
FLMarket: Enabling Privacy-preserved Pre-training Data Pricing
for Federated Learning

Zhenyu Wen
zhenyuwen@zjut.edu.cn

Zhejiang University of Technology
Hangzhou, China

Wanglei Feng
wlfeng97@gmail.com

Zhejiang University of Technology
Hangzhou, China

Di Wu∗
dw217@st-andrews.ac.uk
University of St Andrews

St Andrews, UK

Haozhen Hu
huhaozhen5125@163.com

Zhejiang University of Technology
Hangzhou, China

Chang Xu
xuchang19980309@gmail.com

Zhejiang University of Technology
Hangzhou, China

Bin Qian
bin.qian@zju.edu.cn
Zhejiang University
Hangzhou, China

Zhen Hong
zhong1983@zjut.edu.cn

Zhejiang University of Technology
Hangzhou, China

Cong Wang∗
cwang85@zju.edu.cn
Zhejiang University
Hangzhou, China

Shouling Ji
sji@zju.edu.cn

Zhejiang University
Hangzhou, China

ABSTRACT

Federated Learning (FL), as a mainstream privacy-preserving ma-
chine learning paradigm, offers promising solutions for privacy-
critical domains such as healthcare and finance. Although extensive
efforts have been dedicated from both academia and industry to
improve the vanilla FL, little work focuses on the data pricing mech-
anism. In contrast to the straightforward in/post-training pricing
techniques, we study a more difficult problem of pre-training pric-
ing without direct information from the learning process. We pro-
pose FLMarket that integrates a two-stage, auction-based pricing
mechanism with a security protocol to address the utility-privacy
conflict. Through comprehensive experiments, we show that the
client selection according to FLMarket can achieve more than 10%
higher accuracy in subsequent FL training compared to state-of-
the-art methods. In addition, it outperforms the in-training baseline
with more than 2% accuracy increase and 3× run-time speedup.
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1 INTRODUCTION

Federated Learning (FL) provides a privacy-preserving paradigm
without exposing private data for learning machine learning (ML)
models [9, 29, 33]. It has found an increasing number of appli-
cations such as medical information systems [6], financial data
analysis [1], and cross-border corporate data integration [47]. Re-
search and industry efforts on FL primarily focus on improving the
accuracy [24, 50], computation [20, 34] and communication perfor-
mance [35, 38], as well as enhancing security and privacy [3, 52].
However, little attention has been paid to incentivizing the par-
ticipants to join FL, which is crucial because valuable data is not
readily available for FL tasks without proper incentives.

Pre-Training Pricing for FL Data Market. In traditional central-
ized ML tasks, servers (such as companies) typically purchase the
training data they need from a data market. These data are often
collected, cleaned, and pre-processed at considerable cost by third
parties [30, 40]. A typical FL data market has three entities: data
sellers (clients) who generate data and participate in FL tasks [43],
model buyers who purchase the model and FL data market (server)
that coordinates between sellers and buyers [62].

Existing incentivemechanismsmainly target the in/post-training
pricing based on the accuracy improvement of FL training [46, 58,
59]. Unfortunately, the data providers (FL clients) cannot anticipate
the reward before contributing their data and resources. Meanwhile,
data buyers cannot evaluate the data quality before the actual train-
ing takes place. These are crucial because (1) anticipated rewards
before training can greatly encourage the participation of clients, in-
creasing client enrollment and the diversity of training data [56, 59].
(2) Clients who know the early-estimated pricing before training
are more likely to continue, which guarantees the stability of FL
training [20]. For instance, based on our empirical survey 1, 84.7%
of respondents believe that pre-training incentives increase their
willingness to participate in FL. Additionally, 82.7% of respondents
prefer FL training with pre-training rewards over post-training

1The complete survey is shown in Appendix A
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rewards. Therefore, a framework for pre-training evaluation and
pricing is indispensable for a sustainable FL data market.
Use Case. A medical research institution aims to develop a model
for disease diagnosis and there are several healthcare providers
with patient data. The medical research institution first publishes
the task in the FL data market with the total payments. Then the
task is forwarded to the corresponding healthcare providers to ask
for their willingness to join. All healthcare providers who intend to
participate in the training task negotiate a satisfactory reward for
contributing their data. Hence, the data market collaborates with
them to negotiate and establish reasonable pricing as an anticipated
reward for subsequent FL training. To this end, the FL marketplace
must have the ability to determine the price of each participating
client before performing the actual FL training.
Challenges. Compared to the conventional in/post-training pric-
ing [29, 42, 49, 56, 59], implementing pre-training pricing is inher-
ently challenging:

Challenge 1: Pre-training pricing require to value clients’ data with-

out direct model feedback. The first challenge comes from limited
information before training, i.e., we cannot use aggregated model
accuracy as direct feedback for pricing and client selection. Instead,
we need to peek into the statistics such as volume and categorical
distributions, and analyze their correlations with model accuracy
in a federated setting [9].

Challenge 2: Pre-training pricing requires a consensus agreement

between client and server. An optimal pricing system should effec-
tively balance the needs of both the client and the server. From the
client’s perspective, pricing should not only reflect the intrinsic
value of their data but also offer incentives that encourage them to
share their data. On the server side, the total compensation should
remain within budgetary limits, and the price set for each client
should meet or exceed their expected value.

Challenge 3: Pre-training pricing requires to solve the privacy-

utility conflict. Although data volume and class distribution bring
more insights for pre-training pricing, they also ask the clients
to share distributional information regarding their private data.
E.g., knowing the distribution of human activities would easily
reveal individual habits [10, 36], hence deviating from the original
intention of FL to preserve privacy.
Our Solution. To tackle the above challenges, we present FLMar-
ket, an fairness, incentive, privacy-preserving client pricing frame-
work for the FL data market. The price is determined through an
auction that consists of a two-stage pricing mechanism, i.e., the
initial price based on the statistical information and a contribution-
proportional allocation strategy. The first-phase pricing determine
the price of each client based on its statistical information and com-
puted by a data value score function. To avoid client’s sensitive
information leakage, we design a privacy-preserving protocol to
enable secured sharing of private distributions with the server. In
addition, the second-phase pricing determine the actual payment of
the selected clients through Budget-constrained Pricing Mechanism

which is a consensus price between clients and server in terms of
fairness and incentive.
Contributions. This paper makes the following contributions:

(1) To the best of our knowledge, FLMarket is the first frame-
work that addresses the challenges for pre-training pricing

in FL data markets, which would significantly motivate both
data providers and buyers with a monetary incentive (see
Table 2 in the appendix for a comprehensive list of FL data
sharing frameworks).

(2) We propose an effective two-stage data pricing mechanism,
in which the pricing of data explicitly reflects its value, the
bidding costs of data providers, and the budget constraints of
data buyers. We also design a privacy-preserving protocol to
secure private information that could be potentially leaked
during the bidding process.

(3) We have conducted a series of experiments to evaluate the
performance of FLMarket by selecting clients on three dif-
ferent datasets and in different levels of unbalanced data
distributions. Our results show that FLMarket achieves
more than 10% higher accuracy compared to state-of-the-art
pre-training client selection baselines. In addition, it outper-
forms the in-training baseline with more than 2% accuracy
increase and 3× runtime speedup.

2 RELATEDWORK

This section outlines the related works on establishing an FL data
marketplace. We focus on two crucial elements for constructing
such a marketplace: Client Pricing and Incentive Mechanisms.
Client Pricing in FL.A fundamental challenge in pricing clients in
FL is the accurate assessment of each client’s contribution. There are
two main approaches to evaluating clients: model-based and data-
based. For model-based approaches, FedCoin [29] evaluates each
client’s contribution using the Shapley value. However, computing
the Shapley value is time-consuming because it requires calculating
the value for all possible client combinations. Other model-based
approaches assess each client based on their gradients [11, 54, 60] or
test performance [8, 16, 25]. However, these methods introduce sig-
nificant computational overhead and require in-training feedback.
The data-based approach considers the quality of data to evaluate
clients. For instance, AUCTION [9] assesses client contributions
based on the data’s mislabel rate and size, while Ren [37] compares
the data class distribution with a reference distribution to evaluate
client contributions. However, accurately assessing clients prior to
training remains an area that requires further exploration.
Incentive Mechanisms for FL. Several studies have explored the
development of incentive mechanisms for FL [31, 46, 59], typically
assuming a consensus on pricing between servers and clients. How-
ever, in real-world applications, information asymmetry between
these parties often complicates the establishment of a standardized
pricing model. To address this, auction-based mechanisms have
been proposed, allowing clients and servers to negotiate prices. For
instance, SARDA [45] introduces a social-aware iterative double
auction mechanism to incentivize participation. Similarly, Fair [7]
employs a reverse auction model to attract high-quality clients
while maintaining a manageable budget for the server. Nevertheless,
these mechanisms tend to rely on metrics such as model quantity or
resource usage, often neglecting critical pre-training information
related to user data. This pre-training information necessitates a
more rigorous evaluation before training and requires the imple-
mentation of a security design that is both effective and privacy-
preserving.
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Figure 1: FLMarket high-level system overview

3 DATA MARKETPLACE PRICING

FRAMEWORK FOR FEDERATED LEARNING

In this section, we provide an overview of the framework with
the designs of the two-phase pricing mechanism. Table 3 in the
appendix summarizes the notions of this paper.

3.1 High-Level System Overview

Our framework consists of three parties: Data market (Server),
Data sellers (Clients) and Data buyers. A buyer publishes an FL
training task with a budget and the data market groups a set of
clients to perform the training task. Finally, the data market returns
a trained model to the buyer. Figure 1 presents the overview of
the FLMarket pricing framework: 1○ seller first registers the FL
task; 2○ the data market evaluates the data value of each client
and returns an assessed price; 3○ clients make bids (quote) for
contributing their data; 4○ the data market finalizes the price for
the clients.

The pricing process consists of three steps: 1) evaluate data for
each client by aggregating and getting global data distribution with
a privacy-aware secret-sharing (PASS) protocol (see §4); 2) send
score function to the clients for computation; 3) receive the scores
back at the server. In principle, the clients with unseen classes and
sufficient data volume have higher pricing and are regarded as
high-quality clients.
Assumptions.We target cross-silo FL scenarios across organiza-
tions such as healthcare [6] and finances [1].We assume that the par-
ticipants would follow the protocols and refrain frommodifying the
data or sharing incorrect information with the server [3, 61] since
such malicious activities would be quickly detected. On the other
hand, the aggregation of individual class distribution would lead
to privacy leakage as they often reveal sensitive information such
as attribute percentage [61], personal habits [10], sales record [12]
and financial status [4]. We aim to design an integrated pricing and
privacy-preserving framework to resolve the tension between data
privacy and data pricing.

3.2 Single-Client Evaluation

We evaluate individual client data based on their contribution to
the FL training, which is assessed by a score function.
Motivational Example. To evaluate data quality before training,
a common technique is based on statistical information [9, 21, 39].
For FL tasks, we consider two major factors of data quantity and
class distribution by evaluating their impact on testing accuracy in
Figure 2.
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Figure 2: The impact of data quantity and distribution for FL

training: a) An incremental increase of 1,000 data points has

shown a diminishing rate of improvement in global accuracy;

b) Imbalanced categories in both local and global data result

in the worst performance.

Observation 1: The contribution from client’s data increases regard-

ing the data size but with diminishing marginal values. Figure 2a
shows that the test accuracy climbs up with the increase of training
data. However, Δ𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 drops rapidly, indicating that the contri-
bution from data amount to test accuracy is marginal as the data
amount increases.
Observation 2: Clients with data in scarce categories can signifi-

cantly improve the overall FL accuracy. Figure 2b shows that local
and global data imbalance significantly deteriorates the test accu-
racy. If the global data is balanced by bringing more clients with
scarce categories (the green curve in Figure 2b), the accuracy degra-
dation for FL training is much smaller. This aligns with the findings
in [48] that unseen categories help increase gradient diversity and
improve model generalization.
Score Function. To calculate the score for each client, the server
needs to obtain the data volume and categorical distribution from
the clients in advance (privacy risks are addressed in Section 4).
For class 𝑐 of 𝐶 categories, the 𝑐-class volume is represented as 𝑛𝑐𝑠 .
The total amount of data 𝑁𝑠 is the summation from all the classes:
𝑁𝑠 =

∑𝐶
𝑐=1 𝑛

𝑐
𝑠 . Each client 𝑒 has the amount of 𝑁𝑒 data. For each

class 𝑐 from the same set of 𝐶 categories, the volume of 𝑐 at client
𝑒 is denoted as 𝑛𝑐𝑒 . As a result, we can define 𝑁𝑒 as the sum of
volumes across all classes: 𝑁𝑒 =

∑𝐶
𝑐=1 𝑛

𝑐
𝑒 . The score function on

client 𝑒 is,

𝑢𝑒 =

𝐶∑︁
𝑐=1

𝜃𝑐 · 𝜙 (𝑛𝑐𝑒 ), (1)

where 𝜃𝑐 represents the unique coefficient for this category and𝜙 (·)
models the relation between input data and model accuracy. The
score function can be interpreted as the sum of the 𝜙 (·) function,
with the data volume of each category as the input, weighted by 𝜃𝑐
for the different categories.
𝜙 (·) is formalized as equation 2.

𝜙 (𝑥 ) =
𝑥∑︁
𝑡=1

𝑓 (𝜌 (𝑡 ) ) 𝑠.𝑡 . 𝜌 (𝑡 ) = min(𝑡/𝛼, 1), (2)

where 𝑥 takes the value of𝑛𝑐𝑒 for each client and 𝜌 (·) is the normalis-
ing function, constrained within the range of (0, 1]. 𝛼 is a threshold
parameter with 𝛼 = 𝑁𝑠/(𝐸 ·𝐶), which is the average data volume
for each category across all the clients. If 𝑛𝑐𝑒 > 𝛼 , we consider that
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an increase in data volume 𝑛𝑐𝑒 does not provide additional benefits,
which aligns with Observation 1 in Section 3.1.

To model the relationship between data volume and accuracy, we
draw inspiration from [2] and empirical observations [17], which
suggest an𝑂 (log(𝑥)) contribution of data volume to accuracy. Con-
sequently, we use the negative natural logarithm − ln(·) as the
function 𝑓 (·) to map data volume to accuracy. The rationale behind
the choice of 𝑓 (·) is detailed in Appendix D.

For the coefficient 𝜃𝑐 , it can be calculated as:

𝜃𝑐 = 1 − 𝑛𝑐𝑠 /𝑁𝑠 . (3)

It reflects that if a category is relatively scarce in the global distri-
bution, its weighted coefficient would be higher, which satisfies the
demands from Observation 2.

3.3 Reaching a Consensus Price between Client

and Server

As a data market, we should satisfy both data sellers and buyer. The
score function computes a value for each client whichmeets server’s
requirements. To satisfy clients requirements while ensuring the
payments are within the given budget, we propose a second-phase
pricing mechanism as follows.
Bidding Mechanism.We incorporate the design of the classical
bidding mechanism [28, 32, 63], where the server 𝑆 orchestrates
the bidding procedures with the budget 𝑅. A client pool E consists
of 𝐸 clients. The bidding procedures are designed to choose the
most valuable clients within the budget constraint of 𝑅. We break
down the bidding mechanism into two parts: winner selection and
payment determination. Specifically, at the beginning of the bidding,
client 𝑒 decides the bid 𝑏𝑒 according to the evaluation score and the
potential cost of the task. The set of bids of 𝐸 clients is B = {𝑏𝑒 }𝑒∈E.
The server selects the winning clients to join the task with the
budget constraints 𝑅. And then decide the final payment 𝑝𝑒 for
each winner 𝑒 with budget constraints.
Winner Selection. The procedure of the winner selection part is
detailed in Algorithm 1 line 3-11. First, the server sorts clients by
their score per bid and gets the list V. Then, the server selects the
winners in the order of V. In particular, only clients with bids 𝑏𝑒
smaller than the budget constraint condition 𝑅

2 ·
𝑢𝑒

𝑈 (S𝑘∪{𝑒 }) , 𝑒 are
eligible as a winner, a criterion also adopted in [63]. If a client’s bid
exceeds this constraint, the winner selection process terminates,
and subsequent clients are not considered as winners.
Payment Determination. After the winners are selected, the
server determines the payments for each of them. The basic idea of
the payment determination can be described as follows. For each
winner 𝑒 , we consider a new list V−𝑒 which eliminates the client
𝑒 from V. Select winners from the list V−𝑒 similar to the winner
selection part. We assume that client 𝑒 replaces client 𝑗 as the
winner in list V−𝑒 and calculate the maximum bid 𝑝′

𝑒 ( 𝑗 ) at which
𝑒 can win the auction in position 𝑗 . However, each 𝑗 corresponds
to a different 𝑝′

𝑒 ( 𝑗 ) . Hence, we take the maximum value of 𝑝′
𝑒 ( 𝑗 ) as

the final payment for 𝑒 .
The procedure of the payment determination part is detailed in

Algorithm 1 line 12-24. Similar to the winner selection, we select
the client in order of list V−𝑒 . Then compute the maximum bid

𝑝′
𝑒 ( 𝑗 ) that client 𝑒 can provide to win the auction in list V−𝑒 . The
bid 𝑏𝑒 ( 𝑗 ) should satisfy two conditions.
• Client 𝑒 should have more larger score per bid than 𝑗 , i.e.,

𝑢𝑒

𝑏𝑒 ( 𝑗 )
≥
𝑢 𝑗

𝑏 𝑗
⇒ 𝑏𝑒 ( 𝑗 ) ≤

𝑢𝑒 · 𝑏 𝑗
𝑢 𝑗

= 𝜆𝑒 ( 𝑗 ) . (4)

• The bid of client 𝑒 should satisfy the budget constraint con-
dition, i.e.,

𝑏𝑒 ( 𝑗 ) ≤
𝑅

2
· 𝑢𝑒

𝑈 (S′
𝑗−1 ∪ {𝑒})

= 𝛽𝑒 ( 𝑗 ) . (5)

We set 𝑘 as the smallest index which satisfies the budget constraint
in V−𝑒 , i.e., 𝑏

𝑘+1 > 𝑅
2 ·

𝑢
𝑘̂+1

𝑈 (S′
𝑘̂+1
) . Therefore, the maximum index in

V−𝑒 that 𝑒 can replace as the winner is 𝑘 + 1. Since the bid should
satisfy both of the above two conditions, we get the maximum of
the bid is 𝑝′

𝑒 ( 𝑗 ) = min{𝜆𝑒 ( 𝑗 ) , 𝛽𝑒 ( 𝑗 ) }. In Inequality (4), the value of
𝜆𝑒 ( 𝑗 ) monotonically decreases with the index 𝑗 . In Inequality (5),
the value of 𝛽𝑒 ( 𝑗 ) is dynamically changing with 𝑗 . Therefore, we
determine the maximum of 𝑝′

𝑒 ( 𝑗 ) in different 𝑗 for 𝑗 ∈ [1, 𝑘 + 1] as
the final payment. i.e., 𝑝𝑒 = max1≤ 𝑗≤𝑘+1{𝑝

′
𝑒 ( 𝑗 ) }.

AWalk-Through Example. Consider an example with a client
pool of 𝐸 = 4 clients and a budget constraint𝑅 = 140. The scores and
bids of all clients in E is U = {5, 6, 10, 20} and B = {10, 13, 80, 45}.
Then calculate each score per bid and sort clients get list V:

{𝑢1
𝑏1

:
5
10

= 0.5;
𝑢2
𝑏2

:
6
13

= 0.46;
𝑢3
𝑏3

:
20
45

= 0.44;
𝑢4
𝑏4

:
10
80

= 0.125}

Sequential client selection according to list V, we get

𝑏1 <
𝑅

2
𝑢1

𝑈 (∅ ∪ {1}) = 70; 𝑏2 <
𝑅

2
𝑢2

𝑈 ({1} ∪ {2}) = 38.2;

𝑏3 <
𝑅

2
𝑢3

𝑈 ({1, 2} ∪ {3}) = 45.2; 𝑏4 >
𝑅

2
𝑢4

𝑈 ({1, 2, 3} ∪ {4}) = 17.1.

Since 𝑏4 > 𝑅
2 ·

𝑢4
𝑈 ({1,2,3}∪{4}) , the winner set S𝑘 = {1, 2, 3}. Then

the server determines the payments for them. For client 1, V−1 :
{𝑢2
𝑏2
; 𝑢3
𝑏3
; 𝑢4
𝑏4
}, then we select clients from V−1 one by one until vio-

late budget constraints. Client {2,3} satisfy the budget constraints
in V−1. When select to client 2,

𝜆1(2) =
𝑢1 · 𝑏2
𝑢2

= 10.9; 𝛽1(2) =
140
2
× 𝑢1
0 + 𝑢1

= 70;𝑝′1(2) = 10.9.

Similarly, 𝑝′1(3) = min{11.4, 31.8} = 11.4, 𝑝′1(4) = min{40, 11.3} =
11.3. Then the final payment of client 1 is 𝑝1 = 𝑝′1(3) = 11.4. Similar
to the client 1, we calculate each winner payment 𝑝2 = 𝑝′2(3) = 13.6,
𝑝3 = 𝑝′3(4) = 45.2. And the total payment is 70.2 < 𝑅.

Property of the Mechanism. A reasonable bidding mechanism
needs to satisfy Truthful, Individual Rationality, and Budget Con-

straints. Next, we prove our mechanism satisfies these properties.

Theorem 3.1. A bidding mechanism is truthful if and only if [41]:

(1) The selection algorithm is monotone, i.e. if 𝑒 wins the bidding

by 𝑏𝑒 , it would also win by bidding 𝑏′𝑒 < 𝑏𝑒 ;

(2) Each winner is paid at the critical value: 𝑒 would not win the

bidding if 𝑏′𝑒 > 𝑝𝑒 .

Lemma 3.2. The algorithm for winner selection is monotone.
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Algorithm 1: Budget-constrained Pricing Mechanism
1 Input: Candidate clients E, Budget 𝑅, Bids B = {𝑏𝑒 }𝑒∈E and

scores U = {𝑢𝑒 }𝑒∈E
2 Output: Selected clients S𝑘 and Payment P
3 Winner Selection:

4 Sort according score per bid get V: 𝑢1
𝑏1
≥ ... ≥ 𝑢𝑒

𝑏𝑒
≥ ... ≥ 𝑢𝐸

𝑏𝐸

5 S𝑘 ← ∅;𝑈 (S𝑘 ) =
∑
𝑒∈S𝑘 𝑢𝑒

6 for
𝑢𝑒
𝑏𝑒

in V do

7 if 𝑏𝑒 > 𝑅
2 ·

𝑢𝑒
𝑈 (S𝑘∪{𝑒 }) then

8 break;
9 end

10 S𝑘 ← S𝑘
⋃{𝑒};

11 end

12 Payment Determination:

13 for 𝑒 in S𝑘 do

14 𝑗 ← 1; S′
𝑗−1 ← ∅; 𝑝𝑒 ← 0; V−𝑒 : 𝑢1

𝑏1
≥ ... ≥ 𝑢𝐸−1

𝑏𝐸−1
15 for

𝑢 𝑗

𝑏 𝑗
in V−𝑒 do

16 if 𝑏 𝑗 >
𝑅
2 ·

𝑢 𝑗

𝑈 (S′
𝑗−1∪{ 𝑗 })

then

17 break;
18 end

19 𝜆𝑒 ( 𝑗 ) ←
𝑢𝑒 ·𝑏 𝑗

𝑢 𝑗
; 𝛽𝑒 ( 𝑗 ) ← 𝑅

2 ·
𝑢𝑒

𝑈 (S′
𝑗−1∪{𝑒 })

;

20 𝑝′
𝑒 ( 𝑗 ) = min{𝜆𝑒 ( 𝑗 ) , 𝛽𝑒 ( 𝑗 ) }; 𝑝𝑒 = max{𝑝𝑒 , 𝑝′𝑒 ( 𝑗 ) };

21 S′
𝑗
← S′

𝑗−1
⋃{ 𝑗}; 𝑗 ← 𝑗 + 1

22 end

23 𝜆𝑒 ( 𝑗 ) ←
𝑢𝑒 ·𝑏 𝑗

𝑢 𝑗
; 𝛽𝑒 ( 𝑗 ) ← 𝑅

2 ·
𝑢𝑒

𝑈 (S′
𝑗−1∪{𝑒 })

;

24 𝑝𝑒 ← max{𝑝𝑒 ,min{𝜆𝑒 ( 𝑗 ) , 𝛽𝑒 ( 𝑗 ) }};
25 end

26 P = {𝑝𝑒 }𝑒∈S𝑘
27 return S𝑘 and P

Proof. The proof is given in the Appendix E.1 □

Lemma 3.3. The payment 𝑝𝑒 ∈ P is the critical price of auction
winner 𝑒 ∈ S𝑘 .

Proof. The proof is given in the Appendix E.2 □

Theorem 3.4. The bidding mechanism is Truthful.

Proof. According to the Lemmas 3.2, 3.3 and Theorem 3.1, our
bidding mechanism satisfies the monotone and the final payment
is the critical price. Thus, the bidding mechanism is Truthful. □

Theorem 3.5. The auction satisfies Individual Rationality.

Proof. If the payment for client 𝑒 is larger than its bid 𝑏𝑒 , the
auction is Individual Rationality. let’s compare the bid 𝑏𝑒 with 𝑝′𝑒 (𝛾 ) ,
where the index𝛾 inV−𝑒 is samewith 𝑒 inV. Therefore, the winners
before 𝑒 in V is same with the winners before 𝛾 in V−𝑒 . We know
the payment for client 𝑒 is the maximum over all possible 𝑝′

𝑒 ( 𝑗 ) for

𝑗 ∈ [1, 𝑘 + 1], thus 𝑝′
𝑒 (𝛾 ) ≤ 𝑝𝑒 . According to the winner selection

part, we know 𝑏𝑒 satisfied the budget constraint, i.e.,

𝑏𝑒 ≤
𝑅

2
· 𝑢𝑒

𝑈 (S𝑒−1 ∪ {𝑒})
=
𝑅

2
· 𝑢𝑒

𝑈 (S′
𝛾−1 ∪ {𝑒})

= 𝛽𝑒 (𝛾 ) . (6)

In list V, 𝛾 is behind 𝑒 then we get

𝑢𝑒

𝑏𝑒
≥
𝑢𝛾

𝑏𝛾
⇒ 𝑏𝑒 ≤

𝑢𝑒 · 𝑏𝛾
𝑢𝛾

= 𝜆𝑒 (𝛾 ) . (7)

Recall that 𝑝′
𝑒 (𝛾 ) ≤ 𝑝𝑒 and according to inequalities (6,7), we get

𝑏𝑒 ≤ min{𝜆𝑒 (𝛾 ) , 𝛽𝑒 (𝛾 ) } = 𝑝′𝑒 (𝛾 ) ≤ 𝑝𝑒 . Therefore, the payment for
the winner 𝑒 is always larger than its bid 𝑏𝑒 and the auction is
Individual Rationality. □

Lemma 3.6. For clients set S1 ⊂ S2 ⊆ S, if 𝑒 = argmax𝑒∈S2\S1
𝑢𝑒
𝑏𝑒

then the following inequality is valid.

𝑈 (S2) −𝑈 (S1)∑
𝑖∈S2 𝑏𝑖 −

∑
𝑗∈S1 𝑏 𝑗

<
𝑢𝑒

𝑏𝑒
(8)

Proof. The proof is given in the Appendix E.3. □

Theorem 3.7. The mechanism is within the budget constraint.

Proof. We try to show that the auction satisfies the budget
constraint by proving that the upper bound of the payment 𝑝𝑒
is 𝑢𝑒

𝑈 (S𝑘 ) 𝑅. We prove it by contradiction, assume 𝑝𝑒 >
𝑢𝑒

𝑈 (S𝑘 ) 𝑅.
According to the payment determination mechanism above, we
know the payment 𝑝𝑒 satisfies the following conditions:

𝑝𝑒 ≤
𝑢𝑒 · 𝑏𝑟
𝑢𝑟

𝑝𝑒 ≤
𝑅

2
𝑢𝑒

𝑈 (S′
𝑟−1 ∪ {𝑒})

(9)

Since 𝑒 is the 𝑒-thwinner, thus for 𝑗 ∈ [1, 𝑒−1],𝑏𝑒 > 𝜆𝑒 ( 𝑗 ) .We know
that 𝑝′

𝑒 ( 𝑗 ) ≤ 𝜆𝑒 ( 𝑗 ) , then we get 𝑏𝑒 > 𝜆𝑒 ( 𝑗 ) ≥ 𝑝′𝑒 ( 𝑗 ) . In Theorem
3.3 we prove the bid of 𝑒 is no larger than the final payment, i.e.,
𝑏𝑒 ≤ 𝑝𝑒 . Therefore, we get the inequality:

𝑝′
𝑒 ( 𝑗 ) < 𝑏𝑒 ≤ 𝑝𝑒 = 𝑝′

𝑒 (𝑟 ) , 𝑗 ∈ [1, 𝑒 − 1] (10)

From the Inequality (10) we know 𝑟 is not in list [1, 𝑒 − 1], so 𝑟 is
behind 𝑒 and we have S𝑒−1 ⊆ S′𝑟−1. Let’s consider the following
two scenarios:
• S′

𝑟−1
⋃{𝑒} = S′

𝑟−1
⋃
S𝑘 . Since S𝑒−1 ⊆ S′𝑟−1, the Inequality (9)

can be rewritten as:
𝑢𝑒

𝑝𝑒
≥

2𝑈 (S′
𝑟−1

⋃{𝑒})
𝑅

=
2𝑈 (S′

𝑟−1
⋃
S𝑘 )

𝑅
≥ 2𝑈 (S𝑘 )

𝑅
(11)

Therefore, according to Inequality (11) we get 𝑝𝑒 ≤ 𝑢𝑒
𝑈 (S𝑘 ) · 𝑅

which contradicts the assumption. Thus the assumption is not
valid.
• S′

𝑟−1
⋃{𝑒} ⊂ S′

𝑟−1
⋃
S𝑘 . Set S1 = S′

𝑟−1
⋃{𝑒}, S2 = S′

𝑟−1
⋃
S𝑘

and S1 ⊂ S2. Assume 𝑟 = argmax𝑡 ∈S2\S1
𝑢𝑡
𝑏𝑡
, according to the

Inequalities (8,9) and Lemma 3.6 we get:
𝑈 (S2) −𝑈 (S1)∑
𝑖∈S2 𝑏𝑖 −

∑
𝑗∈S1 𝑏 𝑗

<
𝑢𝑟

𝑏𝑟
≤ 𝑢𝑒
𝑝𝑒

(12)

Since we previously assume 𝑝𝑒 >
𝑢𝑒

𝑈 (S𝑘 ) · 𝑅, thus
𝑢𝑒
𝑝𝑒

<
𝑈 (S𝑘 )

𝑅
.

We know that 𝑏𝑒 ≤ 𝑝𝑒 ≤ 𝑅
2

𝑢𝑒
𝑈 (S′

𝑟−1∪{𝑒 })
(Inequality 9). Then:

𝑢𝑒

𝑏𝑒
≥

2𝑈 (S′
𝑟−1 ∪ {𝑒})
𝑅

⇒ 𝑢𝑘

𝑏𝑘
≥ 2𝑈 (S𝑘 )

𝑅
(13)
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According to the Inequality (13), we can get inequality as follows.

𝑢1
𝑏1
≥ 𝑢2
𝑏2
≥ · · · ≥ 𝑢𝑘

𝑏𝑘
≥ 2𝑈 (S𝑘 )

𝑅
(14)

Then we get 𝑏𝑒 ≤ 𝑅
2 ·

𝑢𝑒
𝑈 (S𝑘 ) , then

∑
𝑒∈S𝑘 𝑏𝑒 ≤

𝑅
2 ·

∑
𝑒∈S𝑘 𝑢𝑒

𝑈 (S𝑘 ) = 𝑅
2 .

Therefore, we can get :∑︁
𝑖∈S2

𝑏𝑖 −
∑︁
𝑗∈S1

𝑏 𝑗 =
∑︁

𝑒∈S2\S1
𝑏𝑒 ≤

∑︁
𝑒∈S𝑘

𝑏𝑒 ≤
𝑅

2
(15)

Recall that S2 = S′
𝑟−1

⋃
S𝑘 , thus S𝑘 ⊆ S2. Then we get the

Inequality (16).

2(𝑈 (S𝑘 ) −𝑈 (S1))
𝑅

≤ 2(𝑈 (S2) −𝑈 (S1))
𝑅

≤ 𝑈 (S2) −𝑈 (S1)∑
𝑒∈S2\S1 𝑏𝑒

≤ 𝑢𝑒
𝑝𝑒

<
𝑈 (S𝑘 )
𝑅

(16)

Then we can deduce from the above inequality that 2(𝑈 (S𝑘 ) −
𝑈 (S1)) < 𝑢 (S𝑘 ). Thus

𝑈 (S𝑘 ) < 2𝑈 (S1) = 2𝑈 (S′𝑟−1 ∪ {𝑒})

⇒𝑢𝑒

𝑝𝑒
≥

2𝑈 (S′
𝑟−1 ∪ {𝑒})
𝑅

≥ 𝑈 (S𝑘 )
𝑅

(17)

From the inequality above, we can conclude that 𝑝𝑒 ≤ 𝑢𝑒
𝑈 (S𝑘 ) · 𝑅

which contradicts the assumption.
Therefore, the assumption is invalid and the upper bound of the

payment is 𝑢𝑒
𝑈 (S𝑘 ) · 𝑅. So,

∑
𝑒∈S𝑘 𝑝𝑒 ≤

∑
𝑒∈S𝑘 𝑢𝑒

𝑈 (S𝑘 ) · 𝑅 = 𝑅, satisfying
budget constraints. □

4 PRIVACY-AWARE SECRET-SHARING

MECHANISM

In this section, we first discuss the design idea and primitives for the
PASS protocol in § 4.1. Then, in § 4.2 we introduce the implementa-
tion of PASS for obtaining the global data distribution. Finally, we
analyse the security of the proposed protocol.

4.1 Design of PASS

Main Idea. To protect the sensitive information of clients, we
leverage the Diffie-Hellman key agreement [14] and distribution
aggregation method to generate a pair of positive and negative

randomnoises to obfuscate the local data distribution before sharing
them with the server. Thereafter, we sum up these obfuscated local
distributions and the added noises can be cancelled out, reminding
the global distribution. To be precise, we construct a random seed
based on key pairs (𝑆𝐾𝑒 , 𝑃𝐾𝑣) in client 𝑒 and (𝑆𝐾𝑣, 𝑃𝐾𝑒 ) in client
𝑣 , which the public keys 𝑃𝐾𝑒 , 𝑃𝐾𝑣 are distributed by client 𝑒 and
𝑣 respectively. Using the above key pairs, we can generate the
same random seed 𝑠𝑒,𝑣 , which can be used to generate a noise by
a pseudorandom generator (PRG) [55] for both client 𝑒 and 𝑣 , i.e.,
𝑃𝑅𝐺 (𝑠𝑒,𝑣). The 𝑃𝑅𝐺 (𝑠𝑒,𝑣) that has the same dimensions as the host
clients’ local distribution (i.e., |N𝑒 | == |𝑃𝑅𝐺 (𝑠𝑒,𝑣) | and |N𝑣 | ==
|𝑃𝑅𝐺 (𝑠𝑒,𝑣) |) will be added to N𝑒 and N𝑣 . Therefore, we develop a
distribution aggregation method that constructs a pair of positive
and negative of noises, which can be cancelled after aggregation on
the server side.

Key Agreement. In this paper, we use Diffie-Hellman key agree-
ment to achieve pairwise clients agreeing on a random seed that not
be disclosed by the server or clients. The key agreement consists of
a tuple of algorithms (𝐾𝐴.𝑝𝑎𝑟𝑎𝑚,𝐾𝐴.𝑔𝑒𝑛, 𝐾𝐴.𝑎𝑔𝑟𝑒𝑒).𝐾𝐴.𝑝𝑎𝑟𝑎𝑚(𝑟 )
→ 𝑅 generate a public parameter 𝑅 based on the security parameter
𝑟 .𝐾𝐴.𝑔𝑒𝑛(𝑅) → (𝑆𝐾, 𝑃𝐾) uses the public parameter 𝑅 to produce a
private-public key pair, and 𝐾𝐴.𝑎𝑔𝑟𝑒𝑒 (𝑆𝐾𝑒 , 𝑃𝐾𝑣) → 𝑠𝑒,𝑣 can gener-
ate the identical private shared key 𝑠𝑒,𝑣 using the private key of 𝑒 and
public key of 𝑣 which are generated from the same public parameter
𝑅. As a result, we can have two key pairs that generate the same ran-
dom seed, i.e., 𝐾𝐴.𝑎𝑔𝑟𝑒𝑒 (𝑆𝐾𝑒 , 𝑃𝐾𝑣) = 𝐾𝐴.𝑎𝑔𝑟𝑒𝑒 (𝑆𝐾𝑣, 𝑃𝐾𝑒 ) = 𝑠𝑒,𝑣 .
Distribution Aggregation. We assume that each client 𝑒 ∈ E
possesses a 𝐶-dimensional private vector N𝑒 = {𝑛𝑐𝑒 }𝑐∈{1,...,𝐶 } in-
dicating their local data distribution. The proposed secret share
method aims to enable the server 𝑆 to securely compute global
data distribution N𝑠 =

∑
𝑒∈E N𝑒 without accessing the private local

distributions N𝑒 .
We first assign each client 𝑒 a unique identifier from {1 to 𝐸},

pairing all clients in a pairwise manner, denoted as (𝑒, 𝑣). Then, we
use the PRG to generate the identical random vectors 𝑃𝑅𝐺 (𝑠𝑒,𝑣)
based on the random seed 𝑠𝑒,𝑣 . Furthermore, we introduce the 𝜖𝑒,𝑣
to determine whether to add or subtract random vectors 𝑃𝑅𝐺 (𝑠𝑒,𝑣).
When 𝑒 is less than 𝑣 (i.e., 𝑒 < 𝑣), the 𝜖𝑒,𝑣 equals to 1. On the contrary,
if 𝑒 is greater than 𝑣 (i.e., 𝑒 > 𝑣), the 𝜖𝑒,𝑣 equals to -1. Thereafter,
we use Equation (18) to compute an alternative distribution of N𝑒
(i.e., Y𝑒 ) by adding all 𝜖𝑒,𝑣 · 𝑃𝑅𝐺 (𝑠𝑒,𝑣) generated by client 𝑒 paired
with other clients 𝑣 ∈ E to avoid N𝑒 being disclosed.

Y𝑒 = N𝑒 +
∑︁
𝑣∈E

𝜖𝑒,𝑣 · 𝑃𝑅𝐺 (𝑠𝑒,𝑣 ) ; 𝜖𝑒,𝑣 =

{
1 𝑒 < 𝑣

−1 𝑒 > 𝑣
(18)

Once the server 𝑆 obtains all Y𝑒 , the global data distribution N𝑠
can be computed via Equation (19), where the added 𝑃𝑅𝐺 (𝑠𝑒,𝑣) are
cancelled each other out, reminding the global data distribution N𝑠 .

N𝑠 =
∑︁
𝑒∈E
Y𝑒 =

∑︁
𝑒∈E
[N𝑒 +

∑︁
𝑣∈E

𝜖𝑒,𝑣 · 𝑃𝑅𝐺 (𝑠𝑒,𝑣)] =
∑︁
𝑒∈E
N𝑒 (19)

4.2 The PASS Protocol

Table 4 in appendix F shows the protocol of the 𝑃𝐴𝑆𝑆 to aggregate
data distribution from clients. In step 1, each client uses the given
security parameters 𝑟 to generate the public parameters 𝑅. Then,
client 𝑒 uses 𝑅 to generate key pairs (𝑃𝐾𝑒 , 𝑆𝐾𝑒 ). After that, client 𝑒
sends its public key 𝑃𝐾𝑒 to the server. The server received 𝑃𝐾𝑒,𝑒∈E
from each client, and the server broadcast (𝑃𝐾𝑒 , 𝑒) to each client
when received all 𝑃𝐾𝑒 .

In step 2, client 𝑒 received all 𝑃𝐾𝑣 and its client identifier 𝑣 from
the server. Then, it uses 𝑃𝐾𝑒 and the private key 𝑆𝐾𝑒 to generate
random seed 𝑠𝑒,𝑣 through the 𝐾𝐴.𝑎𝑔𝑟𝑒𝑒 algorithm. Based on 𝑠𝑒,𝑣 , a
𝐶-dimensional random vectorRV𝑒,𝑣 ← 𝜖𝑒,𝑣 ·𝑃𝑅𝐺 (𝑠𝑒.𝑣) is generated
via PRG, where 𝜖𝑒,𝑣 = 1 if 𝑒 < 𝑣 and 𝜖𝑒,𝑣 = −1 if 𝑒 > 𝑣 . Then, the
client 𝑒 adds the local distribution N𝑒 with all RV𝑒,𝑣 to obtain the
pseudo local data distributionY𝑒 and then sends it to the server. The
server sums allY𝑒 from all client 𝑒 ∈ E to get the global distribution
N𝑠 when receiving all Y𝑒 . Finally, the server broadcasts N𝑠 to all
clients for data evaluation. A running example of 𝑃𝐴𝑆𝑆 is included
in appendix F.
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Performance and Security Analysis. The communication com-
plexity of each client and server is 𝑂 (𝐸) and 𝑂 (𝐸2), respectively.
This arises from each client’s requirement to receive public keys
from the other 𝐸 − 1 clients. For communication costs, the actual
communication cost is negligible compared to FL training since the
size of the keys is much smaller than the weights of the model. Addi-
tionally, the PASS can protect the clients’ privacy in the semi-honest
client environment. The detailed analysis of the communication
cost and security is shown in Appendix J and G.

5 EVALUATION

In this section, we evaluate the impact of the client selection on the
subsequent FL training accuracy by comparing FLMarket to four
state-of-the-art pre-training client selection methods. In addition,
we compared FLMarket with an in-training client selection algo-
rithm, which can effectively use the training feedback. Experimental
results show that, FLMarket outperforms other state-of-the-art
pre-training client selection methods in most cases. Even when
compared to the in-training client selection algorithm, FLMarket
still achieves competitive accuracy with less runtime overhead.

5.1 Experimental Setup

Applications, Datasets and Models.We evaluate FLMarket in
two applications: Image Classification (IC) and Human Activity
Recognition (HAR). For IC, we utilize the CIFAR-10 [19] and CINIC-
10 [5] datasets with a ResNet-56 [13] model. For HAR, we employ
the DEAP dataset [18] using peripheral physiological signals and
train a three-layer CNN model on it.

FL Training Set Up. We evaluated FLMarket under different
numbers of clients, including both 20 and 100 clients. Each client’s
data distribution is generated through a two-step process. Firstly,
we adjust the global data distribution by randomly pruning data
from different classes to achieve an unbalanced global distribution.
In the second step, based on the different global data distributions,
we allocate data for each class to each client following a Dirichlet
distribution (𝛼 = 0.5) for simulating Non-i.i.d. scenarios [15, 22,
27]. Appendix H shows the example of the generated dataset on
CIFAR-10. In summary, our evaluation encompasses three datasets,
each tested under three selection ratios and six distributions (seven
distributions for CINIC-10), resulting in a total of 57 test cases. We
trained all FL tasks for 600 rounds, with an initial learning rate of
0.001 for CINIC-10 and 0.003 for CIFAR-10 and DEAP.

Baselines. FLMarket focuses on pre-training data evaluation in
a more challenging setting, where no direct feedback is available
from the training process. To align with this focus, we selected
four primary baseline methods: random selection (RS), quantity-
based selection (QBS) [57], DICE [39], and diversity-driven selection
(DDS) [21], all of which are based on pre-training data evaluation.
It is worth noting that, while more recent works on model-based
evaluationmethods exist [23, 44, 45], thesemethods require training
feedback and can only be applied during the FL training phase.
FLMarket fundamentally differs from these methods but can be
integrated with them since they target different phases. Therefore,
we included an in-training client selection method for reference. A
brief description of each baseline method is provided in Appendix I.
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Figure 3: CIFAR-10: 𝑛 clients selected from 20 clients
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Figure 4: CINIC-10: 𝑛 clients selected from 20 clients
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Figure 5: DEAP: 𝑛 clients selected from 20 clients

5.2 Comparison with Pre-training Selection

We evaluate the performance of FLMarket on selecting clients by
comparing the proposed algorithm with four pre-training client
selection baselines. Figures 3, 4 and 5 show the final test accuracy
of each baseline and FLMarket. It is observed that FLMarket
outperforms other baselines (RS, QBS, DICE, DDS) in a wide range
of data distributions across three datasets, particularly when the
distribution is highly unbalanced (e.g., D4, D5, D6).

For CIFAR-10, FLMarket achieves up to 40.78 %, 44.78 %, 17.52
% and 47.05 % (all on D6 in 10 out of 20 selection) higher accuracy
when compared to RS, QBS, DICE and DDS, respectively. In terms
of CINIC-10, compared to four baselines, FLMarket has up to 28.10
% (on D6 in 10 out of 20 selection), 31.74 % (on D6 in 5 out of 20
selection), 5.44 % (on D5 in 15 out of 20 selection) and 7.27 % (on D6
in 15 out of 20 selection) higher accuracy, respectively. Regarding
DEAP, Figure 5 shows that FLMarket achieves up to 25.67 % (on
D4 in 5 out of 20 selection), 16.41 % (on D6 in 5 out of 20 selection),
8.63 % (on D6 in 5 out of 20 selection) and 29.21 % (on D6 in 5
out of 20 selection) higher accuracy than other baselines. As the
data distribution becomes increasingly unbalanced (e.g., D4, D5 and
D6), FLMarket exhibits significantly better accuracy than other
baselines. This demonstrates FLMarket’s ability to mitigate the
impact of global imbalance.

Among all the baselines, DICE exhibits the best performance.
Nonetheless, FLMarket consistently outperforms DICE across
three datasets and three different selection scenarios, with average
accuracy improvements of 7.08 %, 1.81 % and 3.53 % on CIFAR-10,
CINIC-10 and DEAP respectively. Across all 57 tested distributions,
FLMarket achieves the highest accuracy in 44 distributions (77%).
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Figure 6: The accuracy and loss curves for FLMarket and

other four baselines under the D1 distribution with a selec-

tion of 10 out of 20 clients on CIFAR-10 dataset.

For the most imbalanced distributions (D4, D5, and D6), FLMar-
ket achieves the highest accuracy in 22 out of 27 test distributions
(81%), highlighting its strength in handling imbalanced distribu-
tions. When the number of clients is scaled up to 100, FLMarket
can still achieve better performance compared to the baselines (the
experimental results are detailed in Appendix K).

Convergence speed.We compare the convergence rate of FLMar-
ket with all the baseline methods. Figure 6 demonstrates that
FLMarket exhibits significantly faster convergence and attains a
lower training loss, consistently outperforming other approaches.
In detail, FLMarket achieves an target accuracy of 0.6 after only ap-
proximately 130 rounds, while RS, QBS, DICE and DDS require 550,
350, 170 and 380 rounds, respectively. This results in a speedup of
4.23 ×, 2.69 ×, 1.31 ×, and 2.92 ×, respectively. We also observed sim-
ilar conclusions in other datasets and distributions as well, where
FLMarket exhibits faster convergence compared to other baselines.
We also observed a similar speedup in latency for FLMarket in
achieving the target accuracy. This outcome is expected, as FLMar-
ket conducts pre-training data evaluation once before the training,
thereby adding no computational overhead during the FL training
process.

The Data Distribution of Selected Clients. We further analyze
the results of selected clients by comparing their data distributions.
Specifically, we compare FLMarket to DICE under the selection of
10 out of 20 clients using the global distribution D6 of CIFAR-10.
As shown in Table 1, both strategies select the same six clients
from the client pool, namely, clients 2, 3, 7, 16, 17, and 19. However,
in the disjoint selected clients, we observe that the clients chosen
by FLMarket (i.e., 4, 8, 10, and 12) include data samples for all
classes. In contrast, the clients selected by DICE (i.e., 1, 5, 13, and
18) missing some classes, i.e., classes 8, 9, and 10.

Although DICE also takes into account the impact of both data
quantity and class distributions, it suffers issues: 1) it ignores that
the marginal utility of data volume is decreased; 2) It only locally
considers the class distribution instead of the global distribution.
These designs result in DICE favouring clients with larger data quan-
tities and smaller local variances. In contrast, FLMarket chooses
clients with lower data quantities and global variance.

Table 1: Clients selected by FLMarket and DICE on distri-

bution 6 of CIFAR-10 dataset

Client

Class
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Distribution

Overlapping

Client 2 9 203 19 224 224 318 362 40 0 0

Client 3 5 120 112 311 472 58 0 319 360 0

Client 7 6 125 66 14 207 75 6 97 121 36

Client 16 151 378 29 4 85 44 125 12 69 174

Client 17 30 42 171 201 11 1 322 111 53 70

Client 19 33 212 23 99 29 64 141 109 157 25

FLMarket-specific

Client 4 220 11 2 46 659 0 55 16 169 143

Client 8 401 11 56 6 724 66 36 5 25 6

Client 10 1 244 13 93 4 83 52 191 1 25

Client 12 287 9 42 65 13 5 114 600 45 21

Sum 1143 1355 533 1063 2428 714 1413 1500 1000 500

DICE-specific

Client 1 530 38 59 349 33 346 209 0 0 0

Client 5 281 174 211 4 247 570 0 0 0 0

Client 13 257 159 37 13 125 628 180 0 0 0

Client 18 2 605 43 133 166 271 398 0 0 0

Sum 1304 2056 770 1342 1599 2345 1743 688 760 305

FLMarket
Data Number

11449
Variance

313880.1
Accuracy

77.28 %

DICE 12912 431920.6 59.76 %

5.3 Comparison with In-Training Selection

In-training client selection methods are impractical for pre-training
pricing since they assess clients’ contributions during the FL train-
ing process. Nonetheless, we conducted a comparison on the accu-
racy between FLMarket and a popular in-training client selection
method, namely S-FedAvg [33]. S-FedAvg samples a subset of clients
in each training round based on their Shapley values, which are cal-
culated using their local accuracy. Figure 7 shows the test accuracy
and average runtime latency for both FLMarket and S-FedAvg,
with the selection of 5 clients out of 20 clients for all three datasets.
It is worth noting that S-FedAvg sampled 5 clients in every training

round, whereas FLMarket sampled 5 clients out of the 20 only once

before the start of training.
Overall, FLMarket achieves an average of 66.12%, 61.75%, and

68.04% final accuracy over all data distributions compared to an
average of 66.67%, 58.89%, and 64.17% on S-FedAvg. The results sur-
prisingly demonstrate that FLMarket can achieve comparable or
even better accuracy performance than the in-training client selec-
tion approach. FLMarket achieves better accuracy performances
on more than half of the experiments. In terms of runtime overhead,
FLMarket outperforms S-FedAvg significantly. Completing 600
rounds of training, S-FedAvg takes 603 minutes, 1354 minutes, and
223 minutes, which is 5 ×, 2.5 ×, and 11 × longer than FLMarket
for the CIFAR-10, CINIC-10, and DEAP datasets, respectively.
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Figure 7: Comparison of performance between FLMarket

and S-FedAvg across three datasets

In summary, compared to pre-training client selection baselines,
FLMarket achieves an average improvement of 10.18% in accuracy
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across different datasets, data distributions, and selection modes.
When compared to in-training client selection algorithms, FLMar-
ket still achieves an average improvement of over 2.1% in accuracy
and an average 3.16× speedup for per-round runtime latency.

6 DISCUSSION

In this section, we discuss two challenges associated with deploying
FLMarket in real-world FL data markets. It is worth noting that
we do not focus on these challenges in the design of our framework
because simple modifications or existing solutions can effectively
mitigate them. Moreover, these solutions can be seamlessly inte-
grated into our framework, thereby minimizing the impact of these
challenges on our core contributions.
Dynamics of FL data market. Practical considerations, such as
the constraints of truthfulness, individual rationality, and budget,
have been integrated into the theoretical design of FLMarket.
However, in real-world FL data markets, more advanced factors,
such as market dynamics, may necessitate adaptive solutions for
data pricing. For instance, rapid changes in client data or server
budgets can influence optimal pricing outcomes. To address this,
an adaptive re-launch mechanism can be incorporated into our
framework, enabling the proposed bidding process to restart as
needed to accommodate these variations.
Malicious attack. In designing label-sharing mechanisms, we pro-
pose the PASS protocol to prevent the leakage of label information.
This protocol prevents the server from accessing sensitive client
information. However, it does not guarantee protection against
malicious clients who might provide false information or engage in
fraudulent training to exploit rewards from the server. For instance,
a common type of attack from malicious clients is the free-riding
attack [26]. To address this, existing in-training free-riding attack
detection techniques [51, 53] can be integrated into our framework
to mitigate these vulnerabilities. Based on the detection results, we
can adjust the pre-training rewards to penalize malicious clients.

7 CONCLUSION

In this paper, we propose FLMarket, a privacy-preserved, pricing
framework for pre-training client selection in federated learning.
We design a truthful auction mechanism that is able to precisely de-
termine the critical value and payment for the participating clients.
Based on the aggregated class distribution, FLMarket incorpo-
rates a secure data evaluation function and selects high-quality
clients while meeting the budget requirements. Extensive experi-
ments demonstrate that FLMarket can evaluate the quality of local
clients and select the best group of participants from the client pool,
outperforming other baselines by a large margin.
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APPENDIX

A SURVEY ON THE IMPACT OF

PRE-TRAINING DATA PRICING ON

PARTICIPATIONWILLINGNESS IN FL

In this section, we provide our empirical survey on how data pric-
ing influences users’ willingness to participate in FL training. We
first present our questionnaire and then provide a description of
the participants. Based on the results collected, we then offer our
analysis and conclusions, which highlight the significant impor-
tance of pre-training pricing in greatly enhancing the participation
willingness of end users.

A.1 Questionnaire

Title. Questionnaire on Data Pricing in Federated Learning
Introduction. Welcome to our questionnaire! This survey aims to
investigate how the pricing mechanism in federated learning (FL)
influences users’ participation willingness.

First, we will provide some necessary background information
on FL in case you are not familiar with it. Next, participants will be
asked four multiple-choice questions about their thoughts on the
pricing mechanism in FL. Please select the options that are most
suitable for you.
FL Basics.

Figure 8 provides a typical training architecture for FL. In FL
training, your role is that of a client, holding your own data on per-
sonal devices such as smartphones. The server (e.g., companies) will
distribute the training tasks to your smartphones and use your local

https://doi.org/10.1109/TPDS.2020.3023905
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Table 2: Comparison of functional indicators between FLMarket with other frameworks

Functional indicators FLMarket AFL [64] AUCTION [9] DICE[39] DDS [21] martFL[23] DEVELOP[44] SARDA[45]

Pre-Training Auction and Incentive ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖

Data Pricing and Client Selection ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖

Privacy-aware Client Evaluation ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔

Task Budget Control ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖

server

…

Model

Transfer

Resource Model

Figure 8: FL training architecture

resources to train a global model. Obviously, the training process
will consume your personal resources, such as on-device compu-
tation and data communication. As compensation, the server will
also offer rewards to the participating clients. FL is more privacy-
preserving compared to traditional centralized training since no
raw data is transmitted from your device to the server.
Multiple-Choice Questions.

Q1: Are you familiar with FL?

• Very familiar. I have extensive knowledge and experience in the
FL.
• Familiar. I have some understanding of the FL.
• Unfamiliar. I have little to no understanding or experience in the
FL.
Q2: After having a basic understanding of FL, would you like to

join an FL task by using your mobile phone for half an hour? You will

receive some monetary rewards.

• Yes, I want to try.
• No, I don’t want to try.
• I am not sure; I need more information to make my decision.
Q3: Which of the following concerns do you have when participat-

ing in FL tasks?

• Privacy leakage. I worry that the server might access my private
data on my phone.
• The rewards are insufficient to cover the cost.
• Mobile phone performance is reduced. I worry that the training
will negatively impact my phone’s performance.
• Risk mismatch. The server does not have corresponding costs
for potential breaches, such as failing to compensate the client.

Q4: If you already have information about the training time and

resource consumption, which of the following incentive mechanism

would be more attractive to you for participating in FL training?

• Pre-training pricing. A pre-training reward is evaluated and
promised before training (e.g., you are promised $10), and the
final reward is adjusted after training based on the results.
• Post-training pricing. No pre-training rewards are provided, and
the final reward is determined after training based on the results.
Q5: To what extent do you think a pre-training reward affects your

willingness to participate in FL?

• A pre-training reward has a significant impact, changing my
decision from not participating to participating.
• A pre-training reward has some impact, making participation
more attractive.
• A pre-training reward has no impact.
• A pre-training reward has a negative impact, making me less
likely to participate.

Participant selection.We distributed the questionnaire both in
person at the campus and through online advertisements. To ensure
a diverse range of participants, we deliberately targeted various
groups, including students, teachers, researchers, and engineers.

A.2 Results Analysis

After 7 days of the survey, we collected a total of 53 questionnaires
on five questions. Figure 9 displays pie charts of the options for
these five questions. Despite gaining a basic understanding of FL,
many participants seemed hesitant to join the FL training. As shown
in Figure 9b, about 46.2% of the respondents expressed a positive
willingness to participate, while 26.9% explicitly refused, and an-
other 26.9% wanted more information before making a decision.
This implies the importance of an incentive mechanism in FL to
encourage more participation. Among all the concerns for joining
FL training, privacy is the most important factor, with 44.2% of
respondents choosing this option. The second most significant con-
cern is the rewards, accounting for 25% of responses, as shown in
Figure 9b. This highlights that privacy should be the top priority to
secure more participants, and reasonable rewards serve as a good
incentive.

We then asked participants about their thoughts toward pre-
training rewards compared to traditional post-training rewards.
The results clearly show that a pre-training rewards mechanism
is more effective in encouraging participation in FL. As shown
in Figure 9d, 82.7% of respondents find the pre-training pricing
mechanism more attractive. This conclusion is further supported
by Figure 9e, where 84.6% of respondents believe that pre-training
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 V e r y  f a m i l i a r
 F a m i l i a r
 U n f a m i l i a r

1 5 . 4 %

3 8 . 5 %
4 6 . 2 %

(a) Familiarity with FL

 Y e s
 N o
 N o t  s u r e

4 6 . 2 %
2 6 . 9 %

2 6 . 9 %

(b) Whether to join

1 9 . 2 % 4 4 . 2 %

2 5 %
 P r i v a c y  l e a k a g e
 R e w a r d s  i n s u f f i c i e n t
 P e r f o r m a n c e  i s  r e d u c e d
 R i s k  m i s m a t c h

1 1 . 5 %

(c) Concerns in FL

1 7 . 3 %

 P r e - t r a i n i n g  p r i c i n g
 P o s t - t r a i n i n g  p r i c i n g

8 2 . 7 %

(d) More attractive mechanism

3 0 . 8 %

5 3 . 8 %

3 . 8 %
1 1 . 5 %

 S i g n i f i c a n t  i m p a c t
 S o m e  i m p a c t
 N o  i m p a c t
 N e g a t i v e  i m p a c t

(e) Pre-training pricing impact

Figure 9: Results of the questionnaire

pricing has a positive impact (either significant or some impact) on
their decision to participate in FL.

These findings highlight that ensuring privacy and offering rea-
sonable rewards are crucial to enhancing participation in FL train-
ing. Additionally, pre-training incentives are particularly effective
in motivating participants.

B COMPARING FLMARKETWITH OTHER FL

DATA SHARING FRAMEWORKS

Table 2 summarizes the set of functional indicators discussed in
several recent papers, and outlines whether a framework supports
a functional indicator or not.

C NOTATION

Table 3 summarizes notations used in this paper.

Table 3: Notations in FLMarket

Notation Description
T, S𝑘 , E FL task, selected clients, client pool
N𝑠 , N𝑒 Global class distribution vector,

Local class distribution vector for client 𝑒
𝑆 Server
𝐸 Total number of clients
𝑅 The budget for task T
𝐶 , 𝑐 Volume of classes in a data set, class 𝑐
𝑏𝑒 , B Bid(s) from client 𝑒 and all clients
𝑢𝑒 , U Score(s) for client 𝑒 and all clients
V list of all clients sorted by score per bid

𝑝𝑒 , P Second-stage price(s) for client 𝑒 and all selected clients
𝑁𝑠 , 𝑁𝑒 Volume of data for global, client 𝑒
𝑛𝑐𝑠 , 𝑛𝑐𝑒 Volume of data for class 𝑐 on global and class 𝑐 on client 𝑒
𝜌 (·), 𝛼 Normalization function, threshold parameter
𝜃𝑐 Weighted coefficient of category
𝜙 (·) Data quantity function for each class 𝑐 on client 𝑒

𝑆𝐾 , 𝑃𝐾 Private key, public key
𝑠𝑒,𝑣 Random seed
𝜖𝑒,𝑣 Positive and negative sign
𝑟 ,𝑅 Security parameter, public parameter
RV Signed random vector
Y𝑒 Pseudo data distribution for client 𝑒

D CHOOSING 𝑓 (·) AND 𝜃𝑐 IN EVALUATION

FUNCTION

We use CIFAR-10 dataset to study the effectiveness of the score
function𝑢𝑒 as shown in Equation 1 (§2.2). We configure six different
distributions from this dataset for our evaluation.
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(b) Test accuracy with different 𝑓 ( ·)
functions

Figure 10: The impact of different category coefficients 𝜃𝑐
and 𝑓 (·)

The choice of 𝑓 (·). 𝑓 (·) represents the relationship between data
volume and model accuracy. This relationship was previously for-
malized by Ben-David. et. al. [2] that the loss function scales at an
𝑂 (𝑑 log(2𝑚)/𝑚) rate with respect to the sample size m as shown
in lemma D.1. In addition, the scale laws in large language models
also imply a similar logarithmic relation with diminishing returns
of more training data [17]. Therefore, we propose that the function
𝑓 (·) should approximately follow this law.

Lemma D.1 ([2]). Let H be a hypothesis space on X with VC

dimension 𝑑 . If U and U′ are samples of size 𝑚 from D and D′
respectively and 𝑑H (U,U′) is the empiricalH -divergence between

samples, then for any 𝛿 ∈ (0, 1), with probability at least 1 − 𝛿 ,

𝑑H (D,D′) ≤ 𝑑H (U,U′) + 4

√︄
𝑑 log(2𝑚) + log( 2

𝛿
)

𝑚
(20)

We also empirically evaluated four functions, including
𝑓0 (𝑥) = − ln(𝑥), 𝑓1 (𝑥) = − ln(𝑥)/𝑥

𝑓2 (𝑥) =
√︁
− ln(𝑥), 𝑓3 (𝑥) =

√︁
− ln(𝑥)/𝑥

for scoring each clients. Figure 10b shows that the average accuracy
of 𝑓0 (𝑥) = − ln(𝑥) across six distributions is 1.71% higher than the
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average accuracy of the other three functions, and the variance
across the six distributions is 0.56% lower than the average variance
of the other three functions. These results are consistent with the
theoretical work and recent observations.
The Impact of Different Category Coefficients 𝜃𝑐 . To illustrate
the impact of different 𝜃𝑐 coefficients, we conducted comparative
experiments with varying data category 𝜃𝑐 coefficients and identi-
cal 𝜃𝑐 coefficients. Figure 10a demonstrates that variable 𝜃𝑐 values
achieve an average 3.76% higher accuracy than constant 𝜃𝑐 values.
Notably, within the context of the unbalanced distributions of D4 to
D6, the enhancements in accuracy due to varying 𝜃𝑐 are more obvi-
ous, resulting in improvements of 7.89%, 7.04%, and 8.92% compared
to constant 𝜃𝑐 values. This illustrates the advantage of assigning
different weight coefficients to different data categories.

E PROOF

E.1 Proof of the Lemma 3.2

Proof. To prove the winner selection algorithm is monotone,
we have to show that any winner 𝑒 ∈ S𝑘 will still be selected as it
decreases its bid, i.e., 𝑏′𝑒 < 𝑏𝑒 .

When 𝑏′𝑒 < 𝑏𝑒 , its score per bid 𝑢𝑒/𝑏′𝑒 increases. Thus, in the
sorted list V, the new position index 𝑒′ ≤ 𝑒 . According to budget
constraint,

𝑏′𝑒 < 𝑏𝑒 ≤
𝑅

2
· 𝑢𝑒

𝑈 (S𝑘 ∪ {𝑒})
. (21)

Therefore the new bid 𝑏′𝑒 is consistent with budget constraints and
𝑒 will still be selected at a lower bid. □

E.2 Proof of the Lemma 3.3

Proof. We need to prove when 𝑒 claims a bid 𝑏′𝑒 ≤ 𝑝𝑒 will lose
the auction and 𝑏′𝑒 > 𝑝𝑒 will win the auction. As we mentioned
above that 𝑘 is the smallest index satisfies the budget constraint
condition inV−𝑒 . Therefore, let’s set 𝑟 ∈ [1, 𝑘+1] indicate the index
of maximum 𝑝′

𝑒 ( 𝑗 ) in V
−𝑒 . i.e., the payment of 𝑒 is 𝑝𝑒 = 𝑝′

𝑒 (𝑟 ) .
When 𝑏′𝑒 ≤ 𝑝𝑒 , according to the definition of 𝑝𝑒 , we know 𝑏′𝑒 ≤

𝑝𝑒 = 𝑝′
𝑒 (𝑟 ) = min{𝜆𝑒 (𝑟 ) , 𝛽𝑒 (𝑟 ) }. i.e, 𝑏′𝑒 ≤ 𝜆𝑒 (𝑟 ) and 𝑏′𝑒 ≤ 𝛽𝑒 (𝑟 ) . We

obtain the following inequality:

𝑏′𝑒 ≤ 𝜆𝑒 (𝑟 ) =
𝑢𝑒 · 𝑏𝑟
𝑢𝑟

⇒ 𝑢𝑒

𝑏′𝑒
≥ 𝑢𝑟
𝑏𝑟
. (22)

Therefore, 𝑒 will take the place of 𝑟 in V and win the auction.
As for 𝑏′𝑒 > 𝑝𝑒 , we consider the following two scenarios.
• 𝜆𝑒 (𝑟 ) ≤ 𝛽𝑒 (𝑟 ) . The payment 𝑝𝑒 = 𝑝′

𝑒 (𝑟 ) = min{𝜆𝑒 (𝑟 ) , 𝛽𝑒 (𝑟 ) } =
𝜆𝑒 (𝑟 ) , so 𝑏′𝑒 > 𝜆𝑒 (𝑟 ) since 𝑏′𝑒 > 𝑝𝑒 . Therefore, we can deduce
that 𝑢𝑒/𝑏′𝑒 < 𝑢𝑟 /𝑏𝑟 and 𝑒 is behind 𝑟 in V. Next, we consider the
list [𝑟 + 1, 𝑘 + 1] that ranks behind 𝑟 in V−𝑒 . Let 𝑗 ∈ [𝑟 + 1, 𝑘 + 1],
if 𝜆𝑒 (𝑟 ) ≥ 𝜆𝑒 ( 𝑗 ) then 𝑒 will not take part of 𝑗 in V since 𝑏′𝑒 >

𝜆𝑒 (𝑟 ) ≥ 𝜆𝑒 ( 𝑗 ) . So 𝑒 will lose the auction. If 𝜆𝑒 (𝑟 ) < 𝜆𝑒 ( 𝑗 ) then
we get the inequality:

𝜆𝑒 ( 𝑗 ) > 𝜆𝑒 (𝑟 ) = 𝑝
′
𝑒 (𝑟 ) > 𝑝

′
𝑒 ( 𝑗 ) . (23)

If 𝑝′
𝑒 ( 𝑗 ) = 𝜆𝑒 ( 𝑗 ) then 𝑝′𝑒 ( 𝑗 ) = 𝜆𝑒 ( 𝑗 ) > 𝜆𝑒 (𝑟 ) = 𝑝𝑒 (𝑟 ) which has

contradiction with Inequality (23). Therefore, 𝜆𝑒 ( 𝑗 ) > 𝑝′
𝑒 ( 𝑗 ) =

𝛽𝑒 ( 𝑗 ) and 𝑒 will lose the auction because 𝑏′𝑒 > 𝜆𝑒 (𝑟 ) > 𝛽𝑒 ( 𝑗 )
which violates the budget constraint in location 𝑗 .

• 𝜆𝑒 (𝑟 ) > 𝛽𝑒 (𝑟 ) . The payment 𝑝𝑒 = 𝜆𝑒 (𝑟 ) , so 𝑏′𝑒 > 𝛽𝑒 (𝑟 ) . Con-
sidering that in V−𝑒 , 𝑗 ∈ [1, 𝑘 + 1]. If 𝛽𝑒 (𝑟 ) > 𝛽𝑒 ( 𝑗 ) then
𝑏′𝑒 > 𝛽𝑒 (𝑟 ) > 𝛽𝑒 ( 𝑗 ) . Therefore 𝑒 will not win the auction in
V because of the budget constraint. If 𝛽𝑒 (𝑟 ) ≤ 𝛽𝑒 ( 𝑗 ) , we can get

𝛽𝑒 ( 𝑗 ) ≥ 𝑝′𝑒 (𝑟 ) = 𝛽𝑒 (𝑟 ) > 𝑝
′
𝑒 ( 𝑗 ) (24)

We know that 𝑝′
𝑒 (𝑟 ) = 𝛽𝑒 (𝑟 ) and 𝛽𝑒 (𝑟 ) ≤ 𝛽𝑒 ( 𝑗 ) , if 𝑝

′
𝑒 ( 𝑗 ) = 𝛽𝑒 ( 𝑗 )

then 𝑝′
𝑒 ( 𝑗 ) ≥ 𝑝

′
𝑒 (𝑟 ) which contradicts with definition of 𝑝′

𝑒 (𝑟 ) .
Therefore, 𝑝′

𝑒 ( 𝑗 ) = 𝜆𝑒 ( 𝑗 ) and then 𝑏′𝑒 > 𝛽𝑒 (𝑟 ) > 𝜆𝑒 ( 𝑗 ) . Thus, 𝑒
will be behind 𝑗 in V and lose the auction.
Therefore, in any case, when 𝑒 claims a bid bigger than 𝑝𝑒 , it will

lose the auction. □

E.3 Proof of the Lemma 3.6

Proof. Let’s prove the Lemma 3.6. To simplify the symbolic
representation, we use S{2\1}\𝑒 for {S2 \ S1} \ {𝑒}. Based on the
knowledge presented earlier, we obtain the following equation.

𝑈 (S2) −𝑈 (S1)∑
𝑖∈S2 𝑏𝑖 −

∑
𝑗∈S1 𝑏 𝑗

=

∑
𝑒∈S2\S1 𝑢𝑒∑
𝑒∈S2\S1 𝑏𝑒

=

∑
𝑒∈S{2\1}\𝑒 𝑢𝑒 + 𝑢𝑒∑
𝑒∈S{2\1}\𝑒 𝑏𝑒 + 𝑏𝑒

(25)

We know that for 𝑒 ∈ S2 \ S1, 𝑢𝑒/𝑏𝑒 ≥ 𝑢𝑒/𝑏𝑒 . Then we can get:

𝑢𝑒

𝑏𝑒
−
∑
𝑒∈S{2\1}\𝑒 𝑢𝑒 + 𝑢𝑒∑
𝑒∈S{2\1}\𝑒 𝑏𝑒 + 𝑏𝑒

=
𝑢𝑒 · (

∑
𝑒∈S{2\1}\𝑒 𝑏𝑒 + 𝑏𝑒 ) − 𝑏𝑒 · (

∑
𝑒∈S{2\1}\𝑒 𝑢𝑒 + 𝑢𝑒 )

𝑏𝑒 · (
∑
𝑒∈S{2\1}\𝑒 𝑏𝑒 + 𝑏𝑒 )

=
𝑢𝑒 ·

∑
𝑒∈S{2\1}\𝑒 𝑏𝑒 − 𝑏𝑒 ·

∑
𝑒∈S{2\1}\𝑒 𝑢𝑒

𝑏𝑒 · (
∑
𝑒∈S{2\1}\𝑒 𝑏𝑒 + 𝑏𝑒 )

=

∑
𝑒∈S{2\1}\𝑒 (𝑢𝑒 · 𝑏𝑒 − 𝑏𝑒 · 𝑢𝑒 )
𝑏𝑒 · (

∑
𝑒∈S{2\1}\𝑒 𝑏𝑒 + 𝑏𝑒 )

(26)

Since 𝑢𝑒/𝑏𝑒 > 𝑢𝑒/𝑏𝑒 for 𝑒 ∈ S{2\1}\𝑒 . Thus 𝑢𝑒 · 𝑏𝑒 − 𝑏𝑒 · 𝑢𝑒 > 0,
then the Equation (26) is positive and we get that:

𝑢𝑒

𝑏𝑒
>

∑
𝑒∈S{2\1}\𝑒 𝑢𝑒 + 𝑢𝑒∑
𝑒∈S{2\1}\𝑒 𝑏𝑒 + 𝑏𝑒

=
𝑈 (S2) −𝑈 (S1)∑
𝑖∈S2 𝑏𝑖 −

∑
𝑗∈S1 𝑏 𝑗

(27)

Therefore,
𝑈 (S2) −𝑈 (S1)∑
𝑖∈S2 𝑏𝑖 −

∑
𝑗∈S1 𝑏 𝑗

<
𝑢𝑒

𝑏𝑒
(28)

□

F THE PASS PROTOCOL

Table 4 shows the protocol of the 𝑃𝐴𝑆𝑆 to aggregate data distri-
bution from clients and Figure 11 indicates a running example of
𝑃𝐴𝑆𝑆 .
Example. The example of 𝑃𝐴𝑆𝑆 is in Figure 11. Assume there are
3 clients willing to participate in the FL training. Their true data
distribution is [3, 6, 8], [4, 4, 7], and [10, 8, 5] respectively, where
the number represents the data volume of the class. For instance,
the data volume of class 1, class 2, and class 3 in Client1 is 3, 6,
and 8 respectively. Client1 uses private key 𝑆𝐾1 and public key
𝑃𝐾2, 𝑃𝐾3 generates vector [1, 9, 7] and [2, 5, 3] respectively. Simi-
larly, Client2 generates vector [1, 9, 7] and [5, 7, 1], Client3 gener-
ates vector [2, 5, 3] and [5, 7, 1]. 𝜖1,2 = 1 for 1 < 2 and 𝜖1,3 = 1 for
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Table 4: The PASS protocol

Set up:

– All clients are given the security parameter 𝑟 by the server 𝑆 .
Step 1:

Client 𝑒:
– Honestly generate 𝑅 ← 𝐾𝐴.𝑝𝑎𝑟𝑎𝑚(𝑟 ) and generate key pairs
(𝑃𝐾𝑒 , 𝑆𝐾𝑒 ) ← 𝐾𝐴.𝑔𝑒𝑛(𝑅).
– Send 𝑃𝐾𝑒 to the server 𝑆 .
Server 𝑆 :
– Receive public keys 𝑃𝐾𝑒,𝑒∈E from clients and broadcast
(𝑃𝐾𝑒 , 𝑒)𝑒∈E to every client.
Step 2:
Client 𝑒:
– Received the list {(𝑃𝐾𝑣, 𝑣)}𝑣∈E broadcast from the server 𝑆 .
– For each client 𝑣 ∈ E \ {𝑒}, generated random seed 𝑠𝑒,𝑣 ←
𝐾𝐴.𝑎𝑔𝑟𝑒𝑒 (𝑆𝐾𝑒 , 𝑃𝐾𝑣).
– Based on 𝑠𝑒,𝑣 generate RV𝑒,𝑣 ← 𝜖𝑒,𝑣 · 𝑃𝑅𝐺 (𝑠𝑒.𝑣) using PRG,
where 𝜖𝑒,𝑣 = 1 if 𝑒 < 𝑣 and 𝜖𝑒,𝑣 = −1 if 𝑒 > 𝑣 .
– Adding N𝑒 to all RV𝑒,𝑣 yields the pseudo local data distribu-
tion Y𝑒 ← N𝑒 +

∑
𝑣∈E\{𝑒 } RV𝑒,𝑣 and send it to the server.

Server 𝑆 :
– Receive pseudo local data distribution 𝑌𝑒,𝑒∈E from clients .
– Summing all Y𝑒 to get the global distribution N𝑠 ←

∑
𝑒∈E Y𝑒

and broadcast it to all clients.
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Figure 11: The example of PASS

1 < 3, so Client1 adds 1 · [1, 9, 7] and 1 · [2, 5, 3] generates pseudo
data distribution [6, 20, 18] = [3, 6, 8] + [1, 9, 7] + [2, 5, 3]. Similarly,
Client2 adds −1 · [1, 9, 7] and 1 · [2, 5, 3] to generates pseudo data
distribution [8, 2, 1] = [4, 4, 7] − [1, 9, 7] + [5, 7, 1]. Client3 adds
−1 · [2, 5, 3] and −1 · [5, 7, 1] to generates pseudo data distribution
[3,−4, 1] = [10, 8, 5] − [2, 5, 3] − [5, 7, 1]. Thereafter, this informa-
tion is uploaded to the central server, the global data distribution is
computed accordingly [17, 18, 20] = [6, 20, 18] + [8, 2, 1] + [3,−4, 1].

G SECURITY ANALYSIS OF PASS

PASS reveals little additional information with others beyond the
pseudo-distribution and public key, which reduces the risk of pri-
vacy breaches. Next, we analyse the privacy protection ability of
𝑃𝐴𝑆𝑆 in the context of limited sharing of information.

Theorem G.1. Any combination based on client-generated pseudo

data distributions is computationally indistinguishable from a uni-

formly sampled element Z of the same space by the server, except for

the aggregation combining all clients.

Proof. For any {N𝑒 }𝑒∈E, where ∀𝑒 ∈ E, N𝑒 ∈ R𝐶 . If 𝑒 has the
RV𝑒,𝑣 ∈ R𝐶 , and 𝑣 has the corresponding RV𝑣,𝑒 = −RV𝑒,𝑣 . Then
each client 𝑒 adds all RV𝑒,𝑣 with N𝑒 gets:

Y = {N𝑒 +
∑︁

𝑣∈E\{𝑒 }
RV𝑒,𝑣}𝑒∈E (29)

Considering any combination from Y, it can be defined as:∑︁
𝑒∈I⊆E

{N𝑒 +
∑︁

𝑣∈E\{𝑒 }
RV𝑒,𝑣} (30)

Then we compare it with a random generated element Z of the
same space Z ∈ R𝐶 . Then we can consider:∑︁

𝑒∈I⊆E
{N𝑒 +

∑︁
𝑣∈E\{𝑒 }

RV𝑒,𝑣} ≡ Z 𝑠 .𝑡 . I ≠ E (31)

When I ≠ E, the sum of the client-generated pseudo distributions
looks random. In other words, only when all the client-generated
pseudo data distributions are aggregated, the server can obtain
a non-random distribution, which is the global distribution we
desire. □

Theorem G.2. The proposed mechanism can protect clients’ pri-

vacy in the semi-honest client environment.

Proof. Each client 𝑒 generates a key pair (𝑆𝐾𝑒 , 𝑃𝐾𝑒 ) and every
client has its personalized key pair. Clients only transmit their public
key 𝑃𝐾𝑒 to other clients and the private key 𝑆𝐾𝑒 don’t transmit in
any form. Thus, 𝑆𝐾𝑒 will not be eavesdropped by others.

The adversary client 𝑎 gets the public key of client 𝑒 and gen-
erates random seed 𝑠𝑎,𝑒 which is the same as client 𝑒 generated.
Then client 𝑎 generates RV𝑎,𝑒 ← 𝜖𝑎,𝑒 · 𝑃𝑅𝐺 (𝑠𝑎,𝑒 ). According to the
protocol client 𝑎 can infer RV𝑒,𝑎 = −RV𝑎,𝑒 because 𝜖𝑎,𝑒 = −𝜖𝑒,𝑎 .
However, RV𝑒,𝑎 and 𝑃𝐾𝑒 are all the information that client 𝑎 can
get about the client 𝑒 .
N𝑒 can be inferred from Equation (32). It means only getting all

the RV𝑒,𝑣 and Y𝑒 , the privacy of 𝑒 can be breached. The RV𝑒,𝑣 are
generated locally on the clients and are not transmitted, so stealing
them is very difficult.

N𝑒 = Y𝑒 −
∑︁

𝑣∈E\{𝑒}
RV𝑒,𝑣 (32)

As analysed above, client 𝑎 can only infer one RV𝑒,𝑣 about client
𝑒 . Therefore, even if 𝑎 manages to obtainY𝑒 through certain means,
it is still unable to compromise the privacy of 𝑒 due to lack of other
RV𝑒,𝑣 .

Therefore, our mechanism can protect the clients’ privacy in the
semi-honest client environment. □
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Figure 12: The generated data distributions of CIFAR-10 and an example of its allocation

Theorem G.3. The proposed mechanism can protect clients’ pri-

vacy in the semi-honest server environment.

Proof. The server has access to the public key 𝑃𝐾𝑒 but not to
any of the private key 𝑆𝐾𝑒 of each client 𝑒 . The only value sent by
each client 𝑒 is the pseudo distribution Y𝑒 . The server is unable
to access the random seed 𝑠𝑒,𝑣 since it is not shared by clients.
In addition, the server can not generate it due to the lack of the
necessary private keys, 𝑆𝐾𝑒 or 𝑆𝐾𝑣 . Thus, RV𝑒,𝑣 ← 𝜖𝑒,𝑣 ·𝑃𝑅𝐺 (𝑠𝑒,𝑣)
as the key part to infer the privacy of client 𝑒 based on Equation
(32) is difficult to obtain for the server.

As a result, only two messages the server can get. One is the
pseudo distribution Y𝑒 of clients and the other is the global distri-
bution N𝑠 combined with all pseudo distribution Y𝑒 . □

H THE EXAMPLE OF GENERATING

TRAINING DATASET

Figure 12a demonstrates the process of transforming the originally
balanced global data distribution (a total of 50K data, with 5K in each
class) of the CIFAR-10 dataset into an unbalanced distribution. We
incrementally remove data from each class to produce unbalanced
global distributions, labeled as D2 to D6. In the second step, based
on the different global data distributions, we allocate data for each
class to each client following a Dirichlet distribution (𝛼 = 0.5) for
simulating Non-i.i.d. scenarios [15, 22, 27]. Figure 12b shows the
results of distributing the D1 global distribution to 20 clients.

I DESCRIPTION OF BASELINES

A brief description of the baselines used in our experiments is
provided below:

• Random Selection (RS): a simple method that randomly selects a
fixed number of clients.
• Quantity Based Selection (QBS) [57]: QBS selects a fixed number
of clients only based on their data volumes in descending order.

• DICE [39]: DICE selects clients with the highest data quality
scores, defined in terms of the data volume ratio and the standard
deviation of data volume in different categories.
• Diversity-driven Selection (DDS) [21]: DDS selects a subset of
clients based on two criteria, (i) Statistical homogeneity, which
assesses the similarity between a client’s distribution and a uni-
form distribution; ii) Content diversity, which measures the dis-
tance between clients on embedding vectors of their dataset.
The selection process favours clients with both high statistical
homogeneity and content diversity.
• S-FedAvg [33]: an in-training client selection method where the
Sharply value of local model accuracy is introduced after each
round of training. In addition, a Shapley value-based Federated
Averaging (S-FedAvg) algorithm is presented to select clients
with high contributions to the FL task.

J COMMUNICATION ANALYSIS

Clients Side Analysis. On the client side, the communication
cost consists of two parts: In the first part, each client uploads
its public key to the server, which distributes it to other clients,
then receives (𝐸 − 1) public keys of other clients from the server.
The communication cost of the first part is (1 + (𝐸 − 1))𝐿𝑘 = 𝐸𝐿𝑘 ,
where 𝐿𝑘 is the number of bits in the public key exchange. In the
second part, each client uploads its pseudo data distribution Y𝑒
to the server, the size of Y𝑒 is 𝐶 ⌈log2 𝑦𝑐𝑒 ⌉ (𝑦𝑐𝑒 is the element of Y𝑒
and ⌈log2 𝑦𝑐𝑒 ⌉ is the minimum number of bits required for 𝑦𝑐𝑒 ). The
communication cost is 𝐶 ⌈log2 𝑦𝑐𝑒 ⌉. Then the total communication
cost of each client is 𝐸𝐿𝑘 +𝐶 ⌈log2 𝑦𝑐𝑒 ⌉,
Server Side Analysis. On the server side, the two parts of commu-
nication cost are public key exchange and pseudo data distribution
reception respectively. For the public key exchange part, the com-
munication cost of public key reception is 𝐸𝐿𝑘 and the dispatch
communication cost is (𝐸 (𝐸 − 1))𝐿𝑘 . The total communication
cost of public key exchange is 𝐸2𝐿𝑘 . For pseudo data distribution
receptiotn, he communication cost is 𝐸𝐶 ⌈log2 𝑦𝑐𝑒 ⌉.
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Communication Cost of FL Training. In each round of FL train-
ing, clients upload the local model parameters to the server and
receive the global model parameters from the server. The communi-
cation cost of each client is 2𝑀𝐿𝑚 ,𝑀 is the total number of model
parameters and 𝐿𝑚 is the number of bits in each parameter. The
communication cost of the server is 2𝑀𝐿𝑚𝐸 due to the server trans-
mitting the model parameters for each client. This communication
cost will happen in each round of FL training.

The number of parameters in the model is far greater than the
class number and client number. Therefore the communication cost
of FL training is far greater than PASS.

K EVALUATION OF FLMARKET ON THE

TOTAL NUMBER OF 100 CLIENTS
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(b) 50 clients selected
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(c) 75 clients selected

Figure 13: CIFAR-10: 𝑛 clients selected from 100 clients

To evaluate the performance of FLMarket with a large number
of clients, we present the results obtained from experiments in
which 25, 50, and 75 clients were selected from a pool of 100 clients.
The global data distributions remain consistent with those depicted
in Figure 3, with the only difference being the number of clients.
Figure 13 illustrates that FLMarket continues to achieve significant
average accuracy improvements of 14.66 %, 22.06 %, 5.19 % and 11.08
%when compared to other baseline methods, with a large number of
clients. However, comparing Figure 13 and 3, when the client pool is
enlarged and more clients are selected, the accuracy improvement
of FLMarket drops by 1-5 %. This is because selecting more clients
increases the probability of baseline methods to select high-quality
clients.
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