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ICPS software and hardware sufer from low update frequency, making it easier for insiders to bypass external defenses

and launch concealed destructive attacks. To address these concerns, we design a device ingerprinting method based on

multi-physical features, augmenting current intrusion detection techniques in the ICPS environment. In this paper, we use

the sorting system as an example, demonstrating that the proposed device ingerprinting technology has generality in the

intrusion detection of ICPS control low. Speciically, we irst formalize the physical model of the sorting system to analyze the

critical device features. Then we extract these physical features from the sensor data collected in a physical testbed. Utilizing

featurized data, we train a classiier that generates ingerprints in real-time in the production environment. Moreover, we

develop a diferential detection model based on device ingerprints to discover stealthy insider attacks eiciently. We evaluate

the proposed method in a real-world testbed. Experiment results show that the detecting performance of classiiers approaches

100% when the the number of component types is small.

CCS Concepts: · Security and privacy→ Intrusion detection systems.

Additional Key Words and Phrases: Device ingerprinting, insider attacks, multi-physical features, ICPS.

1 INTRODUCTION

The proliferation of intelligent computing, sensor networks, and data-driven manufacturing has promoted the

development of Industrial Cyber-Physical Systems (ICPS). ICPS-related applications are expected to reach 81

billion US dollars by 2023, with an annual growth rate of 4.9% [12]. In recent years, ICPS have exposed many

vulnerabilities [15, 28]. However, ICPS software and hardware sufer from a long updating period. Furthermore,

many devices do not have access to critical patches from the manufacturers, leading to a series of security threats

[29]. We categorize attacks into outsider attacks and insider attacks [8, 25]. When adversaries are insiders with

certain authorized access to the ICPS, they can perform uncertiied acts to launch insider attacks. Highly skilled
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adversaries such as terrorists and organized criminals are outsiders who launch attacks from outside ICPS for

economic or political purposes [1, 5].

Outsider Attacker

ICPS

Physical isolation

Software isolation

LAN

ID

Key

ID

Insider Attacker

Hardware isolation

Firewall

Fail

Fig. 1. The existing ICPS protection system

As shown in Fig. 1, the existing ICPS protection system employs three isolation layers to prevent security

threats. To achieve physical isolation, ICPS disconnect from the public network, establishing an independent and

private local network. In the software isolation layer, the software protection fails to recognize an adversary with

a legal identity or login key. Hardware isolation prevents the invasion of viruses or Trojans mainly by blocking

hardware interfaces such as USB. However, as long as input and output methods exist, like using CD-ROMs for

reading and writing, there is a certain probability of infection.

Unfortunately, the above external defenses are not omnipotent. They fail to stop insider attacks launched

by staf or business partners who can bypass the protection mechanism, easily accessing the system, network

and data with a legal identity [13]. For example, Stuxnet [17] was the irst worm to compromise Iran’s ICPS

through an insider attack in 2010, resulting in the scrapping of 20% of Iran’s centrifuges and the infection of

30,000 terminals [23]. Furthermore, insiders installed malware that caused a large-scale blackout in the Ukrainian

power sector in 2015, bringing signiicant property losses [24]. An insider attack is a more harmful and insidious

behavior than an outsider attack, negatively afecting the conidentiality, integrity, and availability of the ICPS

[32].

To address these limitations, we propose a multi-physical features based device ingerprint to enhance current

intrusion detection methods in the ICPS environment. On the one hand, ingerprints typically collect hidden

equipment features to enable unique device identiication, allowing fast, accurate detection of insidious attack

behaviors [33]. We can fuse some physical device attributes into ingerprints that attackers cannot easily modify.

Even if an insider bypasses most external defenses, modifying physical devices’ unique identities is impossible.

On the other hand, the device ingerprinting technology has generality in the intrusion detection of ICPS control

low. To discover the attack behavior against a device, we irst construct a physical model of the key devices on

the control low. We then obtain a set of interlocked physical variables and the critical variable that implements

the ICPS function. Combining these physical features as a device ingerprint, we monitor the device ingerprints
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for changes in the production environment to discover stealthy insider attacks. In this paper, we use the discrete

manufacturing sorting system as an example to illustrate our proposed ingerprinting approach for ICPS intrusion

detection.

Fig. 2. Crash a sorting system via insider atacks and detect the atacking behavior via fingerprints

As shown in Fig. 2, a sorting line receives diferent types of components from multiple stations. Then com-

ponents are sorted into distinct store stations. When the system sufers from an insider attack, the component

that should have been sorted to store station 2 is incorrectly sorted to store station 1, resulting in the wrong

component classiication. If the attacking behavior is undetected, a prolonged attack may lead to a collapse of

the whole system, thus afecting industrial production or indirectly damaging hardware devices. Consequently,

to detect insider attacks in the sorting system, we propose multi-physical features based ingerprinting.

However, there remain two challenges to implementing ingerprint-based intrusion detection.

Q1: How to identify key physical device features that construct a ingerprint?

Q2: How to detect insider attacks using ingerprints?

To answer Q1, we establish a physical model of the sorting line and formally analyze key features that inluence

ingerprinting. In the sorting system, device conigurations include the sorting line’s height, speed, and other

physical variables. Note that ingerprints generated under diferent device physical conigurations are highly

separable. If an attacker does not know the exact system device coniguration, the ingerprint obtained by forging

the sensor data must not match the current device coniguration. Therefore, we use a classiier to generate

ingerprints and compare them with ingerprints received by sensors to implement a diferential detection model.

If they are not identical, we can infer that an insider attack has happened and the attacker tampered with the

sensor data. Particularly, to solve Q2, we irst collect and optimize featurized data from a physical testbed, training

a classiier model for ingerprint generation. We then develop a diferential detection model employing the

ingerprint classiier. The diferential detection strategy can tell whether a ingerprint is generated by normal

device operations or an insider attacker, providing a solid supplement to the existing protection mechanism in

the ICPS environment.

The contributions of our work are summarized as follows.

(1) We propose multi-physical features based ingerprinting to detect insider attacks in ICPS. We formalize the

physical model of a sorting system to analyze the critical device features (ğ4).

(2) We present the worklow of ingerprint synthesis and develop a diferential detection model based on

device ingerprints to discover insider attacks eiciently. We further realize the feature data optimization

methods to train the classiier for ingerprint generation (ğ5).

ACM Trans. Sensor Netw.
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(3) We design the r metric to quantify the detection success rate of the detection model. We then solve the

detection analysis as a variational problem using functional analysis, demonstrating detection success

probability is directly related to the number of device conigurations determined by feature combination

(ğ6).

(4) We implement a real physical testbed to simulate the sorting system. Experiments demonstrate the efec-

tiveness of the ingerprint-based diferential detection method and the robustness of ingerprint generation

(ğ7).

The rest of the paper is organized as follows. In section 2, we give a brief introduction to existing ICPS

ingerprint-based intrusion detection methods. Then, we describe the system model and threat model in section 3,

followed by the formalized physical model of the sorting system in section 4. In section 5, we give the details of

multi-physical features based ingerprinting methods and propose feature data optimization methods. In section

6, we formally analyze the detection methods. In section 7, we conduct extensive experiments to evaluate the

detecting performance of the ingerprinting approach. Finally, we conclude our paper in section 8.

2 RELATED WORK

Some ICPS infrequently update outdated software and hardware, causing signiicant security risks and vulner-

abilities [7]. Many works [9, 16, 18] propose intrusion detection systems (IDS) to monitor the network traic,

inding anomalous data packets. Nevertheless, they ignore the unique characteristics and critical information of

ICPS’s physical status. Thus, they fail to discover an insider attacker who has already obtained certain access to

the network.

Recently, some works [6, 10, 22] have leveraged the physical properties of ICPS to optimize the intrusion

detection scheme. For example, Urbina et al. [30] study physics-based attack detection, which can discover

attackers intending to hide ICPS manipulation behaviors. They demonstrate that an appropriate combination and

coniguration of the detection scheme can mitigate the impact of such stealthy attacks. McParland et al. [21]

exploit a speciication-based intrusion detection framework to monitor for physical constraint violations. In the

case of a boiler with a heater, the framework monitors the boiler’s behavior and warns of a possible attack when

the temperature exceeds the normal range.

Researchers ind ingerprints diicult to tamper with and enable unique equipment identiication. Many

works thus propose constructing device ingerprints to enable attack detection [19, 26]. Below we irst introduce

some representative ingerprint-based intrusion detection methods. We then make a detailed comparison and

illustrate the advantages of our approach.

2.1 Fingerprint-Based Intrusion Detection Methods

Ahmed et al. [3] employ a hardware ingerprint based on the sensor measurements’ noise pattern. This hardware

identiication method is non-invasive and works passively without afecting the functionality of ICPS. Residual is

the diference between the system’s predicted output and the actual output measurement. Hong et al. [13] observe

that the measurement noise and process noise from the water-level system’s sensor generates stable residuals.

Therefore, they use system operation’s noise residuals to build ingerprints and detect attacks. Unfortunately, the

above sensor noise based ingerprinting methods do not apply to ICPS applications without signiicant noise.

Formby et al. [9] propose two types of device ingerprinting methods. The irst method develops accurate

ingerprints by measuring the response time of data processing and using the unique network characteristics of

ICPS devices. The second method utilizes the physical operation time as a unique signature for each device type.

They claim that the physical ingerprinting method achieved an accuracy of 92% in distinguishing real latching

relays from counterfeit ones. The authors also show that a forgery attack on ingerprint recognition technology

requires a highly skilled attacker with excellent system equipment knowledge. Gu et al. [12] also propose using
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device operation timestamps and conigurations to generate device ingerprints. However, if the ICPS operation

time is not a crucial physical feature, then the timestamp based ingerprinting methods described above are

infeasible.

2.2 Comparison with Fingerprint-Based Intrusion Detection Methods

As discussed above, the passive ingerprinting technology efectively enhances ICPS security without degrading

system performance. This paper proposes multi-physical features based ingerprinting to detect insider attacks in

ICPS. The sensor noise based ingerprints [3, 13] and the multi-physical features based ingerprints all employ

stable physical features in their respective systems to construct device ingerprints. Therefore, even if the attack

is stealthy and short-lived, the system can detect the attack behavior in time. The diference is that multi-physical

features based ingerprinting is the irst ingerprint technique that works for the discrete manufacturing industry

(sorting system).

Compared with timestamp based ingerprints [9, 12], multi-physical features based ingerprints also build

a formalized physical model to analyze critical features. The diference is that our approach has generality in the

intrusion detection of ICPS control low. To discover the attack behavior against a device, we irst construct a

physical model of the essential devices on the control low. We then obtain a set of interlocked physical variables

and the critical variable that implements the ICPS function. Combining these physical features as a device

ingerprint, we develop a diferential detection model based on device ingerprints to discover insider attacks

eiciently. Also, the ingerprinting approach’s accuracy, precision, and recall against the real-life dataset show

that the detecting performance of classiiers approaches 100% when the device coniguration number is small.

3 SYSTEM MODEL AND THREAT MODEL

In this section, we irst introduce the worklow of the sorting system in discrete manufacturing and then present

the threat model in the sorting system. Finally, we explain an insider attack pipeline without intrusion-detecting

methods.

Fig. 3. The workflow of a sorting system

Worklow of the Sorting System. Fig.3 shows a schematic diagram of how a sorting system works. The sorting

system aims to categorize diferent types of components automatically. In Fig.3, each manufacturing station

produces one type of component. Diferent types of components have distinct mass values. Therefore, the

components placed on the conveyor belt from diferent manufacturing stations will be thrown into distinct

positions at the end of the conveyor belt. Depending on the position, diferent types of components can be sorted

automatically. Besides, many sensors in the sorting system are responsible for observing and securing the system.

Speciically, PC and sensors make up the monitoring module. The vision sensors in the camera, the mass sensors
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in the belt, and speed sensors in the motor, etc., will send data packages collected in sensor devices to the PC

(personal computer) for further analysis.

Threat Model of the Sorting System. Without well-designed intrusion detection methods, the sorting system

has a vast attack surface. Therefore we consider two types of attacks: outsider attacks and insider attacks. As

discussed in ğ2 related work, outsider attacks have been extensively studied. This paper focuses on detecting the

more stealthy and challenging insider attacks because insiders have detailed information about ICPS worklows,

leading to the potential for signiicant security losses [25]. We consider three insider attack methods against

physical, software, and hardware isolations to bypass external defenses and achieve real-time access to ICPS

devices.

(1) The adversary cannot get physical access to devices but has the authority to access the local internal

network, thus launching attacks.

(2) The adversary can utilize vulnerabilities to intrude into software and thus execute attacks.

(3) The adversary can touch various ield devices and inject Trojan or virus through hardware interfaces, e.g.,

USB, to launch attacks.

Furthermore, we illustrate the above three insider attack methods in realistic ICPS scenarios. (1) For the irst

method, when an ICPS employee is intentionally or unintentionally infected with a virus, he launches an attack

on a live device via the local internal network like Havex [2]. (2) For the second method, a malicious staf with

professional hacking skills can utilize vulnerabilities to bypass software isolation and execute attacks [1]. (3) For

the last method, the ield devices may be prone to sufering a potential attack because an employee inserts an

infected USB, e.g., Stuxnet [17]. Consequently, even if malicious attackers do not have legal access, they exert

themselves to the utmost to enter the internal network or directly access the physical system, aiming at launching

an insider attack. Therefore, it is diicult to prevent such attacks in the realistic scenario completely.
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Fig. 4. The workflow of an insider atack in the sorting system

Pipeline of an insider attack. Fig.4 illustrates the pipeline of an insider attack in the sorting system without

intrusion-detecting methods. In ①, the insider attacks the sorting line, leading to the misclassiication of compo-

nents (see detailed attacking methods in Section 5.2). In ②, the attacker captures data passed from sensors to the

PC, then tampers with the sensor data. Note that vision sensor in the camera collects component displacement,

the mass sensor collects component mass, and the speed sensor collects belt velocity provided by the motor. In

③, the attacker rewrites the original data package with the tampered data. In ④, when the PC receives the data

package, it fails to detect the misclassiication of components and such attacking behavior. Because, according to

the data obtained by the PC, diferent types (mass) of components are correctly sorted into their corresponding

positions, the PC does not detect any anomalies in the system. The insider attack thus succeeds. Furthermore, the

sorting system will collapse in the long run, causing signiicant damage.
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To discover insider attacks, we develop accurate ingerprinting methods (more details in ğ5) to detect tampered

data packets and other attack behaviors, reducing the probability of sorting errors.

4 FORMALIZED PHYSICAL MODEL OF THE SORTING SYSTEM

To detect insider attacks, we formalize the physical model of the sorting system and analyze the key features

that inluence ingerprinting in this section. A device’s ingerprint is primarily related to its unique physical

characteristics and hardware conigurations [12]. Besides, in ğ5 we train a classiier, obtaining a more accurate

physical model for displacement calculation and ingerprint generation.

4.1 Key Physical Variables for Fingerprinting

To address the malicious sabotage of sensor data in sorting systems, we propose a ingerprinting method by

combining four physical variables, i.e., mass, velocity, height, and displacement in the sorting system. We have

two observations from the formalized physical model of the sorting system. (1) Firstly, these physical variables

are closely related to the inherent physical characteristics of each sorting system. (2) Secondly, these four physical

variables are interlocked. Precisely, if three of the four variables are known, we can calculate the unique value

of the remaining variable via a mathematical equation obtained from the physical model. Based on the above

observations, we leverage four physical variables to generate ingerprints for the sorting system, providing

intrusion detection capabilities against insider attacks. We will elucidate the ingerprinting approach in ğ5. We

formalize the physical model below.

h

s
vμmg

l

Fig. 5. The physical mode abstracted from the sorting system

Definition 1 (Relationship between physical variables). We describe the physical model abstracted from

the sorting system in Fig.5. We clarify the relationship between the displacement (s) of components and other variables

in Equation (1). Speciically,m is the mass of component, v denotes the velocity of moving object, h denotes the height

of the conveyor and s is the distance that the component falls onto the table after being thrown from the conveyor belt.

s ∼ f (m,v,h) (1)

Equation (1) demonstrates that each parameter is sensitive and essential for the physical model of the sorting

system. Speciically, the displacement (s) of a component is closely related to mass of a component (m), moving

velocity (v), and height of the conveyor (h). Because there is a matching relationship among the four physical

variables, the system can easily detect attackers’ malicious sabotage of sensor data. Next, we elaborate on the

speciic relationship of these four physical variables from a kinematic perspective.

Definition 2 (Belt friction). In the motion of the conveyor belt, if the component is stationary relative to the

belt, then the belt friction will provide the forwarding force to the component. Here, the belt friction (fbelt ) is

fbelt = µmд (2)

ACM Trans. Sensor Netw.
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Definition 3 (Component friction). In Equation (2), д is the gravitational acceleration, µ denotes the coeicient

of belt friction which is determined by the physical characteristics of the belt. According to Theorem 1 which describes

the displacement formula of uniformly accelerated motion [11], the maximum velocity (vmax ) that an component

can obtain through friction is

vmax =

√

2µдl (3)

In Equation (3), l is the length from the initial placement point of the component to separation point (the end

of the conveyor belt in Fig. 5). For example, l is the length from the position where diferent manufacturing

stations’ components irst reach the conveyor belt to the end position of the belt where components fall.

There are two situations when a component is moving on a conveyor belt in Fig. 5.

• Situation A: The component is moving at the same velocity as the conveyor belt (vbelt ).

• Situation B: The velocity of the component (v) does not reach the velocity of the conveyor belt, i.e., the

component is moving slower than the conveyor belt.

In Equation (3), vmax =
√

2µдl , therefore, given the condition v = vbelt , we have vbelt ≤
√

2µдl . On the other

hand, when given the condition v < vbelt , we can naturally come to this conclusion: vbelt >
√

2µдl . In these

two situations, forces on the components are diferent; therefore, the formalized physical models also difer. We

carefully investigate both models to ind the critical features for ingerprinting.

4.2 Component Displacement Calculation Under Situation A

We irst consider the situation where the component is moving at the same velocity as the conveyor belt and

vbelt ≤
√

2µдl . Fig. 5 shows a straightforward physical model for sorting. In an actual sorting process, we cannot

ignore the air resistance.

Definition 4 (Air resistance). Air resistance (faf ) is deined in Equation (4), k is the coeicient of air resistance.

k is usually a constant related to the characteristic area (windward area), the smoothness and the overall shape of the

component.

faf = kv
2 (4)

Definition 5 (Component’s resultant force). If we only consider the free-fall motion of the component, the

component’s resultant force (F ) in the direction of vertical falling is

F =mд − faf =mд − kv2 (5)

Definition 6 (Component’s acceleration). In the free-fall motion, when a component falls freely, its accelera-

tion (a) is

a =
F

m
= д −

kv2

m
=

dv

dt
(6)

The acceleration (a) in Equation (6) is also the amount of change in velocity (∆v) per unit time (∆t ), i.e., a =
∆v
∆t
=

dv
dt . We can observe from Equation (4) and Equation (6) that when the component’s velocity (v) in the

direction of vertical falling increases, the component’s acceleration (a) decreases and air resistance (faf ) increases.

Consequently, the component’s acceleration is not a constant. However, in the discrete manufacturing scenario,

the height of the component’s fall (h) and the component’s velocity in the direction of vertical falling are small,

the falling time (tall ) is short. Therefore, we approximate the air resistance faf as a constant fc , simplifying

the component’s displacement calculation.
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In this case, the resultant force in the direction of vertical falling is F =mд − fc and the acceleration of the

component is a = д −
fc
m
. Utilizing Theorem 1, we can obtain the total time (tall ) taken for a component to fall

from the conveyor belt to the ground in Equation (7).

tall =

√

2h

д −
fc
m

(7)

Consequently, the displacement (s) that the component moves forward during the tall can be calcuated in Equation

(8).

s =

√
√

2hv2
belt

д −
fc
m

−
hfc

mд − fc
(8)

Theorem 1 (Displacement formula of uniformly accelerated motion). When the acceleration a of an

object is constant, Equation (9) illustrates the relationship between the displacement s of the object’s motion, the

initial object velocity v , the acceleration a, and time t [11].

s = vt +
1

2
at2 (9)

Note that the proof of Equation (3), Equation (7) and Equation (13) use Theorem 1.

4.3 Component Displacement Calculation Under Situation B

We then consider the situation where v < vbelt and v =
√

2µдl . As shown in Fig. 6, the component will undergo

an atypical horizontal parabolic motion when the belt speed is low and the belt friction is signiicant. To better

visualize θ in Fig. 6, we perform a force analysis on the object at the critical point of falling from the belt. The

belt friction force at this point (µmд) is less than the component force of gravity in the object’s falling direction

(mд cosθ ), satisfying Equation (10). Therefore, we can calculate the angle θ between the direction of an object

falling and the vertical line based on the belt friction coeicient µ. For example, when µ = 0.1, we can get

cosθ > 0.1 and thus calculate θ < 84◦ via Equation (10). In the subsequent displacement calculation, we still use

θ instead of a speciic angle in the equations.

µmд < mд cosθ (10)

Theoretical direction

mg
θ

Real direction

Fig. 6. The atypically horizontal parabolic motion

To calculate component’s acceleration (a′) along the vertical direction in Fig. 6, we irst calculate the resultant

force (F ′) of the component in Equation (11). Speciically, µmд cosθ is the resolve force of the belt friction force

along the vertical direction and fc is the air resistance. Thus, component’s acceleration (a′) is given in Equation

(12).

F ′ = µmд cosθ +mд − fc (11)

a′ = µд cosθ + д −
fc

m
(12)
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Utilizing Theorem 1 which describes the displacement formula of uniformly accelerated motion, we can obtain

the total time (t ′
all

) taken for a component to fall from the conveyor belt to the ground in Equation (13).

t ′all =

√

2h

µд cosθ + д −
fc
m

(13)

Subsequently, we obtain the displacement (s ′) that the component moves forward during t ′
all

in Equation (14).

s ′ =

√

4µдlh

µд cosθ + д −
fc
m

−
hfc

µд cosθ + д −
fc
m

(14)

4.4 The Displacement Calculation Formula

We merge Equation (8) and (14) to get a complete displacement calculation formula in Equation (15). We ind that

the inal displacement is related to the parameters such as vbelt , h,m, µ and fc from Equation (15). We consider

the belt friction coeicient µ and air resistance fc constants. Therefore, we leverage four physical features (mass,

velocity, height, and displacement) to generate unique ingerprints for the sorting system.

s =





√

2hv2
belt

д−
fc
m

−
hfc

mд−fc
vbelt ≤

√

2µдl
√

4µдlh

µд cos θ+д−
fc
m

−
hfc

µд cos θ+д−
fc
m

vbelt >
√

2µдl
(15)

5 MULTI-PHYSICAL FEATURES BASED FINGERPRINTING METHODS

The previous ğ4 proves that displacement, mass, velocity, and height are interlocked physical variables. Addition-

ally, these variables represent the unique physical characteristics of ICPS devices and can be used to generate

physical ingerprints. In this section, we irst illustrate the multi-physical features based ingerprinting methods.

We then describe the insider attack in the sorting system, clarifying the capabilities of insiders and explaining

how to detect attacking behaviors using the diferential detection strategy. Finally, we propose an optimization

method for physical feature data to train the classiier for displacement calculation and ingerprint generation.

5.1 Fingerprint Generation Overview

In this paper, we propose to utilize multiple physical features of ICPS devices in the physical layer for ingerprint

generation. Speciically, we employ the sorting system as a typical ICPS example to clarify the overall worklow

of ingerprint generation. Fig. 7 shows the worklow of ingerprint synthesis. The square represents mass data,

the triangle represents velocity data, the diamond represents height data, and the round represents displacement

data. It’s worth noting that diferent colors represent diferent data. These characteristics data represent the

features of the sorting system in the physical layer. We present the detailed worklow below.

① Various sensors collect raw data of features from the sorting system.

② PC preprocesses the collected data. We can gain multiple physical features from the preprocessed data, e.g.,

mass data (square), velocity data (triangle), height data (diamond) and displacement (round). In the case

of the sorting system, each component corresponds to a set of features obtained by sensors. PC classiies

multiple physical features into corresponding pairs, e.g., (m,v,h, s ). We utilize the minimum deviation

based and conidence threshold based optimization methods to eliminate interfering noise in feature data

(see ğ5.3 for details). We then employ optimized features as the training dataset for the classiier model.

③ In themodel training pipeline, we use many pre-collected feature pairs like (m1,v1,h1), (m2,v2,h2) as

the input to a physical model and corresponding displacement s1, s2 as the output of the physical model,
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Fig. 7. Workflow of fingerprint generation with multi-physical features

training a classiier to get a more accurate physical model. Note that the trained classiier will be used in

the diferential detection pipeline.

④ In the production environment, we use the feature pairs (m,v,h) as the input to the classiier (trained

physical model) and calculate the output displacement s∗ in real time.

⑤ In the ingerprint synthesis and diferential detection step, the diferential detection strategy can tell

whether a ingerprint is generated by normal device operations or an insider attacker. Speciically, we irst

synthesize multiple physical features (m,v,h, s ) obtained from sensor data to generate ingerprint F of the

current ICPS devices. We then combine the classiier output s∗, utilizing (m,v,h, s∗) to form a ingerprint

F∗. If F , F∗, we detect attacking behavior in the system. Because the attacker may have tampered with the

sensor data, resulting in F , F∗.

The underlying reason for applying ingerprint recognition in intrusion detection is that ingerprints generated

under diferent device physical conigurations are highly separable. If an attacker does not know the exact system

device coniguration, the ingerprint obtained by forging the sensor data must not match the current device

coniguration (more empirical details in ğ7.2). Next, we specify how to train the classiier model in Fig. 7.

Physical model training with real data inputs. We can calculate the component displacement with cor-

responding velocity, mass, and height data with the help of Equation (15). However, the physical model has

various simpliications and estimations. Therefore, in order to obtain a more accurate physical model to calculate

component displacement, we propose using real-life data collected from ICPS sensors to train a classiier. The

input X and output Y of the classiier model and the training set T are formulated as follows,





X =

{

x j |
(

x j
(1),x j

(2),x j
(3)
)T
}

Y = sj , j ∈ (1, 2, 3, . . .)

T =
{

(xi ,yi ) |(x1,y1), (x2,y2), . . . , i ∈ (1, 2, 3, . . .)
}

(16)

In Equation (16) x j denotes the j-th physical feature pairs of the input, x j
(1),x j

(2),x j
(3) represents the three speciic

physical features contained in the j-th feature pairs. For example, the feature pairs x j are (m1,v1,h1), (m2,v2,h2)

in the sorting system, and x j
(1) ism1. sj is the corresponding classiier model output for each feature pair of

inputs, such as displacement s1 and s2. (xi ,yi ) in the training set T denotes a sample point which represents the

physical characteristics of a component and its corresponding real displacement.
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We obtain the training data from velocity, mass, height, and vision sensors in physical testbed experiments.

We take mass, velocity, and height as inputs of the classiier. We also feed the matching displacements as outputs

to the classiier. Note that the selection of classiier is user-customized, referring to predictive models such as

decision trees [27]. Distinct ICPS can choose diferent classiier models for training. The output displacements of

the classiier are then itted to the real displacements collected from sensors, aiming at training a physical model

with high classiication accuracy. After the classiier reaches the accuracy threshold required by the ICPS, we use

the trained classiier to generate displacements in the production environment in real time. The multi-physical

features (classiier input) and newly gained classiier output (i.e., displacement) are synthesized to generate a

ingerprint of the current device.

5.2 Insider Atacks and Fingerprint-Based Diferential Detection Methods

We describe how to detect insider attacks with multi-physical features based ingerprints in this section.

The detailed insider attack worklow. In ğ1, Fig. 2 gives an overview of insider attacks in the sorting system.

Speciically, diferent types of components’ masses are distinct. Therefore, the components will be thrown into

diferent positions at the end of the conveyor belt under the same device coniguration (belt velocity and height).

Depending on the position, diferent types of components are sorted automatically. The adversary aims to disrupt

the sorting lines without being detected by the system. We specify two critical steps for the insider attack

against the sorting system.

① When a component moves to a position near the end of the belt, the insider controls the motor, changing

the vbelt for a short period, i.e., from vor iдin to vnew . When vbelt is vor iдin , the component displacement

is sor iдin . When vbelt is vnew , the component displacement is snew . The component thus will be thrown

into a diferent position, causing the component to be misclassiied. The velocity will then quickly return

to vor iдin without being noticed by sensors. The attacker also tampers with mass sensor data, changing

mor iдin tomnew that satisies the new component classiication. Speciically, in Fig. 2 after an insider attack,

the component that should have been sorted to store station 2 is sorted to store station 1.

② Moreover, ICPS also cannot detect the attack or identify incorrectly sorted components without ingerprints.

Because to avoid being detected by the system, the insider attacker (1) captures data packages from velocity

and mass sensors and (2) rewrites the original data package with the tampered data, causing the PC to

receive incorrect data.
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Fig. 8. Fingerprint-based diferential detection method against the insider atack.
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Capabilities of an insider. Firstly, we clarify that the ingerprint-based intrusion detection method is valid

under the limited attacker capability deinition. Speciically, attacker is not a strong attacker who can intercept

all the packets in the system. The data packages intercepted by the insider attacker are black-box data, and there

may be a partial loss of sensor data. Therefore, the attacker does not know the targeted attacking device’s exact

coniguration or the classiier model’s full parameters. Notably, the above capability deinition has practical

signiicance. In many scenarios, the attacker does not have a strong capability but still launches harmful and

insidious attacks. For example, in Stuxnet, the attacker cannot access all packets in the ICPS but has compromised

a vulnerable device in the network with malware [13].

Secondly, we illustrate how an insider trains an attack model to forge ingerprints in Fig. 8. Note that, in the

case of sorting system, one sorting line has a ixed device coniguration, i.e, the belt height and velocity. In

the model training stage, the detection system uses many pre-collected optimized feature pairs like (m1,v,h),

(m2,v,h) as inputs to a classiier and corresponding displacement s1, s2 as outputs of the classiier, training the

model to get a more accurate detection model (trained classiier). However, the insider trains the attack model

under two conditions. ① Insider randomly guesses the classiier model parameters (belt height and velocity) from

limited intercepted sensor data. ② Insider cannot know precisely the belt speed vor iдin and vnew deined in the

above attack worklow.

Diferential detection via ingerprints. The key idea of the diferential detection strategy relies on passing

the same input to the classiier and comparing the output [20, 31]. In the example of Fig. 8, the attacker tamper

with sensor data to cover up the attacking behavior. The detection model (trained classiier model) output s∗,

generating F∗ with input (m∗,v,h). The attacker forgesm∗ in the sensor data that can output s via the attack

model, generating F with input (m∗,v,h). Applying the diferential detection strategy, if F∗ equals F , the system

assumes no attack event has occurred. Otherwise, we can detect intrusion via ingerprints.

The key, therefore, lies in the attacker correctly guessing the coniguration of the physical device. Besides, feature

combination determines the number of device conigurations. In the example of Fig. 8, if there are four velocity

conigurations and two height conigurations, then the attacker has only 1
8 ( 1

4×2 ) probability of successfully

guessing the full parameters of the classiier model and launching an attack on the system. Heuristically, we can

conclude that the greater the physical device conigurations number, the smaller the probability that the attacker

successfully performs an attack.

5.3 Optimization Methods for Feature Data

We can utilize the optimization method in the physical model training stage (see ğ5.1 for training details) to

eliminate interfering noise in feature data and train a physical model with high classiication accuracy.

When there is a large amount of sensor data, some abnormal data will inevitably exist. Consequently, we

propose to optimize data for interfering noise elimination, leading to a better visualization of the feature data

distribution. We can then use the optimal data iltered from a large batch of data as it points for the visualized

data distribution graph. For example, in Fig. 13, the component displacements of diferent masses at the same belt

speed (device coniguration) are itted by a curve.

Our goal is to minimize the Euclidean distance between the displacements generated by components under

the same physical conditions (e.g., the same mass, velocity, and height) in the example of the sorting system.

Equation (17) and (18) illustrate the deviation and threshold metrics of the optimization methods.

Sdev (sop ) =

√
√

√

√

√
N
∑

j=1
(sop − sj )

2

N − 1
,op , j (17)
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The displacement optimization method based on minimum deviation. In Equation (17), sop denotes the

target solution for optimal displacement under a particular physical condition (v,h,m). sj denotes multiple

displacement data generated under the same physical conditions as sop . We conduct the experiments N times and

obtain multiple displacement data that are collected under the same physical conditions. Sdev (sop ) denotes the

standard cross deviation function for calculating displacements diference among collected data. In order to solve

for the optimal target displacement sop value, we need to iterate through all the sj . The sop that minimizes Sdev ( )

will be the optimal displacement under a particular physical condition. The optimization method calculates

the optimal displacement under a speciic physical characteristics coniguration, making the feature data more

accurate and facilitating the data itting in the experiment 7.2.

Algorithm 1 The optimization method for displacement features

Input: A set of displacement data Ddisplacement

Output: Steadily optimal displacement set Ssmooth

1: Sdev = [ ] ▷ The displacement optimization method based on minimum deviation

2: Sop ← ∅

3: for Sdisplacement in Ddisplacement do

4: for si in Sdisplacement do

5: sdev ← 0

6: for sj in Sdisplacement do

7: sdev ← sdev + (si − sj )
2

8: end for

9: sdev ←
√

sdev
(len (Sdisplacement )−1)

10: Sdev (si ) ← sdev
11: end for

12: si ← min Sdev (si )

13: Sop ← Sop ∪ si
14: end for ▷ The displacement smoothing method based on conidence threshold

15: Sop .sort ( ), Sop = sop−1, sop , sop+1, ...

16: Ssmooth ← ∅

17: for sop in Sop do

18: if
|sop+1−sop |

sop
< σ then

19: Ssmooth ← Ssmooth ∪ sop
20: end if

21: end for

22: return Ssmooth

σs =

���sop+1 − sop
���

sop
(18)

The displacement smoothing method based on conidence threshold.We also propose a conidence level-

based displacement smoothing method to accurately obtain the stable displacement from displacement samples.

Speciically, we irst sort the optimal displacement sop of all samples. Then we calculate the displacement deviation

σs of adjacent samples, and judge whether it exceeds the pre-deined conidence threshold σ . In Equation (18), sop+1
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and sop are the two adjacent optimal displacements. For example, if the deviation σs is less than 5% (conidence

threshold σ ), i.e., σs < σ = 5%, then the optimal displacements from the itting points are in steady value.

Algorithm 1 shows the displacement optimization procedure. The algorithm inputs is a list of displacement

data Ddisplacement collected under diferent device conigurations. Each element in Ddisplacement is Sdisplacement .

Sdisplacement contains multiple displacement data si that are collected under the same physical conditions. The

algorithm output is a set of steadily optimal displacement data Ssmooth . We can divide the algorithm into seven

steps.

① Initialize a standard cross deviation list Sdev , a standard cross deviation element sdev that will latter be

added into Sdev , and a optimal displacement data set Sop (line 1, 2 and 5).

② Traverse the Sdisplacement of displacement data under the same physical condition and calculate the

Euclidean distance sdev of si from the other sj (line 4-8).

③ Calculate sdev according to Equation (17) and add it to Sdev (line 9-10).

④ The displacement data si that minimize the deviation function Sdev ( ) will be the optimal displacement sop
under a particular physical condition. Append si to the optimal displacement data set Sop (line 12-13).

⑤ After sorting Sop , we have Sop = sop−1, sop , sop+1, ... (line 15).

⑥ Iterate through the optimal displacement distances and calculate the deviation between adjacent optimal

displacement distances according to Equation (18). Determine whether the deviation
|sop+1−sop |

sop
is smaller

than the pre-deined conidence threshold σ . If the deviation is smaller, append the optimal distance sop to

the set Ssmooth (line 17-21).

⑦ Return the set of smooth displacements Ssmooth (line 22).

5.4 The Generality of Multi-Physical Features Based Fingerprinting

Wementioned in ğ1 that the device ingerprinting technology has generality in the intrusion detection of ICPS

control low. By constructing a physical model of the key devices on the control low, we obtain a set of interlocked

physical variables and the critical variable that implements the ICPS function. Combining these physical features

as a device ingerprint, we monitor the device ingerprints for changes in the production environment to discover

stealthy insider attacks.

We take the following two ICPS applications as examples, illustrating how to use the proposed ingerprint

technology in other scenarios.

• In the example of electric mixers, the mixing luid viscosity, mixer depth, motor horsepower, and mixer

fan blade’s angular velocity are interrelated physical features. The mixer fan blade’s angular velocity is

the critical physical variable to implement the ICPS function (agitation of the liquid). Therefore, in this

application, we can use these four physical features of electric mixers as the mixing device’s ingerprint.

• In the example of temperature-sensitive latching relays, magnetic ring temperature, the number of turns in

the solenoid, current, voltage, and operation response time are interrelated physical features. The latching

relay’s operation response time is the critical physical variable to represent the ICPS function (open or

close operation). Therefore, in this application, we can use these ive physical features of latching relays as

its device ingerprint.

6 INTRUSION DETECTION METHODS ANALYSIS

In this section, we irst propose the r metric to quantify the detection model’s detection success rate against the

insider attack that randomly guesses physical parameters. We then solve the detection analysis as a variational

problem using functional analysis, demonstrating the inluence of device coniguration number and probability

distribution on the detection success probability.

ACM Trans. Sensor Netw.



1:16 • Hong et al.

6.1 The r Metric for uantifying Detection Success Rate
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Fig. 9. Use a detection model to discover atacking behavior

Fig. 9 shows the how to use a detection model to discover insider attacks. The ingerprint classiier is an

accurate physical model trained with real-life data X collected from ICPS sensors. We split the real-life dataset

into training data and testing data. The ingerprint training and testing data are generated independently of the

joint probability distribution P (Y ,X ). After we learn the classiier from the real-life dataset, we can use it as the

detection model in the production environment and deine it as a decision function Y=f (X ). The following

gives the calculation process of the r metric.

• An adversary builds an attack model by intercepting black-box sensor data, training the classiier model

with randomly guessed physical parameters. The attacker intercepts the input xN+1 by the black box and

then gains an output y ′N+1 through the attack model. The attacker construct the input and output to forge

a ingerprint F aiming at cheating the detection model.

• As for the detection model, when the input is xN+1, the corresponding output is yN+1, generating F∗ for

the expected component. If (xN+1,yN+1) is not equal to (xN+1,y
′
N+1), the system succeeds in detecting

the attacking behaviors.

L =

{

0, (xN+1,yN+1) = (xN+1,y
′
N+1)

1, (xN+1,yN+1) , (xN+1,y
′
N+1)

(19)

r =
1

N

N
∑

i=1

L (20)

In order to quantify the detection model’s detection success rate against the attack model that randomly

guesses physical parameters, we use a metric function in Equation (20). L in Equation (19) represents the number

of successful detections in N attacks. Obviously, the higher the r metric’s value, the better the performance of a

detection model.

6.2 Analysis of Detection Success Probability

We analyze the device coniguration probability distribution’s efectiveness on the detection model performance,

demonstrating that the larger the number of device conigurations, the more efective the detection.

Probability distribution of device conigurations. As described in ğ5.2, the attacker does not know the exact

physical model parameters (device conigurations). Thus the attacker can only guess the model parameters

randomly based on the black box data and partially lost data intercepted from the ICPS. The multi-physical

features based ingerprint intrusion detection method only fails when the attacker correctly guesses the physical

parameters of the target device. The probability distribution may vary for each device coniguration in the ICPS,

leading to two critical questions, Q1 and Q2. For example, there are two sorting lines with coniguration velocity
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v1 and height h1. One sorting line is conigured with velocity v2 and height h1. Then the probability of the

coniguration (v1,h1) occurring is 2
3 .

Q1: How does the probability distribution of device conigurations afect the success probability of an insider

attack?

Q2: What probability distribution minimizes the success probability of an insider attack?

To answer Q1, we give a formal Deinition 8 to measure the impact of device coniguration’s probability

distribution on the insider attack success probability. To answer Q2, We prove Theorem 2 by employing functional

analysis. Proof results show that when the probability of Nconf iд device conigurations’ occurrence is uniform,

the insider attack has the smallest success probability.
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Probability distribution of sample points. In the example of the sorting system, the component displacement

data is s∗ after the attack misclassiies the component. The insider needs to forge a component messm∗ that

matches sensor data s∗. Besides, there is some luctuation and bias in the data collected by the sensors in the

system. Furthermore, the overall data distribution matches a Gaussian distribution. The yellow point in Fig. 10

represents the sample points (s1,m1). The darker color in the middle of the sample point indicates most of the

sample data. The lighter color at the edges of the yellow point shows a small proportion of sample data with

luctuations.

Assuming the attacker wants to tamper with the original correct ingerprint (s1,m1) without being detected,

the attacker only has two choices, red point (s2,m2) or green point (s3,m3) in Fig. 10. Selecting another sample

point such as (s1,m2) or (s1,m3) rather than (s2,m2) and (s3,m3) will lead to failed detectable attacks. Additionally,

the red arrow in the nine-box grid represents the selection of correct samples, and the black arrows represent the

selection of wrong attacking samples.

How do attackers choose samples? When the attacker makes a guess for the device coniguration (velocity v

and height h), the attacker will have an attack model that predicts the relationship betweenm and s (see ğ5.2

for details). The attacker then forges a matching s∗ tom∗ based on the intercepted target component data, thus

selecting sample points (sn ,mn ) such as (s1,m2) and (s2,m2) in Fig. 10.

Note that, if the probability distribution of device conigurations (velocity v and height h) is not uniform, then

the probability distribution of the sample points (s,m) is also not uniform. A displacement value s necessarily

corresponds to a mass valuem. Therefore the probability distribution functions of displacement and mass are

the same. Assuming the probability distribution function of displacement is P . Probability of selecting s1 is ps1 .

Probability of selectingm2 is pm2 .
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Definition 7. The attack success probability is:

Pattack =

n
∑

i=1

pi

n
∑

i,j

pj
2 s .t .

n
∑

i=1

pi = 1 (21)

Proof. We prove Pattack in Deinition 7. Assuming the target attacking sample is (s1,m1), a successful attack

requires selecting (s2,m2) or (s3,m3) sample point. In this way, Equation (22) gives the attack success probability

pattack (s1,m1). Similarly, when the target attacking sample is (s2,m2), Equation (23) gives the attack success

probability pattack (s2,m2). Therefore, we can use Equation (21) to calculate the overall attack success probability

pattack . The constraint of Equation (21): assuming the probability of selecting the i-th sample point is pi , then the

probability sum of all sample points is 1.

pattack (s1,m1) = ps1 × (ps2 × pm2 + ps3 × pm3 ) (22)

pattack (s2,m2) = ps2 × (ps1 × pm1 + ps3 × pm3 ) (23)

□

Definition 8. When the probability distribution of device coniguration is P (x ), the attack success probability is:

Pattack =

∫

x

P (x )

∫

z

P (z)2dzdx s .t .

∫

x

P (x ) = 1

∫

z

P (z) = 1 (24)

To answer Q1 and simplify the Pattack calculation in Equation (21), we convert Pattack ’s summation process

to a integration process based on the probability density function. Therefore, we transform Equation (21) to

Equation (24). In Equation (21), pi is a probability, and xi is the corresponding discrete random variable, i.e., the

event of selecting the i-th sample point. In Equation (24), P (x ) is a probability density function, and x is the

corresponding continuous random variable. In the practical scenario of the sorting system, P (x ) is the probability

distribution of device conigurations. Moreover, the probability sum of all sample points is 1. Consequently, the

constraint is
∫

x
P (x ) = 1, i.e., the probability density function’s full domain integration is 1.

Definition 9. The probability density function P (x ) that minimizes pattack deined in Equation (24) is:

argmin
P

∫

x

P (x )

∫

z

P (z)2dzdx s .t .

∫

x

P (x ) = 1

∫

z

P (z) = 1 (25)

= argmin
P

∫

z

P (z)2
∫

x

P (x )dxdz (26)

= argmin
P

∫

z

P (z)2dz (27)

To answer Q2, we solve for the probability density function P (x ) that minimizes pattack in Equation (25).

Speciically,
(

argmin
P

)

means to ind the probability density function that minimizes the integration process

P (x )
∫

z
P (z)2dzdx . We change the order of integration and have Equation (26). Note that, we have the constraint

∫

x
P (x ) = 1

∫

z
P (z) = 1. Consequently, Equation (26) equals Equation (27). Afterward, Theorem 2 will solve

Equation (27), inding the probability density function P (x ) that minimizes pattack .

Theorem 2 (Optimal probability distribution). When P (z) ∼ U (i.e., optimal distribution) and the probability

of Nconf iд device ingerprint conigurations’ occurrence is uniform, the insider attack has the smallest success

probability. Besides, the larger the number of device ingerprint conigurations, the lower the attack success probability.

P attack
min =

1

Nconf iд

ACM Trans. Sensor Netw.



Detect Insider Atacks in Industrial Cyber-Physical Systems Using Multi-Physical Features Based Fingerprinting • 1:19

Proof. We prove P attack
min deined in Deinition 8. We intend to get the probability density function P (x )

deined in Deinition 9 that minimizes pattack . Let the variable ac denotes the variation
∫

z
P (z)2 in Deinition 9,

we can obtain Equation (28). Furthermore, we can derive Equation (29). According to Equation (36) in Theorem 3

(Jensen’s inequality), we have Equation (30).

ac =

∫

z

P (z)2 = E
z∼P (z )

P (z) (28)

logac = log E
z∼P (z )

P (z) (29)

logac = log E
z∼P (z )

P (z) ≥ E
z∼P (z )

log P (z) (30)

Additionally, according to Theorem 4 (principle of maximum entropy), we have Equation (31).

E
z∼P (z )

log P (z) ≥ E
z∼U

logU (z) (31)

We can obtain the Equation (32) according to the inequality’s transitive relation [4].

logac ≥ E
z∼P (z )

log P (z) ≥ E
z∼U

logU (z) (32)

According to Theorem 4 (principle of maximum entropy), when P (z) ∼ U , the variational lower bound

Ez∼P (z ) log P (z) obtains the minimum value. At this point logac = Ez∼P (z ) log P (z) and Ez∼P (z ) log P (z) =

Ez∼U logU (z). Consequently, logac obtains the minimum value. Note that log is a monotonically increasing

function, ac thus obtains the minimum value at this point. Then we can answer Q1 and Q2. When the probability

distribution of device coniguration is uniform, the insider attack success probability P attack
min gets a minimum

value.

The 3 × 3 sample grid in Fig. 10 simpliies P attack
min calculation with discrete sample point selection probability.

However, the actual sample point selection probability is continuous. Besides, the probability of an attacker

selecting diferent sample points is the same as the probability of distinct device conigurations’ occurrence, i.e.,

Psample = Pconf iд . Because the attacker irst guesses the device coniguration and then computes the sample

points. Each device coniguration corresponds to a sample computation function. In the case of a sorting system,

for a physical model with (v,h) selected, am value must correspond to a s value, which means that (m, s ) occurs

with the same probability as (v,h). Therefore P attack
min is minimized when the probability of each device ingerprint

conigurations’ occurrence is equal to 1
Nconf iд

throughout the ICPS.

Equation (33) shows how to calculate P attack
min with uniform distribution (i.e., optimal distribution P (z) ∼ U ).

We have the simpliied Equation (34) when the number of conigurations Nconf iд is relatively large.

P attack
min =

n
∑

i=1

pi

n
∑

i,j

pj
2

= [(n − 1) ×
1

n2
] × n ×

1

n
=

n − 1

n2
(33)

=

1

Nconf iд
s .t . Nconf iд is large (34)

□

Theorem 3 (Jensen’s ineqality). For a convex function f (x ), numbers x1,x2,x3, ...,xn ∈ [a,b], Jensen’s

inequality can be stated in Equation (35). The inequality is reversed if f (x ) is concave, which is Equation (36). Besides,

equality holds if and only if x1 = x2 = x3 = ... = xn [4].
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∑n
i=1 f (xi )

n
≥ f (

∑n
i=1 xi

n
) (35)

∑n
i=1 f (xi )

n
≤ f (

∑n
i=1 xi

n
) (36)

Theorem 4 (Principle of maximum entropy). For a system with n events, the probability of each event occurring

is pi , such that the probability sum of the events occurring is 1. When the system entropy is maximum, the probability

of each event is equal, i.e., p1 = p2 = p3 = ... = pn and Pi ∼ U [14].

H (P ) = −

n
∑

i=1

pi logpi s .t .

n
∑

i=1

pi = 1 (37)

Note that the proof of Theorem 2 uses Theorem 3 and Theorem 4.

Detection success probability. According to Theorem 2, we derive the minimum detection success probability

in Equation (38). Speciically, if there are four velocity conigurations and two height conigurations in ICPS, the

probability of the detection model correctly recognizing the random insider attacks is 87.5% (1 − 1
4×2 ). When the

physical features identiied for ingerprinting increase, the combination of physical features also boosts, leading

to a rise in the total number of conigurations in ICPS. Fig. 11 demonstrates that the proposed detection model

thus will have a better performance in discovering insider attacks.

P detect ion
max = 1 − P attack

min = 1 −
1

Nconf iд
(38)

7 PERFORMANCE EVALUATION

In this section, we provide a set of comprehensive experiments. We propose multi-physical features based

ingerprints that can easily classify device conigurations and detect anomalies. The more features we identify, the

better separability ingerprints have. Besides, the classiiers’ accuracy, precision, and recall against the real-life

dataset show that the detecting performance of classiiers approaches 100% when the device coniguration number

is small, demonstrating the efectiveness of ingerprinting methods. The confusion matrix further veriies the

robustness of ingerprint generation.

7.1 Experimental Setup

Implementation. Fig. 12 shows the physical testbed that we build in the laboratory scenario. The testbed

consists of a PC, controller, actuator, conveyor, velocity sensor, and camera, which simulate the sorting system in

Fig. 3. Besides, the controller is the core control center. We use a microcontroller unit (MCU) as the controller and

electrical machinery (motor) as the actuator. PC sends a command to the controller and receives the controller’s

response to the status of physical devices. The controller transmits the commands to the motor, connected to

the motor and the velocity sensor. PC sends commands to the MCU to set the motor speed, thus changing the

belt speed. When the belt is running, the velocity sensor in the testbed returns the current component velocity

utilizing a raster calculation. The testbed adjusts the pulse width modulation (PWM) of the motor driver, which is

connected between the MCU and the motor, changing the belt velocity. During the operation of the testbed, the

experimental component will be thrown into diferent positions at the end of the conveyor belt. PC runs a python

script using OpenCV to invoke the vision sensor to camera the experimental component. The python script

performs contour extraction, calculates the pixel distribution of the component contour in the photograph, and

then scales to calculate the distance to the component falling point and the size of the component cross-sectional

area. PC stores all sensor data.
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Fig. 12. Fingerprints generation through physical testbed

Datasets. In our experiment, the range of parameter v is (0.8m/s-1.1m/s), the range ofm is (5д-1000д), and the h

is 1.25m. We adjust the working velocity into four levels by changing the PWM of the motor through the MCU.

With the above settings, we can obtain ingerprints under various device conigurations (physical characteristics).

In ğ5.1, we propose to use real-life data collected from ICPS sensors for physical model training. We conduct

up to 10,000 experiments to collect sensor data. Moreover, We remove the abnormal sensor feature data and

eliminate interfering noise using the optimization methods in ğ5.3. We form a dataset with the sensor feature

data, which contains physical properties such as velocity, mass, height, and displacements. We split the dataset

into training and testing sets using the stratiied K-fold method, where K is set to 10.

Evaluation metrics of classiication efectiveness. The dataset collected in the real-life scenario may be

unbalanced, i.e., there is a signiicant diference in the number of positive and negative category labels. Therefore

a combination of accuracy, precision, and recall is required to evaluate the classiication efectiveness of the

unbalanced dataset. Each component in the dataset contains two labels: one is the label of its real category, and

the other is the label given by the trained classiier. We can evaluate the classiier’s efectiveness by comparing

whether the two labels are consistent. Four situations exist for the comparison: true positive (TP ), true negative

(TN ), false positive (FP ) and false negative (FN ). Equation (39) deines accuracy, precision and recall.

Accuracy =
TP +TN

TP + FP +TN + FN
(39)

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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7.2 Relationship Analysis of Multi-Physical Features

We analyze the relationships between the multiple physical features that construct a ingerprint by plotting the

real-life sensor data. When visualizing the physical features, we found overlap between data points because the

large amount of real-life data we have collected inevitably contains some abnormal data. In order to reduce the

interfering noise data and visualize the data distribution better, we use the optimization method proposed in ğ5.3

and set the deviation σs as 5%. Fig. 13 shows the relationship between the component displacement and mass. The

X -axis denotes the mass (Unit: g), and Y -axis is the component displacement (Unit: mm). The range of mass is

from 5д to 1000д. The conveyor belt height h is ixed to 1.25m and the velocity coniguration contains four levels

(v=0.8m/s , v=0.9m/s , v=1.0m/s , v=1.1m/s). Each itted curve speciically represents the relationship between the

optimal component displacement (sy ) and diferent masses (mx ) under one velocity level. We draw the itted data

point, the optimal displacement (sy ) and diferent masses (mx ), under one velocity level coniguration. Then we

it the curve through univariate linear regression.

Fig. 13. The relationship between the component displacement and mass under diferent velocity levels

In the sorting system, we propose to use the ingerprint consisting of four physical features, mass, velocity,

height, and displacement. Fig. 13 exactly visualizes the separability of device physical conigurations based on

their displacement measurements. Besides, it shows that the same coniguration can generate stable ingerprints

distinguishable from diferent conigurations. From this physical phenomenon (Fig. 13 visualization), we can tell

that even using simple metrics, such as displacement, results in the sorting line device conigurations are highly

separable.

Also, we can easily observe that the greater the component mass, the smaller the displacement within a speciic

mass range. With the samemass, the greater the velocity, the greater the displacement. In a discrete manufacturing

scenario, if the system sorts small components and component mass is not large, then the displacement distance

is closely related to speed and mass. Additionally, we obtain the following two observations that are signiicant

for ingerprint recognition methods from Fig. 13.

① Classify device conigurations based on their ingerprints: The physical phenomenon suggests that

a properly tuned machine learning ingerprint classiier model would result in high-accuracy device
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coniguration classiication. Therefore, we propose to utilize a classiier in the diferential detection model

for ingerprint generation, comparing them with ingerprints received by sensors. If they are not identical,

we can infer that an insider attack has happened and the attacker tampered with the sensor data. Speciically,

we collect and optimize real featurized data from a physical testbed to train the classiier model.

② A generalized classiier requires multi-physical features: Fig. 13 shows that when the mass value

is very small, there is an intersection of the itted curves representing the relationship between mass

and displacement under four-velocity conigurations. This indicates that, in this case, it is impossible to

distinguish the speed conigurations by displacement and mass. In this situation, introducing other physical

features, such as the conveyor belt height h, can change the intersection of the itted curves. Consequently,

we can conclude that a generalized ingerprint classiier requires multi-physical features.

7.3 Classifier Performance Analysis

(a) Decision Tree Classiier (b) KNN Classiier (c) Naive Bayes Classiier

Fig. 14. Performance of Decision Tree, KNN and Naive Bayes Classifiers

The ingerprint classiication can distinguish the coniguration type of a device. Furthermore, an efective

classiier can detect false ingerprints generated by an attacker that does not belong to a particular coniguration,

thus detecting insider attacks. We build diferent kinds of classiiers to test their efectiveness. Intuitively, the

more accurate the classiier is at classifying ingerprints correctly, the better it will be at detecting false ingerprints

forged by attackers. We select three classiication methods from supervised machine learning: Decision Tree (DT ),

K-Nearest Neighbors (KNN ), and Naive Bayes (NB). We implement the classiiers in the Python Scikit-learn

machine learning library.

For the testing dataset, we take the belt velocity v , height h, and the displacement s as physical features of

component massm. We can observe from Fig. 13 that when the component mass is too large, the component

displacement depends on the height and velocity, independent of the mass. Therefore, we only used the velocity,

height, and displacement features with smaller mass values (six categories of masses). Speciically, the classiier

input is (v,h, s ) and the classiier output ism. Diferent component masses indicate distinct component types.

These four physical features form a ingerprint of a component.

Fig.14 (a)ś(c) show the classiication performance by DT , KNN and NB respectively. In each igure, X -axis

denotes the number of classiication types (N ), i.e., the component type number that can be distinguished

according to their physical features based ingerprints. Y -axis is the indicator of evaluating the classiication

efect. Three lines with diferent colors represent the accuracy, precision, and recall rate of the DT , KNN , and

NB classiier.

Table 1 details the accuracy, precision, and recall data. We observe that when the component type number

N ≤ 5, the detection performance indicators are close to 100%. However, as N approaches 6, the classiication
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performance declines. We conclude from experiment 7.2, a generalized classiication requires multi-physical

features. As the classiication types increases, we need to collect additional physical features to enhance the

classiier performance. However, the industrial component sorting system sometimes only needs to distinguish a

small number of component types. Therefore the ICPS coniguration of (v,m,h, s ) physical features is reasonable.

Note that we benchmark three commonly used classiiers in the experiments. These classiiers have similar

performance. Consequently, we can conclude that the classiier type does not afect the classiication performance,

and the classiiers are robust.

The confusionmatrix analysis.We utilize the confusion matrix to further evaluate the classiier’s performance

in detecting insider attacks. Speciically, each column of the confusion matrix is the predicted category (component

type), and the total number of columns represents the number of data predicted for that category. Each row is

the actual category to which the data belongs, and the total amount of data in each row represents the number of

data instances for that class. Moreover, to facilitate observation, we can divide the data of each cell by the total

number and scale it. As shown in Fig. 15 (a) to (d), we conduct the confusion matrix analysis on the decision tree

(DT) classiier, and the data on the diagonal is essentially 1. It means that the ingerprint classiier has better

performance when N is 2 to 5. However, when N is 6, as shown in Fig. 15 (e), the detecting system may gain

confusing results from the classiier. Because diferentiating large-scale experimental components with relatively

high mass only by velocity feature will produce an overlap of classiication regions. When the ICPS sorts small

components in discrete manufacturing industries, these situations do not afect the classiication performance.

We can get almost the same analysis results from the confusion matrix in KNN and NB. Consequently, this

paper does not include the confusion matrix of the KNN and NB models.

Detection success rate.We simulate the insider attack and use the r metric to calculate the classiier’s detection

success rate. We use a trained classiier to detect ingerprints forged by an attacker. The attacker randomly

guesses the device coniguration. As there are four sorting lines with diferent velocities in the ICPS, the attacker

randomly chooses one of the four velocities to train the attack model. Experiment results show that the r metric

of the decision tree classiier reaches 73.8%, indicating that the detection model discovers 73.8% attack behaviors.

The r metric of the KNN classiier is 72.3%, and the Naive Bayes classiier’s r metric is 73.4%. The r metric

approaches the theoretical detection success probability (1 − 1
4 = 75%) obtained via Equation (38) , demonstrating

that the greater the physical device conigurations number, the greater the probability that the detection model

successfully discovers an attack.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a device ingerprinting technique based on multi-physical features to discover insidious

insider attacks in ICPS. Notably, we demonstrate the ingerprinting approach and clarify the insider capabilities

in the sorting system. Speciically, the ingerprint consists of four physical features (mass, velocity, height, and

Number of types
Decision Tree KNN Naive Bayes

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

2 100% 100% 100% 100% 100% 100% 100% 100% 100%

3 100% 100% 100% 100% 100% 100% 99.9% 99.2% 99.0%

4 99.2% 99.2% 99.3% 99.2% 99.2% 99.3% 100% 100% 100%

5 99.3% 99.3% 99.4% 99.3% 99.3% 99.4% 99.4% 99.4% 99.4%

6 88.5% 87.9% 87.8% 90.1% 90.5% 90.0% 91.7% 92.2% 91.5%

Table 1. The detailed accuracy, precision, and recall of Decision Tree, KNN , and Naive Bayes
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(a) N = 2 (b) N = 3 (c) N = 4

(d) N = 5 (e) N = 6

Fig. 15. Decision tree confusion matrix with diferent category number N

displacement) that match relationships in the formalized physical model. Meanwhile, we implement a sorting

testbed, collecting a large amount of feature data as a dataset. Utilizing featurized data, we train a classiier

that generates ingerprints in real-time. Moreover, we employ a diferential detection strategy based on device

ingerprints to discover insider attacks eiciently. We solve the analysis of detection success probability as

a variational problem, proving that the more device conigurations, the lower the chance that an attacker

successfully guesses the correct classiier’s physical parameters. Experiments show that the more features we

identify, the better the separability and detecting performance of ingerprints. Without loss of generality, the

ingerprinting technique is robust and applies to intrusion detection of ICPS control low in other applications.

For future work, we plan to construct device ingerprints based on the data acquisition and interaction functions

of ICPS. Using the interaction protocols between multiple applications in cross-process manufacturing scenarios,

we can implement the device ingerprinting approach of complex industrial control systems. Also, we can further

use encryption technology in ingerprint synthesis, guarding the security and tamper-evident of ingerprints.
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