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Abstract—The prevalence of online query services in human
life has attracted significant interest from the fields of economics
and databases in determining appropriate pricing for such
services. Simultaneously, the utilization of graph analytics across
various domains has resulted in substantial social and economic
benefits in recent years. As the adoption of graph analytics
continues to expand, there is a corresponding need to establish
fair pricing models for the information contributed by each
participant in the data ecosystem. However, current query-based
pricing frameworks cannot be applied to price graph statistics, as
they fail to consider buyers’ affordability and prevent arbitrage
trading. To address this gap, in this paper, we propose a novel
framework GSHOP for pricing graph statistic queries. Instead of
pricing a precise answer for a query, our framework offers the
flexibility to price a set of answers injected with noise. Based on
the framework, data owners initially create and publish extended
local views (ELVs) to represent their graph data. Additionally,
it allows buyers to tolerate a certain degree of noise added to
the answer to reduce their payments. The framework accurately
quantifies the relationship between noise and price to ensure
that payment and compensation are reasonable for the buyer
and owners, respectively. We also propose algorithms specifically
designed for fundamental graph statistics, including node degrees
and subgraph counts such as k-stars and k-cliques. Furthermore,
we formally prove that the pricing framework is arbitrage-free.
Extensive experimental results on real-life graph data validate the
good performance of the proposed framework and algorithms.

I. INTRODUCTION

In the era of big data, analysis of network statistics plays
a pivotal role in identifying meaningful patterns within graph
data across various domains [1], [2], including finance [3],
bioinformatics [4] and healthcare [5]. Research and industrial
efforts have largely focused on developing efficient algorithms
to process graph data to meet the needs of different analysis
tasks [6]. However, limited research so far has considered the
cost of obtaining and managing data for graph data analytics.

Example 1. Bano, an international anti-fraud commissioner,
wants to investigate the closeness of the relationship between
all employees of a company and other company employees.
To this end, he needs to acquire the clustering coefficient
of the entire data graph G. This coefficient can be obtained
by 3f△(G)

f2⋆(G) , where f△(G) and f2⋆(G) are the triangle and
2-star counts within G respectively. Although the data may
be available online, Bano lacks the technical skills and time
to process it. The data marketplace would allow Bano to be
charged based on his query task and budget constraint.
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Fig. 1: A framework for query-based pricing.

However, data analysts like Bano usually spend a lot of
money to buy datasets from companies (e.g., Bloomberg,
Twitter), or through data markets (e.g., Acxiom [7], BDEX [8])
for conducting their analytics tasks. Existing pricing schemes
force users to buy the whole dataset or support simplistic
pricing mechanisms (e.g., filtering by keywords) [8], [9]. Also,
some analysis tasks may be one-time, which can cause a huge
waste of money. As a result, the data sellers may lose a lot of
customers due to the unflexible pricing schemes. Thus, there
is a need to change the data markets that sell data only to
markets that support query-based pricing.
Query-based pricing for graph data. A high-level overview
of the traditional query-based data market [10], [11] is pre-
sented in Figure 1. The data market involves three key agents:
the seller, who provides datasets; the buyer, who seeks to
purchase query answers; and the market, which facilitates
interactions between sellers and buyers. Initially, each data
seller (or data owner) defines a price point (Vi, pi), where
Vi represents a view of the data graph G, and pi denotes its
corresponding price. In the platform, a view Vi in G may have
multiple matches Vi(G) maintained. When a buyer submits a
query Q over G, the market automatically computes the price
p and the query answer Q(G) by considering various com-
binations of views. However, if a buyer needs to query large
amounts of data but with a limited budget, this transaction
may not take place. To attract more users, the market should
provide a flexible pricing mechanism to meet users’ various
requirements.
Idea. To this end, the proposed GSHOP increases the flexibility
of the prices by improving the diversity of the answers to
a query. In other words, the market can add some noise to
a query’s answer while reducing the price of answering the
query.



Challenges. To implement the GSHOP are facing the fol-
lowing technical challenges. C1) Reasonable compensation
to data owners. As Figure 1 illustrated each owner should
receive a compensation pi as the reward for sharing data.
However, when the data market adds noise to the answer to
meet the buyer’s budget constraints, determining appropriate
compensation becomes challenging. To be precise, the noises
are added to the final answer and it is difficult to determine
the contribution of each data owner. C2) Design an arbitrage-
free mechanism to support diversity pricing. To increase the
diversity of the pricing for a given query, GSHOP may provide
noisy answers. Simultaneously, GSHOP must prevent arbitrage
opportunities, where a buyer may attempt to exploit the system
by purchasing a combination of queries with high noise rather
than a single query with low noise, in order to obtain a cheaper
price. This increases the difficulty of designing an arbitrage-
free mechanism to ensure fair transactions.
Contributions. Our key technical contribution is a simple and
efficient query-based pricing framework GSHOP that employs
a noise-injection mechanism to enable “flexible” pricing for
graph statistic queries with formal guarantees. When a buyer
requests a graph statistic query with a specified tolerance
for noise, the data market adds random Laplace noise to the
exact count and returns the perturbed result to the buyer. We
demonstrate an inverse monotonic relationship between the
accuracy of the answer and the variance of the noise. The
pricing mechanism determines the price based on the variance
of the noise injected into the true answer for fundamental
graph statistics including node degree and subgraph counts
such as k-stars and k-cliques. Lower variance noise implies
a higher expected accuracy, and thus commands a higher
price, while higher variance noise results in a lower expected
accuracy and a lower price. This enables the buyer to either
choose cheaper but less accurate answers or more accurate yet
more expensive ones [12].

Our proposed pricing mechanism comes with a concise
characterization of when a pricing function is provably
arbitrage-free. In the main theoretical result of this paper, we
demonstrate the pricing function of GSHOP, which satisfies
both variance and query constraints, thereby guaranteeing an
arbitrage-free environment.

Finally, we conduct an extensive empirical evaluation using
real-life datasets. Our experiments validate the effectiveness
of the proposed framework in providing a viable pricing
strategy that offers diverse options to buyers. This enables
them to pay at least 36.7% of the original price while
still obtaining meaningful answers. Moreover, the framework
ensures appropriate compensation for data owners, with the
most significant information contributor receiving 81.1% of
the original compensation.

In summary, this paper makes the following contributions.
(1) Noisy pricing framework. We propose a pricing framework
GSHOP via a noise injection approach to provide a better
service for users (Section III). The mechanism can accurately
quantify the relation between noise and payment based on the
compensation of each data owner.

(2) Information contribution quantification. We establish a
metric for evaluating the information contributed by data own-
ers, which serves as the basis for determining their compen-
sation (Section IV). To ensure the fairness of this assessment,
we propose algorithms specifically tailored for node degree,
counting k-stars and k-cliques. These algorithms are designed
to accurately estimate the information contribution of each
individual data owner.
(3) Arbitrage-free. We formally prove that the noisy pric-
ing framework is arbitrage-free (Section V). The framework
achieves arbitrage-free by imposing a lower bound on the
ratio between the price of highly noisy answers and low noisy
answers.
(4) Experiment. We conduct comprehensive experiments on
real-life graph data to evaluate the proposed noisy pricing
framework and related algorithms (Section VI). The experi-
mental results validate that our proposed algorithms provide
reasonable compensation for data owners, a large affordability
ratio, and thus accessibility for the buyer.

II. PROBLEM DEFINITION

A. Basic Concepts

Data graph. We consider an undirected graph, defined as G =
(V,E). where (1) V = {v1, ..., vn} is the set of nodes; (2)
E ⊆ V × V is a set of edges, in which (vi, vj) denotes a
relationship between vi and vj .

In many real-world applications, a data graph G is typi-
cally distributed among multiple data owners, each of whom
possesses a limited local view of the complete data graph.
For instance, the contact lists in every owner’s mobile phones
could be pieced together to form a giant contact graph, though
no single data owner is aware of the whole social network
structure.

Extended local view. Given a node vi ∈ V , its two-hop
extended view Gi consists of:

1) vi’s one-hop neighbors:{u|u ∈ V ∧ (u, vi) ∈ E}.
2) Edges involving vi: {e = (u, vi)|e ∈ E}.
3) vi’s two-hop neighbors: {w|∃u ∈ V, (u, vi) ∈ E ∧

(u,w) ∈ E}.
4) Edges involving vi’s one-hop neighbors: {e =

(u,w)|e ∈ E ∧ (u, vi) ∈ E}.
For instance, with the default setting of Facebook (face-
book.com), a user allows each of her friends to see all her
connections. In the offline world, we also commonly accumu-
late knowledge on the relationships between our friends, e.g.,
when we attend a social event together. Figure 2(a) shows a
data graph example made up by {G1, ..., G10} provided by
{v1, ..., v10}. The ELVs G1 and G10 in Figure 2(b) are ELVs
of v1 and v10.

Graph statistic query. We consider three fundamental query
f of a graph G, i.e., node degree, k-star and k-clique, denoted
by fd(G), fk⋆(G) and fkC(G). Formally, f(Gi) denotes the
graph statistic involved vi. For example, f△(Gi) denotes the
number of triangles involved vi in Gi.
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Fig. 2: The data graph and ELVs.

Price points. A data owner usually specifies an explicit price
point (vi, pi), where vi is the owner of an ELV Gi and pi ∈ R+

is a fixed price for the true answer. We denote a finite set of
price points S as S = {(v1, p1), ..., (vn, pn)}.

Based on price points given by data owners, the data market
can compute a reasonable price for the query. In detail, the
price is the summation of all price points whose corresponding
ELVs are involved in this graph statistic query.

Example 1: The following example illustrates how to price
a triangle counting query. Figure 2 shows a graph G with
price points are {(v1, $1), ..., (v10, $1)} (i.e., pi = $1 for
1 ≤ i ≤ 10). When the buyer requests a triangle counting
query for G, the data market calculates the number of triangles
in each Gi. For example, it can be seen there exists one
triangle involved v1 in G1, i.e., f△(G1) = 1. Then the
market can charges the buyer with a price

∑10
i=1 pi = $10 and

returns {1, 1, 1, 1, 2, 2, 1, 1, 1, 1} to him. Finally, the buyer can
calculate the total number of triangles in G based on f△(Gi),
i.e., f(G) = 1

3

∑10
i=1 f△(Gi) = 4 because each triangle is

reported by its three distinct nodes.
Because the price of the accurate answer is usually high, to

offer more choices to data buyers, the data market also sells
noisy answers. Perturbation is a tool to lower the price for
the buyer [12]. The buyer specifies how much noise he can
tolerate when issuing the query. To formalize the relationship
between the answer’s noise and its price is one of the main
goals of this paper.
Noise. Each data buyer can request his query Q =
(f,v), where f is a graph statistic query, and v denotes
a tolerable variance of noise added to the true answer
{f(G1), ..., f(Gn)}. This feature gives the buyer more pricing
options by increasing v. We note that the self-defined noise
variance allows the buyer to adjust the answer’s accuracy with
a certain confidence based on Chebyshev’s inequality [13].

B. Price flexible data market

Figure 3 shows the high-level framework of the price
flexible data market, composed of three steps:

Step 1) The buyer requests a query Q = (f,v), where f
represents a graph statistic query and v denotes the acceptable
variance. The data market first computes the true answer
{f(G1), ..., f(Gn)}, and then introduces noise sampled from
a distribution with a mean of 0 and a variance of v to
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Fig. 3: The framework of the data market.

obtain Q(G). By responding to the query Q, the data market
leverages information ϵi contributed by each data owner vi.
When the exact graph statistics of Gi is returned, we set
ϵi → ∞ to indicate the maximal information contribution.

Step 2) Each data owner provides the price point (vi, pi),
which means that if v = 0 such that ϵi → ∞, the data
market needs to pay pi. Based on this setting, the data market
compensates the data owner vi with µi(Q) for her information
contribution ϵi properly.

Step 3) The data market charges the buyer with price π(Q),
where π(Q) is sufficient to cover all compensations such that
π(Q) ≥

∑n
i=1 µi(Q). After receiving the payment π(Q) from

the buyer, the data market gives the answer Q(G) to him.
Arbitrage is an undesirable property that allows a buyer to

obtain the answer to a query more cheaply than its advertised
price by deriving the answer from a less expensive alternative
set of queries [14].

Example 2: As illustrated in Example 1, the price of
the accurate answer f△(G) is $10, which is considered too
expensive by the buyer. Instead, he is presented with an
alternative option to purchasing a perturbed answer Q(G)
added noise with variance 2 for $2, which produces an error
of ±2 with 50% confidence. Suppose the buyer is also offered
another noisy option with variance 20 for $0.1. In this scenario,
no savvy buyer would pay for the previous answer because he
could purchase the new answer ten times for a total cost of $1
and compute their averages. This is an example of arbitrage
and the data market should avoid it.
Problem definition. Given a data graph G and the data
market framework above, our goal is to enable quantifying the
relationship between the payment and the noise of the answer
specified by the buyer. That is, given a query Q = (f,v), we
aim to determine the compensation µi(Q) for each data owner
vi based on an information contribution measure ϵi, which is
expected to decrease as v increases. Then we give the payment
π(Q) required to ensure that π(Q) ≥

∑n
i=1 µi(Q), in order

to cover all compensations, while the pricing function π(Q)
is arbitrage-free simultaneously.

III. QUERY PRICING FRAMEWORK

A. System Framework

In this section, we introduce an algorithm framework for
pricing noisy graph statistics. The framework we examine in
Figure 3 is for data markets with noisy pricing. The buyer



initiates a query Q = (f,v), where f is a graph statistic query,
and v indicates the acceptable level of noise to be added to
the true answer.

To obtain the contribution of the data owner vi, the frame-
work employs Gi, which is associated with vi. By comparing
the outputs generated with and without the corresponding edge
in Gi, the framework can evaluate the impact of vi on the
overall result. The parameter ϵi represents the impact and can
be used to quantify the information contributed by vi to the
graph [15].

It restricts the noise to a Laplace distribution since there is a
formula connecting ϵi to the variance v [6]. The data market
can quantify the relationship between the compensation and
the v for each data owner using the information contribution
ϵi [16]. Based on each data owner’s price point (vi, pi), the
data market compensates the owner vi with µi(Q) according
to her contribution ϵi. To maintain the utility of the data market
at zero or higher, the price π(Q) charged to the buyer must
be sufficient to cover all the compensations.

In general, the query pricing framework GSHOP consists
of three parts: computing the answer and information con-
tribution, getting the compensation, and calculating the price
paid by the buyer. The Algorithm 1 shows the details of our
framework.

Algorithm 1: Framework of GSHOP

Input: Query Q = (f,v), data graph G, price points S
Output: Price π(Q), answer Q(G)
// 1) Compute contribution and answer

1 {ϵ1, ...ϵn}, Q(G) =


Node Degree (a)

k-star (b)

k-clique (c)

// 2) Compute each vi’s compensation
2 for i = 1 to n do
3 µi(Q) = 2pi

Π arctan(biϵi);

// 3) Compute the query’s price
4 π(Q) = c

∑n
i=1 µi(Q);

Step 1) Compute the answer Q(G) for the query Q = (f,v)
and calculate the information contribution ϵi of each data
owner (line 1). The data market begins by calculating the
exact statistics {f(G1), ..., f(Gn)} and then introduces noise
sampled from a Laplace distribution with a mean of 0 and a
variance of v to obtain the corresponding answer Q(G). To
ensure fair compensation for each data owner, the data market
must provide a reasonable quantification of the contribution of
their data. In order to achieve this, the information contribution
ϵi is utilized to compare the output of a mechanism with
and without the inclusion of each data owner’s data. To
mathematically derive the information contribution of data
owners, we employ the concept of sensitivity. By exploring
sensitivity, we can accurately quantify the impact of each
data owner’s contribution. Specifically, we design algorithms
for fundamental graph statistics, including node degrees and
subgraph counts such as k-stars and k-cliques.

Step 2) Get the compensation µi(Q) for each participant
vi (lines 2-3). The data market must compensate each data
owner for her information contribution ϵi with µi(Q). The
price point (vi, pi) means that the price of the true answer
f(Gi) equals pi. To give a bounded output for ϵi → ∞, we
apply the arctan(·) function to handle it. We set µi(Q) =
2pi

Π arctan(biϵi) for a constant bi > 0, because when ϵi → ∞,
the data market gives the true answer f(G) and compensates
the data owner vi with µi(Q) = pi.

Step 3) Calculate the payment price π(Q) for the buyer (line
4). To make price π(Q) sufficient to cover all compensation
µi(Q), it set π(Q) = c

∑n
i=1 µi(Q) and c ≥ 1.

To attack the hard problem of designing an arbitrage-free
pricing function, the most important step is to measure every
owner’s information contribution reasonably in Step 1).

To this end, we first introduce a general method to measure
the information contributed by the variance of noise and the
sensitivity in Section III-B, and propose algorithms to impose
a bound ϵi on the maximum ratio between the probabilities
of returning a graph statistic result with and without any edge
from Gi in Section IV. Finally, we prove that all the pricing
functions π(Q) based on these three methods are arbitrage-free
in Section V.

B. Technical Foundation

When the data market answers noisy graph statistics with a
randomized mechanism M and sells it to the buyer, some indi-
vidual information of data owners would be employed. To give
a reasonable quantification of their information contribution,
we compare the output of M with and without their edges in
Gi. Based on disciplines of the perturbation mechanism, we
formally define the individual contribution ϵi of the data owner
vi for a query Q, and further give its upper bound related to
the sensitivity DSf (vi) and the variance of noise v.

We first consider a pair of neighboring graphs G and G′

differing in one edge, and {G′
1, ..., G

′
n} are the neighboring

ELVs of {G1, ..., Gn} with respect to G and G′. In particular,
we first define the notion of neighboring ELV, as follows.

Definition 1 (Neighboring extended local view): Given a
graph G = (V,E), a participant vi ∈ V , its ELV Gi ⊆ G,
and a neighboring graph G′ of G. The neighboring graph G′

i

of Gi is the extended view of vi in G′.
Based on the notion of neighboring ELVs, we define the

notion of global sensitivity as follows.
Definition 2 (Global Sensitivity): Given a set of nodes V =

{vi|1 ≤ i ≤ n}, and a query f , the global sensitivity of f at
vi is defined as:

DSf (vi) = max
G,G′

n∑
j=1

|f(Gj)− f(G′
j)| (1)

where G and G′ are two arbitrary neighboring graphs that only
differ in one edge e ∈ Gi.
Intuitively, DSf (vi) computes the maximum sum of subgraph
count differences over all pairs of neighboring ELVs that differ
from Gi in exactly one incident edge.



By comparing the output of the mechanism M over the
target edges, we define individual information contribution as
follows.

Definition 3 (Individual Information Contribution): The
individual information contribution of data owner vi in the
class of randomized mechanisms {Mj |1 ≤ j ≤ n} with
domain {Gj |1 ≤ j ≤ n} and outputs {Oj |1 ≤ j ≤ n}
considering two arbitrary neighboring graphs G and G′ which
only differ in one edge e ∈ Gi, is:

ϵi = max
G,G′

| log P (M1(G1) = O1, ...,Mn(Gn) = On)

P (M1(G′
1) = O1, ...,Mn(G′

n) = On)
| (2)

with probability 1−δ, where δ is typically less than the inverse
of the number of edges.

We further give an upper bound of individual information
contribution ϵi, where the randomized mechanism M is
known to be the Laplace mechanism. In Laplace mechanism,
given a query Q = (f,v), data owners directly report their
noisy versions of statistics by injecting the Laplace noise.

Theorem 1: Let M be the Laplace mechanism, DSf (vi)
be the global sensitivity of vi with the graph statistic query
f , and v be the variance of noise. The individual information
contribution of the data owner vi is bounded by:

ϵi ≤
DSf (vi)√

v/2
(3)

Proof. In the Laplace mechanism, the noise η is drawn from
the Laplace distribution Lap(λ), where λ =

√
v/2. Let f(Gj)

and f(G′
j) be the graph statistics on Gj and G′

j , where Gj

and G′
j are neighboring ELVs of vj with respect to G and G′

(G and G′ are neighboring graphs that only differ in e ∈ Gi).
Since the data market outputs Oj by injecting Laplace noise
Lap(λ) into the graph statistics, we then derive that:

ϵi = max
G,G′

| log P (M1(G1) = O1, ...,Mn(Gn) = On)

P (M1(G′
1) = O1, ...,Mn(G′

n) = On)
|

= max
G,G′

| log P (f(G1) + η = O1, ..., f(Gn) + η = On)

P (f(G′
1) + η = O1, ..., f(G′

n) + η = On)
|

= max
G,G′

| log
∏n

j=1 exp(
1
λ |Oj − f(Gj)|)∏n

j=1 exp(
1
λ |Oj − f(G′

j)|)
|

≤ max
G,G′

∑n
j=1 |f(Gj)− f(G′

j)|
λ

≤ DSf (vi)

λ

where DSf (vi) is the upper bound of
∑n

j=1 |f(Gj)−f(G′
j)|.

IV. ALGORITHMS FOR MEASURING CONTRIBUTION

In this section, we focus on node degrees and subgraph
counts, specifically k-star and k-clique, to demonstrate the
methodology for calculating the individual information con-
tribution, denoted as ϵi, for each owner.

A. Node Degree

Given that adding or removing an edge in G only affects
the degrees of two nodes, each by 1, the sensitivity of the
set {d(v1), ..., d(vn)} is 2. In other words, the sensitivity of
the degree function fd is DSfd(vi) = 2. Consequently, the

information contribution of each data owner, when reporting
{d(v1), ..., d(vn)} by injecting Laplace noise with variance v,
is bounded by ϵi ≤ 2/

√
v/2.

This is consistent with intuition that, when every node in the
social network reports its degree status, there will inevitably
be two degree information changes in the result, whether a
particular edge of it is included or not. Therefore, each data
owner has an equal information contribution 2/

√
v/2.

B. k-star Counting

A k-star refers to a structure where a central node is
connected to k other nodes. Recall that the number of k-stars
in Gi is equal to

(
d(vi)
k

)
, where d(vi) represents the degree

of node i, for all k ≥ 2. When adding or removing an edge
connected to vi, the potential impact on k-stars is limited to a
maximum of 2

(
n−1
k−1

)
. This limitation arises because adding an

edge (vi, vj) affects at most
(
d(vi)
k−1

)
+
(
d(vj)
k−1

)
k-stars [17], and

both d(vi) and d(vj) cannot exceed n−1. Given this scenario,
each data owner’s information contribution is bounded by
ϵi ≤ 2

(
n−1
k−1

)
/
√
v/2.

However, it should be noted that the magnitude of contribu-
tion, denoted as ϵi, for k-star counting is not equal across all
data owners. This is because adding or removing an edge in
different Gi can impact a different number of k-stars. In the
context of privacy-preserving data analysis, a local measure
of sensitivity is introduced in [18]. This measure takes into
account the specific characteristics of each data owner’s graph
and provides a more accurate assessment of their individual
contribution.

Definition 4 (Local sensitivity): Given a global graph G =
(V,E) containing nodes V = {vi|1 ≤ i ≤ n}, and a query f ,
the local sensitivity of f at vi is defined as:

LSf (vi) = max
G′

n∑
j=1

|f(Gj)− f(G′
j)| (4)

G′ is a neighboring graph of G which only differs in one edge
e ∈ Gi. Observe that DSf (vi) = maxG LSf (vi).
We utilizes the local sensitivity LSfk⋆

(vi) defined in Defini-
tion 4, which is an instance-specific sensitivity measurement,
the value of which is dependent on its own graph Gi. Given
any ELV Gi owned by vi, the local sensitivity of triangle
counting is the maximum change of the k-star counting result
induced by adding an edge connected to vi as:

LSfk⋆
(vi) =

(
d(vi)

k − 1

)
+ max

vj∈N(vi)

(
d(vj)

k − 1

)
(5)

where N(vi) denotes a set of nodes that neighbors node vi.
While calibrating the magnitude of contribution to

LSfk⋆
(vi) may seem more reasonable, it is not directly

feasible to compute the information contribution of vi as
LSfk⋆

(vi)/
√
v/2. This is because the contribution magnitude

itself may contain information about vi, and thus vi may
actually contribute more information than LSfk⋆

(vi)/
√

v/2.
Therefore, it is necessary to establish an upper bound for
LSfk⋆

(vi), denoted as LS∗
fk⋆

(vi).



We introduce a method for computing a probabilistic upper
bound of any value x, given a noisy version of x injected with
Laplace noise:

Lemma 1: [15] Let x be any real value, and x∗ = x +
Lap(λ) for some λ > 0. Then, with 1− δ probability,

x∗ + λ · log( 1
2δ

) ≥ x (6)

By Lemma 1, each data owner contribute ϵ0 information to
derive an upper bound of d(vi) by the following equation:

d∗(vi) = d(vi) + Lap(
2

ϵ0
) +

2

ϵ0
· log( 1

2δ
) (7)

The information contribution is ϵ0+LS∗
fk⋆

(vi)/
√
v/2 for each

vi, where LS∗
fk⋆

(vi) is obtained by combining Equation 5 with
Equation 7.

C. k-clique Counting

To begin, we will focus on triangle counting, which is the
simplest form of a k-clique (where k = 3), and then we will
expand our approach to handle k-cliques with k > 3.
Triangle Counting. We need to consider the worst case, an
edge (vi, vj) in the n-node graph can appear in n−2 triangles
and each triangle is reported three times by its three nodes,
when both vi and vj are connected to all other nodes in the
whole data graph. Therefore, we have DSf△(vi) = 3(n− 2)
derived from the worst-case scenario regardless of the structure
of the actual graph G.

It is workable to have a more accurate assertion of informa-
tion contribution by giving a two-phase method as follows. For
each data owner vi, adding (resp. removing) an edge (vi, vj)
will increase (resp. decrease) LSf△(vi) by 3c(vi) since each
triangle is reported by three times, where c(vi) is the maximum
number of common neighbors that she shares with others in
her local view, i.e.,

c(vi) = max
vj∈Vi

∧
j ̸=i

|N(vi) ∩N(vj)| (8)

where N(vi) denotes a set of nodes that neighbors node vi,
and Vi is the node set of vi’s ELV Gi. Therefore, the local
sensitivity LSf△(vi) = 3c(vi). First, for each owner vi, we
propose to avoid directly collecting {c(v1), ..., c(vn)} (as it has
a high sensitivity with n), but let each owner vi report an upper
bound d∗(vi) of her degree d(vi) as adding (resp. removing) an
edge (vi, vj) only increases (resp. decreases) d(vi) and d(vj)
by one respectively. The rationale is that d(vi) ≥ c(vi) holds
for any vi, and hence, we can use a probabilistic upper bound
of d(vi) in place of c(vi).

To select owners with the top-h′ largest node degree,
Lemma 1 is exploited to derive the upper bound of the degree.
Specifically, for any d(vi), 1 ≤ i ≤ n, we have:

d∗(vi) = d(vi) + Lap(
2

0.5ϵ0
) +

2

0.5ϵ0
· log(h

′ + 1

δ
) (9)

where h′ is a large integer that h′ < n and 0 < δ < 1.
This disadvantage, however, is that d(vi) could be a rather

loose upper bound of c(vi). This motivates us to develop a
hybrid approach that combines both c∗(vi) and d∗(vi).

Algorithm 2 and 3 show the pseudo-code of the proposed
solution, which is divided into two parts: Phase 1 and Phase
2. All nodes participate in the first phase, and only a selected
few participate in the second phase. In Phase 1, we determine
the set of owners selected in the second phase. Then we
measure each participant’s information contribution and give
the corresponding answer of the query in Phase 2.

Algorithm 2: Phase 1
Input: The data graph G, a parameter for initial

information contribution α, invalidation
probability δ, a large number h′

Output: the number h of nodes in Phase 2
1 ϵ0 = α√

v/2
;

2 for i = 1 to n do
3 d∗(vi) = d(vi) + Lap( 2

0.5ϵ0
) + 2

0.5ϵ0
· log(h

′+1
δ );

4 end
5 Sort {vi} into {v[1], ..., v[n]} by d∗(vi) in descending

order;
6 for i = 1 to h′ do
7 if i

0.5ϵ0
· log(h

′+1
δ ) ≥ d∗(v[i+2]) then

8 break;
9 end

10 end
11 h = ⌈i/2⌉;
12 Sed = {v[i]|1 ≤ i ≤ h};

Phase 1: Determine which nodes to select for Phase 2. First,
we obtain a probabilistic degree upper bound d∗(vi) for every
owner vi (lines 2-5), and we identify the set Sed of owners
whose degree upper bounds are the largest (lines 6-12). Here,
we partition the initial information ϵ0 into two equal halves,
where one portion is allocated for Phase 1 and the other portion
is reserved for use in Phase 2. We also divide the probability
δ into 2h′+2 parts, where h′ is a specified number indicating
the maximum number of nodes to do in Phase 2. After that,
we calculate the probabilistic upper bound of the actual degree
d(vi), denoted by d∗(vi). Then, it uses a heuristic to decide
h ≤ h′, the number of nodes who participate in Phase 2, and
obtains the set Sed.
Phase 2: Derive the contribution to the query. Intuitively, for
any v ∈ Sed, using d∗(vi) as an upper bound of c(vi) is
likely to be ineffective, since c(v) could be much smaller than
d∗(v). Therefore, for each v ∈ Sed, we derive c∗(v) as an
alternative upper bound of c(v), instead of relying solely on
d∗(v).

Note that in this case, the amount of owners v ∈ Sed is
O(|Sed|) instead of O(n), since we do not request c∗(vi)
for any vi /∈ Sed. Finally, we combine d∗(vi) and c∗(vi)(vi ∈
Sed) to get an improved upper bound of LS∗

f△
(vi). Each node

in Sed calculates c∗(vi) as their probabilistic upper bound
of common neighbor counts, and get their final upper bound
LS∗

f△
(vi) (lines 3-4). For other nodes not in Sed, we consider

d∗(vi) to derive their final upper bound LS∗
f△

(vi) (line 6).



Algorithm 3: Phase 2
Input: Query Q = (f△,v), variance of noise v, initial

information contribution ϵ0, invalidation
probability δ, a large number h′, ELVs of
involved participants {G1, ..., Gn}

Output: Contribution {ϵ1, ..., ϵn}
1 for i = 1 to n do
2 if vi ∈ Sed then
3 c∗(vi) = c(vi) +Lap( h

0.5ϵ0
) + h

0.5ϵ0
· log(h

′+1
δ );

4 LS∗
f△

(vi) = 3min{c∗(vi), d∗(vi)};
5 else
6 LS∗

f△
(vi) = 3d∗(vi);

7 end

8 ϵi = ϵ0 +
LS∗

f△(vi)√
v/2

;

9 end
10 Return {ϵ1, ..., ϵn};

That means:

LS∗
f△

(vi) =

{
3min{c∗(vi), d∗(vi)} vi ∈ Sed

3d∗(vi) vi /∈ Sed

We can get ϵi = ϵ0 + LS∗
f△

(vi)/
√

v/2, which is the
information contribution for vi (line 8).

In Two-phase, we propose a more appropriate method to
estimate the information contribution for each data owner
individually and give a corresponding answer to the query
given by the buyer.
Extension. The previous subsection discusses an algorithm to
obtain an estimation of information contribution when giving
a triangle counting query. In this subsection, we extend the
algorithm to estimate each data owner’s information contribu-
tion when answering Q = (fkC,v), where fkC is a k-clique
counting query. A k-clique refers to a set of k nodes that are
fully connected to each other. Note that triangle counting is a
specific form of k-clique counting where k = 3.

The information contribution of each answer fkC(Gi) in-
jecting Laplace noise Lap(

√
v/2) is bounded by ϵi ≤

k
(
n−2
k−2

)
/
√
v/2, since the global sensitivity DSfkC(vi) =

k
(
n−2
k−2

)
. This is because (1) adding or removing one edge

e in Gi affects only those k-cliques where e is an edge, (2)
there are at most

(
n−2
k−2

)
such k-cliques, and (3) each k-clique

is reported k times.
We apply an improved method to obtain a more accurate

estimate of information contribution for counting k-clique.
For this purpose, we consider an algorithm for computing a
probabilistic upper bound of LSfkC(vi) to release information
no more than ϵ0. First, we have:

LSfkC(vi) = max
vj∈Gi,j ̸=i

k · C(Gi∩j , k − 2) (10)

where Gi∩j denotes the subgraph of Gi induced the common
neighbors of vi and vj , and C(Gi∩j , k−2) denotes the number

of (k−2)-cliques in Gi∩j . To explain, observe that if a k-clique
is affected by the presence or absence of an edge (vi, vj), then
(1) the k-clique must contain both vi and vj , and (2) apart from
vi and vj , the remaining k−2 nodes in the clique must form a
(k− 2)-clique. There exists only C(Gi∩j , k− 2) such cliques,
and each of them is reported by k data owners.

By Lemma 1, then we can compute LS∗
fkC

(vi) as:

LS∗
fkC

(vi) = LSfkC(vi) + Lap(λ0) + λ0 · log(
1

2δ0
) (11)

where λ0 = kn(
(
n−2
k−2

)
−
(
n−3
k−2

)
)/ϵ0, since adding or removing

one edge in Gi may change LSfkC(vi) by up to kn(
(
n−2
k−2

)
−(

n−3
k−2

)
). By getting LS∗

fkC
(vi) as an upper bound of the local

sensitivity, we can calculate the information contribution ϵi =
ϵ0 + LS∗

fkC
(vi)/

√
v/2.

Since adding or removing one edge in Gi may change
each LSfkC(vi) by up to k(

(
n−2
k−2

)
−

(
n−3
k−2

)
). This leads to an

enormous amount of noise in LS∗
fkC

(vi).
To address this issue, we apply a similar algorithm of Two-

phase for counting triangles to derive an alternative upper
bound of LS∗

fkC
(vi).

Following Equation 10, because C(Gi∩j , k − 2) ≤
(
c(vi)
k−2

)
,

if we are able to derive an upper bound of c(vi), then we can
use k

(
c∗(vi)
k−2

)
as an upper bound of LSfkC(vi). We compute

such an upper bound c∗(vi) using the same method described
in triangle counting. Regarding k

(
c∗(vi)
k−2

)
as an upper bound

of LSfkC(vi), the information contribution estimated is ϵi =
ϵ0 + k

(
c∗(vi)
k−2

)
/
√

v/2.

V. ARBITRAGE-FREE FOR PRICING FUNCTION

We first introduce a fundamental and desirable property of
pricing functions, namely arbitrage-free. We must ensure the
pricing function π(Q) is arbitrage-free to avoid the buyer at-
tempting to purchase other combinations of queries to answer
Q = (f,v) with a cheaper price. To achieve this objective, it
should be arbitrage-free not only to the graph statistic query
but also to the variance of noise v. The proposed π(Q) is
a monotonically decreasing function with respect to v and
cannot decrease faster than 1/v. Moreover, π(Q) is only
considered arbitrage-free if it satisfies the semi-norm for f .

Before investigating arbitrage-free, we first establish the key
concept of the determinacy relation for computing Q(G). A
similar concept has been studied in randomized query/view
answering from the database community [19].

We give the formal definition of query determinacy as
follows.

Definition 5 (Determinacy): The determinacy relation is
a relation between a query Q = (f,v) and a multi-set of
queries S = {Q1, ..., Qk}, denoted S → Q, and defined by
the following rules:

1) Summation: {(f1,v1), ..., (fk,vk)} → (f1 + ... +
fk,v1 + ...,+vk);

2) Scalar multiplication: ∀c ∈ R, (f,v) → (cf, c2v);
3) Relaxation: (f,v) → (f,v′), where v ≤ v′;
4) Transitivity: If S1 → Q1, ..., Sk → Qk and

{Q1, ..., Qk} → Q, then
⋃k

i=1 Sk → Q.



Based on the query determinacy relation, we formally define
arbitrage-free.

Definition 6: A pricing function π(Q) is arbitrage-free if
∀i ≥ k, {Q1, ..., Qk} → Q implies:

π(Q) ≤
k∑

i=1

π(Qi) (12)

The intuition behind the above definition is that if there
exists arbitrage in the pricing function π(·), e.g., π(Q) >∑k

i=1 π(Qi), then the data buyer would never pay the full
price of the query Q. Instead, he would turn to buy a cheaper
set of queries {Q1, ..., Qk}.

We divide an arbitrage-free pricing function into two parts,
namely the variance of noise v and the query f , and conquer
each part step by step.

First, we consider the constraint of the variance v of noise.
By Definition 5(3) we know that π is monotonically decreasing
in v. The next lemma shows that it cannot decrease faster than
1/v.

Lemma 2: For any arbitrage-free pricing function π(f,v)
that depends on two independent parts f and v, it can not
decrease faster than 1/v.
Proof. Suppose the contrary: there exists a query f and
a sequence of variance {vj |j ∈ {1, ...,+∞}} such that
limj→∞ vj = +∞ and limj→∞ vjπ(f,v) = 0. Select j0 > 1
such that vj0 > 1 and vj0π(f,vj0) < π(f, 1)/2. Then we
can answer the query (f, 1) by requesting ⌈vj0⌉ times the
same query (f,vj0) and average their answers. For these ⌈vj0⌉
queries, we pay:

⌈vj0⌉π(f,vj0) ≤ (vj0+1)π(f,vj0) < 2vj0π(f,vj0) < π(f, 1)

which implies that we have arbitrage, a contradiction.
We continue to consider the other part of an arbitrage-free

pricing function π(f,v), namely the query f . For that, we
assume that π is inversely proportional to v. In other words,
π decreases at a rate 1/v, which is the fastest rate allowed by
Lemma 2. Set π(f,v) = h2(f)/v, for some positive function
h that depends only on f . It can be shown that π is arbitrage-
free iff h is a semi-norm in [12], [20]. Recall that a semi-norm
is a function h that satisfies the following properties.

• Homogeneity: For any c ∈ R and any graph statistic query
f , h(cf) = |c|h(f).

• Subadditivity: For any query f1 and f2, h(f1 + f2) ≤
h(f1) + h(f2).

Furthermore, we utilize semi-norm to design our basic
arbitrage-free pricing function:

Theorem 2 (Basic Arbitrage-free Pricing function): Let
π(f,v) = h(f))2/v be the pricing function for some positive
function h(f) that only depends on f . Then, π(f,v) is
arbitrage-free iff h(f) is a semi-norm.

We next consider how to construct more arbitrage-free
pricing functions by combining basic/existing ones. We resort
to a general class of non-decreasing and subadditive functions.

We recall that a function Γ : Rϕ → R over ∀y, z ∈ Rϕ is non-
decreasing, if y ≤ z, Γ(y) ≤ Γ(z). Besides, it is subadditive,
if Γ(y + z) ≤ Γ(y) + Γ(z).

Theorem 3 (Composite Arbitrage-free Pricing Functions):
Let Γ : Rϕ → R be a non-decreasing and subaddi-
tive function. For any set of arbitrage-free pricing functions
{π1(Q), ..., πϕ(Q)}, the composite pricing function π(Q) =
Γ(π1(Q), ..., πϕ(Q)) is also arbitrage-free.

We give some typical examples of composite arbitrage-free
pricing functions as follows. If π1(Q), ..., πϕ(Q) are arbitrage-
free, then

• Linear Combination: ∀c1, ..., cϕ ≥ 0,
∑ϕ

j=1 cjπj(Q);

• Geometric Mean:
√

Πϕ
j=1πk(Q);

• Maximum: max(π1(Q), ..., πϕ(Q));
• Power: π(Q)c for 0 ≤ c ≤ 1;
• Logarithmic: log(π(Q) + 1);
• Cut-off: min(π(Q), c) for c ≥ 0;
• Sigmoid: tanh(π(Q)), arctan(π(Q)), π(Q)√

π(Q)2+1
.

are arbitrage-free as well.
We note that given basic arbitrage-free pricing functions,

the first five composite arbitrage-free pricing functions set an
infinite price for the unperturbed answer, i.e., the variance
of noise v = 0. However, these functions are impractical
in the data market, since the data owner vi tends to sell
the unperturbed answer for price pi, which is a high but
finite price. Nerveless, we can turn to apply some bounding
functions for composition, e.g., cut-off and sigmoid functions.

Based on these proprieties of arbitrage-free pricing func-
tions, we can prove that π(Q) is arbitrage-free. Observing
that π(Q) = c

∑n
i=1 µi(Q) is a linear combination of µi(Q)

for each data owner vi, it suffices to prove that µi(Q) is
arbitrage-free by Theorem 3 (Linear combination). It further
suffices to prove the arbitrage-free of ϵi by Theorem 3
(Linear combination and Sigmoid). Analogous to Theorem 3
(Geometric Mean and Linear combination), we can construct
ψi(Q) = (DSf (vi))

2/v. Then it can be proved that ψi(Q) is
arbitrage-free as follows.

Theorem 4: ψi(Q) is arbitrage-free.
Proof. First, we can check that ψi(Q) decreases as 1/v,
which satisfies an arbitrage-free function for the variance
v in Lemma 2. Then we set ψi(Q) = h2i (f)/v where
hi(f) = DSf (vi), it suffices to prove that hi(f) is semi-norm
by Theorem 2.

We will prove that hi(f) = DSf (vi) is semi-norm. Ob-
serving that hi(f) satisfies the homogeneity property, we will
prove hi(f) = DSf (vi) satisfies the subadditive property. We
stipulate that Ex ∩Ey = ∅ and Ex ∪Ey = E, where Ex, Ey

and E denotes the edge set of Gx, Gy and G respectively. It
means that Gx and Gy do not have common edges and they
can construct the whole graph G. Then, we have f1(G) =
f(Gx), f2(G) = f(Gy) and f3(G) = f(G) = f1(G)+f2(G).

Because DSf3(vi) ≤ DSf1(vi) + DSf2(vi), it is obvious
that hi(f3) ≤ hi(f1) + hi(f2), which completes our proof.



TABLE I: Dataset Statistics
Dataset # nodes # edges Avg. degree # 3-star # triangle

Facebook 4,039 88,234 43.69 9,314,849 4,836,030
HepPh 12,008 118,521 19.74 15,280,441 10,075,497
DBLP 317,080 1,049,866 6.62 21,780,889 6,673,155
Email 36,692 183,831 10.02 25,566,893 2,181,132

VI. EXPERIMENT

The goal of the experimental section is three-fold: (1)
validate that the answer’s accuracy is monotone with respect
to the information contribution. (2) show that the framework
can generate diverse prices for buyers, while data owners can
receive appropriate compensations according to their informa-
tion contribution. (3) demonstrate that our methods exhibits
significantly better performance than some baselines while
satisfying the online query requirements.

A. Experimental Settings

Datasets. We used four different sets of publicly available
real-world datasets from Stanford Large Network Dataset
Collection [21]: a social network Facebook [22], a citation
network HepPh [23], a collaboration network DBLP [24] and
a communication network Email [25]. All graphs are converted
into undirected graphs by ignoring edge directions. Summary
statistics of datasets are provided in Table I.
Algorithms. To justify the performance of our pricing
method, we compare it with the state-of-art methods: (1)
Baseline [16], a noisy pricing framework for quantifying
information by using global sensitivity for the subgraph count-
ing. (2) 2nd Order [6], an information contribution quantifi-
cation framework by giving the second-order local sensitivity
with a simple upper bound for k-clique counting. We im-
plemented the proposed algorithms: Degree, LS’k-star and
Two-phase for calculating the information contribution and
answers of node degrees, k-stars and k-cliques respectively.

All experiments were run on a machine with an Intel(R)
Core(TM) i7-9700 CPU at 3.00GHz with 16GB RAM. Each
experiment was run 10 times and the average result is reported.

B. Experimental Results

Exp-1: Accuracy influenced by information contribution. Be-
fore investigating economic properties, we first evaluate how
accuracy changes when the information contribution ϵ in-
creases. Here, we define ϵ = maxi ϵi. We changed the feature ϵ
varies from 10−3 to 103 by exponential growth. We conducted
an experiment utilizing all the mentioned methods to calculate
the total node degrees, 3-star counts and triangle counts.
The accuracy was reported as 1 − |f(G)−Q(G)|

|f(G)+Q(G)| , where f(G)
represents the unperturbed results and Q(G) represents the
perturbed results. The experimental results are illustrated in
Figure 4.

We observe that as the value of ϵ increases, the accuracy
of the results improves, often exhibiting rapid growth within
certain intervals. To illustrate this, we present Figure 4(a),
where Two-phase achieves an accuracy of approximately
94.8% at ϵ = 1, while the accuracy drops to nearly zero at

 B a s e l i n e   L S *   D e g r e e
 B a s e l i n e   2 n d O r d e r  T w o - p h a s e

1 0 � � 1 0 � � 1 0 � � 1 0 0 1 0 1 1 0 2 1 0 30

2 5

5 0

7 5

1 0 0

Ac
cu

rac
y (

%)

C o n t r i b u t i o n
(a) Accuracy (Facebook)

 B a s e l i n e   L S *   D e g r e e
 B a s e l i n e   2 n d O r d e r  T w o - p h a s e

1 0 � � 1 0 � � 1 0 � � 1 0 0 1 0 1 1 0 2 1 0 30

2 5

5 0

7 5

1 0 0

Ac
cu

rac
y (

%)

C o n t r i b u t i o n
(b) Accuracy (HepPh)

 B a s e l i n e   L S *   D e g r e e
 B a s e l i n e   2 n d O r d e r  T w o - p h a s e

1 0 � � 1 0 � � 1 0 � � 1 0 0 1 0 1 1 0 2 1 0 30

2 5

5 0

7 5

1 0 0

Ac
cu

rac
y (

%)

C o n t r i b u t i o n
(c) Accuracy (DBLP)

 B a s e l i n e   L S *   D e g r e e
 B a s e l i n e   2 n d O r d e r  T w o - p h a s e

1 0 � � 1 0 � � 1 0 � � 1 0 0 1 0 1 1 0 2 1 0 30

2 5

5 0

7 5

1 0 0

Ac
cu

rac
y (

%)

C o n t r i b u t i o n
(d) Accuracy (Email)

Fig. 4: Accuracy influenced by the information contribution.

ϵ = 0.1. We provide an explanation for this phenomenon based
on the relationship between the variance of Laplace noise (v)
and ϵ:

ϵ =
maxiDSf (vi)√

v/2
⇒ v = 2(

maxiDSf (vi)

ϵ
)2 (13)

which follows from Theorem 1. As the information con-
tribution ϵ increases, the amount of noise added decreases.
Consequently, this reduction in noise results in more accurate
answers. Furthermore, when ϵ is too small or too large,
the perturbation or the true result completely dominates.
Additionally, we compare the accuracy of our three methods
using the same contribution settings. Degree demonstrates the
highest accuracy, followed by Two-phase, and LS’3⋆. This
discrepancy can be attributed to the lower sensitivity of degree
counting compared to 3-star and triangle counting. The results
demonstrate that all methods examined in our analysis meet
the fundamental pricing principle, namely, that higher accuracy
of the answer can be achieved when owners provide more
information.
Exp-2: Impact of variance on payment. To evaluate the im-
pact of variance, we varied the variance from d0 to 5d0,
where d0 is the average degree in a dataset. As shown in
Figure 5, comparing the ratio of the payment π(Q) and the
total price (i.e.,

∑n
i=1 pi), buyers can expect to pay less as

the noise added to data increases. This provides the advantage
of reducing the cost of accommodating diverse requirements.
Conversely, the data market is able to offer different levels of
accuracy to buyers based on their affordability. We explain the
reason through the arbitrage-free query pricing function:

π(Q) =

n∑
i=1

2pi
Π

arctan(biϵi) (14)
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Fig. 5: Impact of variance on payment.

When the noise v becomes larger, the information contribution
ϵi becomes smaller. Consequently, the payment also decreases
due to the monotonically increasing nature of the arctan(·)
function. Furthermore, we compare the payments of different
methods. Specifically, we find that LS∗

f△
(vi) (Two-phase)

< LS∗
f△

(vi) (2nd Order) < DSf△(vi) (Baseline△). The
payment of Two-phase experiences a significant decrease
with an increase in variance, followed by 2nd Order, and
then Baseline△. Similarly, the payment of LS’3⋆ decreases
at a faster rate compared to Baseline3⋆ due to LS∗

f3⋆
(vi)

(LS’3⋆) < DSf3⋆(vi) (Baseline3⋆). For instance, as shown
in Figure 5(d) using the Email dataset, when v = 50, the
buyer only needs to pay 36.7% of the total price in Two-
phase. In contrast, the buyer needs to pay 82.4% and 99.1%
in 2nd Order and Baseline△, respectively. These results
highlight that, compared to baselines, LS’3⋆ and Two-phase
offer a greater degree of flexibility. Specifically, this approach
enables the market to cater to a wider range of buyers
with varying needs and budgets. These findings demonstrate
the potential benefits of adopting LS’3⋆ and Two-phase in
enhancing market efficiency and improving buyer satisfaction.
Another observation is that, when comparing three different
graph statistic queries, the payment of Degree decreases
with an increase in variance, followed by Two-phase, and
then LS’3⋆. Overall, our experimental results provide insights
into the dynamics of payments concerning noise variance and
information contribution across various methods.
Exp-3: Compensations for data owners. Empirical evidence
suggests that real-world graphs conform to a Power-Law
degree distribution, indicating that the majority of information
is contributed by a small subset of nodes, who deserve a
higher percentage of the compensations. Also, as the increase
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Fig. 6: Impact of variance on compensations (2nd Order).
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Fig. 7: Impact of variance on compensations (Two-phase).

of the amount of noise is added to the answer, the corre-
sponding contribution of the data owner diminishes, resulting
in a commensurate reduction in the associated compensation.
We compared the compensation for data owners of three
methods. Specifically, we evaluate the compensation for the
most, ranked one-third, two-thirds, and the least impacted by
noise. Here, the global sensitivity DSf△(vi) of Baseline△ is
the same for each owner in the certain variance, Therefore,
the compensation is the total divided by the number of



owners. Thus, we only consider the trend of the compensation
change of 2nd Order and Two-phase shown in Figure 6
and Figure 7. Both methods show that the data market offers
each data owner individualized compensation, depending on
their upper bound of the local sensitivity LS∗

f△
(vi), and their

compensation decreases with the increment of noise v. As
illustrated in Figures 6(d) and 7(d), for the Email dataset, 2nd
Order and Two-phase exhibit maximum compensation to
unperturbed payment ratios of 90.7% and 81.1%, respectively,
when v = 50. In contrast, at the same v, 2nd Order and
Two-phase exhibit one-third ratios of 83.4% and 36.4%,
respectively.

The results imply that Two-phase exhibits a steeper de-
crease in compensation for data owners who contribute less
information than 2nd Order. The results show that Two-
phase offers a more equitable approach to payment allocation
than 2nd Order due to its reduced compensation for data
owners who contribute less information, resulting in a lower
price. The previous payment experiment indicates that Two-
phase results in a significantly lower price compared to
2nd Order. Furthermore, the experiment reveals that although
the compensation received by the primary contributor varies
only slightly between Two-phase and 2nd Order, the com-
pensation for data owners who provide less information is
substantially lower in Two-phase compared to 2nd Order.

Another observation is that the compensation gaps between
data owners are quite different in these two methods. In
2nd Order, the difference between the maximum and one-
third/two-thirds ratios of the compensation obtained by the
data owner is always maintained at about ten percent, which
means that the gap does not widen for owners whose degrees
are large. But the circumstance is completely different in
Two-phase, since LS∗

f△
(vi) of different data owners varies

widely, their compensation ratios also vary greatly as a result,
which provides a more reasonable query pricing strategy. For
instance, shown in Figure 7(d), on Email, though v = 50, the
most significant contributor still receives 81.1% compensation
compared to the price for an unperturbed answer. By contrast,
there are 36.4%, 36.1%, and 35.9% for the one-third rank-
ing, two-thirds ranking and the least compensation shown in
Figure 7(d), receptively.

TABLE II: Time complexity and running time per owner
(ms)

Degree Baseline3⋆ LS’3⋆ Baseline3△ 2ndOrder Two-phase
Time complexity O(n) O(n) O(n2) O(n) O(n3) O(n2 + h′n2)

Facebook 0.00079 0.0014 0.057 0.00060 11.065 0.025
HepPh 0.0020 0.0014 0.032 0.00062 5.403 0.016
DBLP 0.000043 0.0016 0.020 0.0011 0.388 0.012
Email 0.00084 0.0014 0.023 0.00098 3.107 0.013

Exp-4: Performance of Algorithms. To test the performance
of these algorithms, we present the time complexity of all
mentioned methods in Table II. To further validate our anal-
ysis, we measured the running time of these algorithms and
calculated the average time cost per data owner, as presented in
Table II. Additionally, the total time cost for each type of graph
statistics is illustrated in Figure 8. The running time of all
methods grows with the increase of owner number. Specially,
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Fig. 8: Impact of graph size on running time.
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Fig. 9: Impact of k on running time.

Baseline has an advantage over other methods in terms of
running time, even though it outputs a relatively less accurate
information contribution estimation. Two-phase runs much
faster than 2nd Order because it only needs to calculate c∗(vi)
for vi ∈ Sed and 2nd Order needs to calculate for all vi where
1 ≤ i ≤ n. Despite being slower than their corresponding
Baseline, LS’3⋆ and Two-phase are capable of meeting the
online requirements. As noted in [26], the response time for
online services should be less than 6.7 seconds.



Finally, we examined the impact of k in Figure 9. The
results show the performance of each method of calculating in-
formation contribution with respect to k in these four datasets.
We observe that all methods’ execution time remains virtually
unchanged as the k increases. As illustrated in Section IV-B
and IV-C, it can be seen that these methods for k-star (resp.
k-clique) have similar processes with the 3-star (resp.triangle).
We also note that Two-phase outperforms 2nd Order in terms
of running time across all datasets. Although LS’3⋆ and Two-
phase exhibit slower performance than their Baseline, they
still meet the online requirements.

VII. RELATED WORK

We categorize the related work as follows.
Data market design. Data market design has gained increasing
attention in recent years, especially from the database commu-
nity. The pricing research in this field mainly focuses on query-
based pricing [10], showing that the prices of a large class
of SQL queries can be computed using ILP solvers. Based
on the theoretical framework, a new pricing system, called
QueryMarket [27], is developed for flexible query pricing,
which can leverage query history to avoid double charging
when queries purchased over time have overlapping informa-
tion. More arbitrage-free pricing functions are designed for
arbitrary query formats in [19]. The structure of arbitrage-
free functions is characterized in both answer-dependent and
instance-independent settings. Based on the above work, a
novel pricing system, called QIRANA [28], is implemented
to perform query-based data pricing for a large class of
SQL queries (including aggregation) in real-time. Specific to
private data, a classical framework is proposed in [12] to
price linear queries by introducing arbitrage-free. However,
subgraph counting is not a simple task as linear queries. An
aggregate statistics pricing framework over private correlated
data (ERATO) [16] takes data correlation into account, and
further considers servicing pricing and privacy compensation
in practical aggregate statistics. However, ERATO can only
provide pricing for aggregate statistics. When it comes to
graph statistics, it cannot adequately compensate data owners
due to the difficulty in quantifying the interdependence of each
owner’s data.
Differential privacy over social graphs. A number of algo-
rithms have been developed for analyzing graphs under dif-
ferential privacy, classified into the centralized setting and
decentralized setting. Due to the trustfulness of data holders,
the major differences among the existing algorithms are the
perturbation mechanism and statistics aggregation. In the first
category, the global structure of a social graph is managed
by a trusted party, who releases subgraph counts [6], [29],
degree distribution [30], synthetic graphs [31], [32] and many
other statistics [33], [34] on graphs under differential privacy
guarantees. In this scenario, it can be further classified into
two types [35]: Edge-DP [36], [37], [38] and Node-DP [39],
[40], [41]. Edge-DP considers two neighboring graphs that
differ in the only edge. By contrast, Node-DP considers two
neighboring graphs that differ in one node and all its incident

edges, which provides a stricter privacy guarantee. In the
second category, an untrusted party needs to communicate
with individual participants of the network, each of which
has a limited local view of the whole social graph, and then
combines information from different participants to estimate
the global network properties. Typically, only Edge-DP is
considered since the data aggregators are usually aware of
the identities of participated clients. Decentralized Different
Privacy is proposed in [15] to require each client to protect
not only her own privacy but also the privacy of her neighbors.
Recently, An enhanced privacy notion named edge relational
local differential privacy is proposed in [42] and it ensures
the probability of revealing the edge presence by one report
bounded by the privacy budget given the observations of all
other reports.
Privacy preserving subgraph counts. There have been a large
number of algorithms developed for counting subgraphs thus
far and these algorithms can generally be classified into
random response and adding random noise. The first category
of algorithms started with [43] and was followed by [17],
[44]. An approach of collecting a neighbor list perturbed by
the Random Response from each client and calibrating the
triangle counts for a less biased estimation is proposed under
local differential privacy [43] . In the second category, the LS-
Based algorithm adds Cauchy noise with an expected magni-
tude proportional to the smooth sensitivity under centralized
differential privacy [18]. By contrast, a two rounds collection
algorithm first asks each noise to report the minimum scale
necessary for injecting Laplace noise in the whole network
and collects subgraph counts accordingly under decentralized
differential privacy [15], [42], [17]. Except for the Laplace
noise, quantifying the privacy loss caused by a query with a
specific variance of noise using other methods is challenging
due to their complex loss function compression [17]. Hence, in
this paper, we limit the noise to follow a Laplace distribution.

VIII. CONCLUSION

With the development of data exchange today, data markets
have emerged as intermediaries to facilitate this process. At the
same time, there is a growing concern regarding graph analysis
tasks in various applications. This paper focuses on developing
a framework for pricing noisy graph statistics. Specifically, we
introduce the concept of extended local views (ELVs) for data
owners to publish their data. By accurately quantifying the
relationship between noise and payment, we ensure a fair and
reasonable pricing mechanism for both buyers and data own-
ers. To measure the information contribution of data owners,
we propose algorithms specifically designed for fundamental
graph statistics, including node degrees and subgraph counts
such as k-stars and k-cliques. Furthermore, we provide formal
proofs demonstrating that the proposed pricing framework is
arbitrage-free. In addition to theoretical analysis, we conduct
comprehensive experiments to validate the effectiveness of our
algorithms. Through these experiments, we demonstrate the
practical viability of our framework in real-world scenarios.
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