCL

L

Vertical Alignment

1 2 3 4 5

6

H

Candidate
Alignment Positions

Fig. 3: An example of major steps of Hetero2Pipe: ˚ Multimedia inputs such as images and text;¸ Multi-DNN requests defined
by the downstream tasks; Ì Execution on a heterogeneous platform of Kirin 990 SoC with shared interconnections; ˝ Partition of
each model inference along the horizontal directions independently; ˛ Interleave the high contention models by re-arrangements;
ˇ Vertical alignments to reduce the pipeline bubbles by work stealing.

lower data locality and is often memory-bound. These include
the Fully connected (FC) layers in most CNN models such as
the VGG family as well as the multi-head attention layers in
Transformers such as BERT.

Our experiment shows that the FC layers in VGG/AlexNet
alone have 2-4� higher cache miss compared to CONV layers
on ARM Cortex A76. Similarly, multi-head attention layers with
768 � 768 MatMul and the Layer Normalization layers with
768�3072 MatMul in BERT also impose high memory access,
but the uniform intermediate dimensions of Transformers make
model partition and pipeline planning more straightforward
compared to convolutional models.
Observation 3 (Contention from Lightweight Models).
Intuitively, lightweight models measured by FLOPs should
incur less contention to their co-executing peers. However, we
discover surprising outliers that models such as SqueezeNet
(4.8MB) and GoogleNet (23 MB) have relatively high resource
demands, indicated by IPC, Stalled Cycles Backend
and Cache Miss Rate. As shown in Table II, during co-
execution, SqueezeNet imposes an additional 10% slowdown
compared to large models like ViT of 70� in size.

Thus, it is imperative to develop a method to quantify
contention intensity so the demanding model requests are
interleaved temporally. Thus, we leverage the effective perf
events as features X = fx1; x2; x3g to learn a regression of
contention intensity Y with an �-regularization term to alleviate
overfitting,

W = argmin
w

1

2
(XW −Y)>(XW −Y) +

1

2
� ∥W∥22 (1)

where the weight matrix can be calculated as W = (X>X+
�I)�1X>Y, I is the identity matrix. Thus, for new inference
requests, we could quickly estimate its contention intensity given
the perf event statistics as shown in Fig. 2(b).

IV. SYSTEM MODEL AND PROBLEM FORMULATION

System Model. We consider consumer mobile devices with
three typical heterogeneous processors: CPU, GPU and NPU,
where the CPU consists of Big/Small clusters. The GPU/NPU are
considered as a single unit and cannot be partitioned further [20],
[33]. Different from CUDA platforms, the CPU is accelerated
by ARM NEON (SIMD for multi-core CPUs) [34]; GPU accel-
eration is enabled by cross-compiling with OpenCL [35] and
NPU inference is launched via a proprietary API interface [36].
The streaming inference requests are comprised of a set of

M heterogeneous models. We organize the processors in a
descending order of their processing power (processing speed:
NPU � CPU Big � GPU � CPU Small). For NPU, if a single
operator is not supported, it leads to processing error and a
viable way is through operator fallback [20]. Hetero2Pipe also
supports this by forwarding the sub-model to the CPU Big
cores/GPU.

The entire system architecture is shown in Fig. 3：˚ the
system takes multimedia inputs such as images and text; ¸-Ì
launch multi-DNN requests for the downstream applications on a
heterogeneous SoC; ˝ partition each model along the horizontal
directions independently; ˛ interleave the high contention
models by processing re-ordering; ˇ reduce the pipeline bubbles
by work stealing in the vertical direction. To dispatch the models
to different processors, we perform model slicing as defined
below.

Definition 1 (Model Slicing). Define a K-way partition
P = fp1; � � � ; pKg that splits the model into layer slices and
distributes to K heterogeneous processors,

P !
�
fl0; : : : ; lp1�1g; flp1

; : : : ; lp2�1g; : : : ; flpK�1
; : : : ; lpKg

	
;

where K is also the pipeline depth. Since it is computationally
intensive to provide a layer-wise granularity for slicing large
models, we consider a coarse-grained model slicing strategy of
K slices.

Definition 2 (Execution time). The total execution time Tk(�)
of a model slice flpk ; � � � ; lpk+1�1g on processor k is defined
as,

T i
k(lpk ; � � � ; lpk+1�1) = T e

k (lpk ; � � � ; lpk+1�1)| {z }
solo execution time

+T c
k (lpk ; lpk+1�1)| {z }
memory copy time

+ T co
k (lpk ; � � � ; lpk+1�1jlpi ; � � � ; lpi+1�1; i 2M=k)| {z }

co-execution slowdown
(2)

where the first term is the pure execution time when the
model slice is executed alone on processor k. The second
term represents the memory copy time while copying the
input/output tensor between different memory addresses on
the unified memory architecture for different processors. The
last term represents slowdown given two or more processors are
co-running different model slices. A caveat in pipeline planning
is the sequential interdependence between consecutive stages. If
the finishing times are misaligned, they could lead to substantial
pipeline bubbles and resource wastage as defined below.

�1 �2 �3 �4 �5 ... �� ...

�1
1 �1

2 �1
3 �1

4 �1
5 ...

�2
1 �2

2 �2
3 �2

4 �2
5 ...

�3
1 �3

2 �3
3 �3

4 �3
5 ...

K=1

K=2

K=3

Time�� = |��
� − ��

3|Bubbles: �� = |��
� − �1

3| + |��
� − �3

1|

Idle Bubbles

�� Parallel column

DNN requests

Fig. 4: An example of a three-stage pipeline.

Definition 3 (Pipeline Bubbles). Similar to [6], we define
pipeline bubbles as the idling time of processors due to pipeline
stall (Fig.4), i.e., when a model slice completes on processor k,
but waits for processor k + 1 to finish processing. Specifically,
denote sub-model i on processor k as M i

k and its processing
latency as T i

k for short. Denote the concurrent workloads asMj ,
j = 1; 2; : : : ; jMj+K � 1, which is represented by different
columns of simultaneous execution of model slices in the vertical
direction. Formally, the bubble size jBj j for the j-th sub-models
on different processors can be written as,

|Bj | =
X

Mi
k
2Mj

�
max

8Mi
k
2Mj

{T i
k} − T i

k

�
(3)

In addition to the dependency and misalignment due to load
unbalancing, the co-execution slowdown would also exacerbate
pipeline bubbles. Different from model-paralleled training [6]–
[8], we also optimize bubbles accumulated at the tail of the
pipeline for inference. The following property demonstrates
an empirical relation between pipeline bubbles and the overall
latency.
Property 1 (Bubble vs. Latency). There is a linear relation
between pipeline bubbles and the overall latency (empirically
evaluated by Fig. 12 in Appendices). Hence, optimizing the
overall latency and throughput are equivalent to minimizing the
pipeline bubbles.

Problem Formulation. Our goal is to find a pipelining
plan such that the total inference delay is minimized. We
formulate it into a two-step optimization problem in the
horizontal and vertical directions: horizontally, we partition each
model independently to balance workloads across heterogeneous
processors and minimize the makespan; vertically, we consider
heterogeneous model slices across K processors based on the
horizontal solutions to reduce pipelining bubbles with contention
mitigation.

Horizontal Direction (P1). For each modelM, the horizontal
optimization aims to find partition strategy P such that the
maximum execution time (makespan) is minimized, which
effectively balances the computational loads across different
processors,

P1 : P = argmin
fp1;��� ;pkg

max
1�k�K�1

T i
k(l

i
pk
; � � � ; lipk+1�1); (4)

where jPj = K and 8i = f1; � � � ;mg 2 M. Since the
horizontal formulation optimizes different models independently,
we further consider the vertical direction across different
pipelining stages.

Vertical Direction (P2). Since horizontal optimization per-
forms optimal partition for each model/processor independently,
it leaves workloads across different processors unbalanced with
pipeline bubbles. The vertical optimization problem aims to

minimize the sum of bubbles,

P2 : min

jMj+K�1X
j=1

|Bj | (5)

s.t.
KX

k=1

jfli�k+1
pk

; � � � ; li�k+1
pk+1�1gj � Cmem (6)

T co
k (lpk ; � � � ; lpk+1�1jlpj ; � � � ; lpj+1�1; j 2M=k) > 0 (7)

tipk�1
+ T i

k(l
i
pk�1

; � � � ; lipk�1) � t
i
pk

(8)

Constraint (6) imposes that concurrent execution of model
slices is bounded by the memory capacity Cmem to avoid
page faults and performance degradation due to memory
swaps [21]. Constraint (7) states that co-execution slowdown is
non-negligible on realistic edge devices. Constraint (8) ensures
the precedence of executing consecutive model slices down
the pipelines, i.e., processor k must wait for the tensors from
processor k � 1 from the previous stage.

V. CONTENTION-AWARE HETEROGENEOUS PIPELINE
EXECUTION

In this section, we optimize inference execution on mobile
processors by considering both model and processor heterogene-
ity describe in the following. For completeness, we also analyze
the solution search space in the Appendices.

A. Horizontal Model Partitioning
Horizontal optimization can be obtained by solving jMj

dynamic programming problems independently. With a slight
abuse of notation, define T e

k (i; j) as the sum of T e
k (li; : : : ; lj)+

T c
k (li; lj) that combines the solo execution and memory copy

time in Eq. (2) for each model.
Solution via Dynamic Programming. For the n-layer

network, the partition problem has an optimal sub-structure.
Define S�(j; k) as the min-max execution time in the optimal
partition from layer 0 to j on k processors, where 1 � k � K
and 0 � j � n � 1. S�(j; k) has the following optimal sub-
structure:

S�(j; k) =

8><>:
T e

k (0; j); k = 1

max
i�j<n

T e
k (i; i); k = j

min
i�j�n�k

max{S�(i− 1; k − 1); T e
k (i; j)}; otherwise;

where the first two are boundary conditions and the last one
is the recurrence equation. By utilizing the sub-problems of
S�(i � 1; k � 1) and T e

k (i; j), we can iteratively obtain the
optimal partition S�(j; k).

The entire procedure is detailed in Algorithm 1. We first
initialize a table S� as the latency for the partition decisions. For
each row j, the optimal solution of a single partition, S�(j; 1), is
computed using T e

0 (0; j) and serves as the basis for subsequent
recursive state transitions. For the remaining partitions, from
k = 2 to p, we partition from [0; i] with an initial value of
i = 2. Iterating over each row from j = 0 to n � 1, the
maximum partition cost is identified via max(S�(i � 1; k �
1); T e

k�1(i; j)). This bifurcation in strategy is due to if the
division time for [0; i] into k�1 partitions exceeds the inference
time for [i; j], the optimal partition cost S�(j; k) is equivalent
to S�(i� 1; k� 1), thereby reducing unnecessary computations.

Algorithm 1: Horizontal Model Partitioning
1 Input: T e

k (i; j), k 2 K. . Inference time of submodel (i; j) on
k-th processors

2 Output: S� = fS1; S2; : : : ; SK�1g. . Optimal splitting points
3 Initialize 8j 2 [0; n� 1]; S�[j][1] T e

0 (0; j)
4 for k = 2 to p do
5 i 2
6 for j = 0 to n� 1 do
7 S�max max(S�(i� 1; k � 1); T e

k�1(i; j))
8 if S�max = S�(i� 1; k � 1) then
9 S�(j; k) S�(i� 1; k � 1)

10 else
11 while T e

k�1(i+ 1; j) � S�(i; k � 1) do
12 i i+ 1

13 S�(j; k) min(S�(i; k � 1); T e
k�1(i; j))

14 Si 0
15 for Sj = 1 to n� 1 do
16 if T e

k (Si; Sj) � S�(n� 1; p) then
17 S [Sj
18 Si Sj
19 k k + 1

20 return S� = fS1; S2; : : : ; SK�1g

When T e
k�1(i; j) � S�(i � 1; k � 1), further partitioning is

required. Hence, the goal is to locate a balance point i, such
that the segment sum from i to j (T e

k�1(i; j)) minimizes the
discrepancy with the optimal solution obtained by dividing the
first i rows into k�1 partitions. The state transition is completed
by setting S�(j; k) = min(S�(i; k� 1); T e

k�1(i; j)). To analyze
the complexity, we leverage the monotonicity property to reduce
the search space.

Property 2 (Monotonicity). T e
k (i; j) satisfies the following

monotonicity condition:
G T e

k (i+1; j) < T e
k (i; j) < T e

k (i; j+1), 0 � i � j < n�1,
1 � k � K.

G T e
k (i; j) = 0, only if j < i.

Based on the monotonous property of T e
k (i; j), the algorithm

updates the value of i based on the condition T e
k�1(i+ 1; j) �

S�(i; k � 1). Once S�(n� 1; p) is obtained, we can backtrack
through table S� to identify the optimal set of partition points.

Computation Complexity. For n layer model, binary search
takes O(nK) iterations. We leverage prefix sum to optimize
the computation of T e

k (i; j) in O(1). With the monotonicity
property of T e

k (i; j), we reduce the time complexity from
O(n2K) to O(nK). In the worst case, when K = n, Algorithm
1 takes O(n2) time. For serial processing of the jMj models,
O(jMjnK) time is required.

B. Mitigation of Co-Execution Interference

Interference on the memory bus occurs when the resource-
demanding workloads are co-located to each other in the pipeline,
i.e., when slices from the resource-intensive models are mapped
to the same temporal axis. A solution is to re-order the input
sequence such that the demanding workloads are temporally
interleaved, while preserving the original execution order as
much as possible. According to the analysis in Sec. III, network
models exhibit different degrees of contention. Thus, we first
use a percentage threshold to split the inference requests into
high (H) and low (L) contention (also denoted by H and L).

L LHH L H H L LL

move CW to extract “neighboring” H

high contention high contention

1 2

L LHH L H H L LL

Calculate relocation cost
𝐶𝐶17 = 6

𝐶𝐶53 = 𝐶𝐶63 = ∞𝐶𝐶13 = 2

𝐶𝐶97 = 2

𝐶𝐶10,7 = 3

3

L LHH L H HL LL

Relocate L to minimize cost

𝐶𝐶57 = 𝐶𝐶67 = ∞
𝐶𝐶93 = 6

L LHH L H HL LL

4 Repeat until all H are interleaved

L L L

Fig. 5: Illustration of the contention mitigation algorithm.

To bound the radius of mutual influence, we define contention
window below.

Definition 4 (Contention Window). For each model j to be
pipelined on K processors, by looking forward, the contention
window spans from j to j +K � 1.

Denote jHj j and jLj j as the number of high and low
contention model slices in contention window j. Once the
number of high contention model slices is larger than two,
there would be a temporal overlap between two or more model
slices with high contention. For example, HH for K = 2; HLH,
HHL, LHH, HHH all have two high contention model slices for
K = 3, and so on. Thus, we seek to relocate a low-contention
model slices L so that the number of high contention is less
than two, which is illustrated by the next property.

Property 3 (Contention Mitigation). If u and v are the
indices of two H in Hj and the contention distance is d = jv�uj.
We need to relocate at least K�d number of L from L to make
the number of high contention less than two.

Relocation via Linear Assignment. We transform such
contention mitigation problem into the classic Linear Assignment
Problem (LAP), i.e., relocate i 2 Lj to Hj such that the total
moving cost cij is minimized,

P3 : min

jLj�1X
i=0

jHj�1X
j=0

cijxij ; where
jLj�1X

i=0

xij =

jHj�1X
j=0

xij = 1 (9)

and xij is a 0-1 decision variable. Note that the assignment cost
is calculated as,

cij =

8>><>>:
1; i 2 [j �K + 1; j +K � 1];

i! jHjj
if
==) jHji � 2

jj � ij; otherwise:

(10)

It states when i is either in the left or right contention window
of j; or after i is assigned to j, it leads to high contention. We
do not consider these i 2 L and set the cij ! 1; otherwise,
the cost is set to the contention distance between i and j.
We can solve the problem by the Kuhn–Munkres Algorithm in
O(jMj3) [37].

The entire procedure is visually illustrated in Fig. 5. For each
input sequence, ‹ slide the contention window to extract all
the neighboring H; › calculate the relocation cost according
to Eq. (10); fi find the min-cost assignments so that the
total displacement cost is minimized by the Kuhn–Munkres
Algorithm; fl stop until all neighboring H are at least K apart
or there is no sufficient L for selection. The time complexity is
bounded by O(jMj3jHj) and the procedure is summarized in
Algorithm 2.

Algorithm 2: Contention Mitigation
1 Input: Input sequence M, their contention intensity CI , processors K,

function of Kuhn–Munkres Algorithm FKM (�):
2 Output: Contention-mitigated model sequence M̂.
3 CI !H

⋃
L �M, fHj � 2g8j2M ! SH , L ! SL:

4 while SH ;SL 6= ; do
5 for 8i 2 SH ; 8j 2 SL, i =2 [j �K + 1; j +K � 1] do
6 if i! jHj j

if
==) jHij � 2 then

7 cij 1 . Exclude infeasible solutions

8 else
9 cij = jj � ij . Set cost to displacement distance

10 (i� ! jHj j) FKM (SH ;SL; cij). . Find mapping
11 SL SL � i, SH SH � j, jHj j Hj j � 1.

12 return M̂.

Algorithm 3: Vertical Alignment by Work Stealing
1 Input: 8k 2 K, i 2M, execution time T i

k(lpk ; � � � ; lpk+1�1) from
Algorithm 1, output sequence M̂ from Algorithm 2, contention
windows jCW j of size K.

2 Output: Updated partitioning P̂ of M̂.
3 for 0 � u � jMj do
4 Mcw jCW ju . Extract models in CW indexed by u
5 ic arg max

i2Mcw

∑K
k=1 T

i
k(lpk ; � � � ; lpk+1�1) . Critical path

6 for 1 � i � K � ic do
7 for 1 � j � k � 1 do
8 Assign layers ‘ 2M ic+i

k�j !M ic+i
k�j+1 till

T ic+i
k�j � T

ic
k ! 0 . Work stealing right

9 for 1 � i � ic � 1 do
10 for 1 � j � K � k do
11 Assign layers ‘ 2M ic+i

k+j !M ic+i
k+j�1 till

T ic+i
k+j � T

ic
k ! 0 . Work stealing left

12 u u+K . Sliding CW by step K

13 return Updated partitioning P̂ of M̂.

C. Vertical Alignments by Work Stealing

After we successfully re-arrange the input sequence, the final
step is to perform cross-stage alignment in the vertical direction
to minimize pipeline bubbles. Our main strategy is to identify
the critical path with the longest processing delay and utilize
work stealing to adjust workloads in neighboring stages in order
to amortize the pipeline bubbles. Work stealing is a common
technique in multi-core processing that decouples tasks from the
executing threads to allow work units to move between thread
contexts [38]. Here, if a bubble is present between the two
execution stages, the lesser would request additional work from
its next corresponding stage until the stages are re-balanced.

The main procedure consists of two phases: 1) Perform work
stealing within each contention window (CW) and slide it till
the end of the sequence; 2) Conduct local search to minimize
the tail bubbles. In 1), for models Mcw �M, we first find the
critical path ic = argmax

i2Mcw

PK
k=1 T

i
k(lpk ; � � � ; lpk+1�1). Then

we perform work stealing in a layer-wise granularity, e.g., if
T ic+1

k�1 �T
ic
k > 0, we re-allocate layers from model slice M ic+1

k�1
to M ic+1

k to so that T ic+1
k�1 � T

ic
k . The objective is to vertically

align the execution time across different stages so that the

pipeline bubbles are minimized for k = f1; � � � ;Kg,

min

mX
i=1

|Bi
k| =

K�icX
i=1

k�1X
j=1

|T ic+i
k�j − T ic

k |+
ic�1X
i=1

K�kX
j=1

|T ic�i
k+j − T ic

k |:

(11)

2

1

tail bubbles

k=1
k=2
k=3

����������� ������� = ��

3 51
1

3

4

work stealing to fill bubbles optimize tail workloads

critical path
��������� ������� = ��

1 2

work stealing

5
4

4

1 3

3

4 5k=1
k=2
k=3

2

2
5
4

4

21
1 3 5

5

2

2 3

5
shortened duration

Fig. 6: Example of the vertical alignment via work stealing. The
second model is the critical path and the arrows indicate the
flow of work stealing.

As shown in Fig. 6, this not only reduces under-utilization at
the beginning, but also gradually drains the workloads towards
the end of the pipeline by filling the intermediate bubbles, which
in turn reduces the total makespan. In the second phase, different
from pipelined training with dependencies on the gradients [6],
[7], inference execution allows us to further reduce the bubbles
on the tail via re-allocating workloads by local search, e.g., a fast
greedy approach would be simply assigning all the workloads
to the fastest processor, or we can perform an exhaustive search
since the search space is only K.

Time Complexity. The time complexity of vertical alignment
is O(MK � nK + jMj

K � K2) = O(jMj(n + K)). The analysis
takes the worst-case that in each CW, O(nK) number of layer
alignments are needed and the sequence consists of MK steps.
In summary, the total complexity of the Hetero2Pipe planner
is O

�
jMj(nK + n+K) + jMj3jHj

�
, where n represents the

(average) number of layers, K is the number of processors. We
can see that the overall time complexity is primarily determined
by the number of inference requests jMj, which is further
governed by how often the pipelining plan is made. In case of
more inference requests, the planner should be scheduled more
frequently to avoid enlarged search space.

VI. EXPERIMENTAL RESULTS

A. Environment Setup

Hardware. We employ three heterogeneous SoCs for our
experiments:

G Kirin 990. The SoC contains a CPU with 2-core A76
@2.86GHz, 2-core A76 @2.09GHz, and 4-core A55
@1.86GHz, a GPU with 16-core Mali-G76, and a NPU
with the DaVinci Architecture.

G Snapdragon 778G. This SoC features a CPU with 1-core
A78 @2.40GHz, 3-core A78 @2.20GHz, and 4-core A55
@1.90GHz, and a GPU with Qualcomm Adreno 642L.

Fig. 7: Comparison of the overall performance from samples of100 random model combinations on Snapdragon 778G,
Snapdragon870 and Kirin990 SoCs. The top and bottom charts representLatencyandThroughput, respectively. The rightmost
scatter plots compare Band and our scheme by showing the solution distributions from a random subset of 30% sequence
combinations.

G Snapdragon 870. It consists of a CPU with 1-core
A77 @3.20GHz, 3-core A77 @2.42GHz, and 4-core A55
@1.80GHz, and a GPU with Qualcomm Adreno 650.

We utilize theADB interface to execute the program and
monitor the kernel events. Additionally, we bind the process
to CPU cores using the UNIXtaskset command. The order
of the processors is arranged by computational capability from
high to low.

Software. We implement Hetero2Pipe and other bench-
marks in the MNN software library [39]. MNN is a versatile,
lightweight, industrial-grade deep learning framework that
supports both inference and training with a large variety of
operators. We cross-compile on ARMv8 with the Android NDK
r25c version using ARM NEON, OpenCL and the HiAI suite for
the CPU, GPU and NPU, respectively. We launch the pipeline
program under the Android/data/local/tmp folder from
the ADB Shell.

Inference Models.To simulate real applications, we consider
a combination of 10 representative DNNs: AlexNet, VGG16,
GoogLeNet, Inceptionv4, ResNet50, YOLOv4, MobileNetV2,
SqueezeNet, BERT and ViT. The collection scales from over-
parameterized convolution networks with large �lters, branching
and residual connections, depth separable convolutions, and
object detection to the latest transformer-based architectures.
We use pre-trained models in their ONNX format and convert
them to MNN format withMNNConvert .

Baseline.We compare Hetero2Pipe with the following base-
lines.

G MNN v2.6.0 [10]: since the CPU still outperforms the
embedded GPU in most mobile consumer devices, this
represents the vanilla CPU-centric implementation on the
Big cores.

G Pipe-it [19]: it pipelines inputs across different CPU cores
for homogeneous DNNs. We adapt the core partitioning
strategy for heterogeneous DNNs and select the fastest core
combination of four Big and four Small cores to avoid
cache incoherence across the CPU clusters.

G Band [20]: we implement the co-processor fallback mecha-
nism to migrate unsupported NPU operations to CPU/GPU.

G Hetero2Pipe (No C/T): the proposed Hetero2Pipe without
consideringcontention mitigationandtail bubbleoptimiza-

tion.

B. Comparison of Overall Performance

First, we compare the overall performance of Hetero2Pipe
on three SoC platforms in Fig. 7 with the setup of four
processors (CPU Big cores, OpenCL GPU, CPU Small cores and
NPU) and various combinations of multi-DNN networks. The
system throughput is de�ned as the number of completed model
inferences per unit time: Throughput= # Model=Latency.

Compared to MNN [10], Hetero2Pipe accelerates inference
by 4:2� on average, achieving up to8:8� speedup on the
Kirin 990 platform due to NPU acceleration. Compared to Pipe-
it [19], Hetero2Pipe accelerates inference by2� on average,
achieving up to3:7� speedup on the Kirin 990 SoC. It is
also observed that with particular contention mitigation and tail
bubble optimization, Hetero2Pipe outperforms the unoptimized
“No C/T” version by1:3� on average.

Comparison to Band [20]. Band can be considered a
competitive SOTA scheme that orchestrates the fastest NPU
on-board. It prioritizes model inference on high-performance
processors based on operator supportability, and falls back
to secondary ones for unsupported operators which achieves
ef�cient parallel inference through dynamic processor switching.
The two scatter plots in Fig. 7 compare solution points between
Band and Hetero2Pipe. For clarity, we extract a random subset
of 30% model sequence to visualize the solution distributions.
On average, our scheme surpasses Band by 5% with less
solution variance (admittedly, Band is able to achieve better
performance in certain cases). Band can be regarded as a special
pipeline design that also ef�ciently harnesses NPU for parallel
collaboration among heterogeneous processors. In general, the
two schemes are similar conceptually as they both take advantage
of heterogeneous processors. The difference resides in the
parallelism optimization as Band does not purposely optimize
pipelines. This may lead to bubbles and resource idling during
operator fallback whereas the following requests are far from
being aligned. On the system-level, because Band is fallback-
driven, it leads to constant new memory allocation and data
transfer, which may leave memory fragments that further limit its
sustainability in the long run. In our scheme, the NPU execution
stops and delegates to the next pipeline stage either because

of unsupported operators or because a model partition decision
has been made.

(a) (b)

Fig. 8: Ablation studies of vertical optimization over 100
random model combinations. (a) Comparison with exhaustive
search, simulated annealing and no contention mitigation/tail
bubble optimization. (b) Average latency achieved by removing
components from Hetero2Pipe.

C. Ablation Studies for Vertical Optimization

The vertical optimization consists of several components. To
demonstrate their effectiveness, we conduct additional ablation
studies and compare them withexhaustive searchand meta-
heuristics such assimulated annealing. Fig.8(a) shows100
samples of random model combinations and we organize
the model sequences on the x-axis in an ascending order
of the latency values. Our scheme ranks very close to the
solution found by exhaustive search (only 4% away from the
optimality) and outperforms simulated annealing with much
lower complexity. Fig.8(b) further validates the consideration
of contention mitigation and tail bubble optimization with
progressive reduction of latency when both factors are accounted.

Fig. 9: Visualization of memory frequency and footprint due to
pipeline executions on Kirin990. The upper and bottom plots
trace the memory frequency and available memory respectively.

D. Memory Footprint

A side effect of pipeline execution on edge devices is the
increase of burden in the memory subsystems due to the
running multiple pipeline stages concurrently. On one hand, co-
execution demands full memory bandwidth, thus often throttling
the memory controller to the maximum memory frequency.
On the other hand, if the peak memory exceeds the physical
memory capacity, it leads to page faults, virtual memory
swapping, and substantial performance slowdown [21]. While
memory frequency is managed by the proprietary driver from
the vendor, it is essential to guarantee the peak memory is

under the physical memory capacity (Constraint(6)). Fig.9
demonstrates the memory frequency and usage on the Kirin 990
platform by building pipelines proportional to the FLOPs: large
models (BERT, ViT, YOLOv4) over 300 MB, medium models
(Inceptionv4, ResNet50, AlexNet) between 100-300 MB, and
lightweight models (SqueezeNet, MobileNetV2, GoogLeNet)
under 100 MB. We notice that single-stage execution on the
NPU does not require full memory bandwidth indicated by
frequency. Once the CPU/GPU are involved, memory frequency
is running at the maximum state. For the initial available
memory around 2.5GB, the 3-stage pipeline brings the available
memory down to 500 MB and adding one more large model
would likely overwhelm the capacity. Fortunately, our contention
mitigation mechanism could avoid concurrent executions of the
large models because the large models tend to cause higher
interference.

VII. C ONCLUSION

This paper proposes Hetero2Pipe, a pipeline planner for
multi-DNN inference on the platforms with heterogeneous
processors under co-execution slowdown. We �rst characterize
memory interference for different models on the processors and
investigate through the performance monitoring module. Based
on the �ndings, we formulate the pipeline organization problem
into a two-step optimization with dynamic programming-based
model partition horizontally and work stealing across different
stages for load re-balancing vertically. Our extensive experiments
over a large collection of models on three representative mobile
SoCs demonstrate the effectiveness of the proposed mechanism
compared to the existing mechanisms.

VIII. A PPENDICES

We follow up with more discussions and evaluations on a set
of interesting phenomenons and insights from our implementa-
tions below.

A. Search Space of Processor Pipelines

Consider three typical heterogeneous mobile processors: CPU,
GPU and NPU. The CPU consists ofCb Big cores andC �
Cb Small cores; the GPU/NPU is considered as a single unit
and cannot be partitioned further on mobile devices. We �rst
calculate the number of possible partitionsSp for a single model
in Eq. (12) with P stages and denoteP0 = P � 2 as the number
of stages for the CPU cores where the two stages are reserved
for GPU and NPU.

SP =
P max

bX

P min
b

(4D bD s + 3 D b + 3 D s) + 1 (12)

where,

Db =
�

Cb � 1
Pb � 1

�
; D s =

�
C � Cb � 1
P0 � Pb � 1

�
;

Pb = f 1; � � � ; Cbg; P0 � Pb = f 1; � � � ; C � Cbg;

Pmin
b = max(1 ; P0+ C + Cb);

Pmax
b = min(Cb; P0 � 1): (13)

Pb and P0 � Pb are the stages for the Big and Small cores,
respectively.Db andD s are the combinations on the Big and

