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ABSTRACT

Graph queries have emerged as one of the fundamental
techniques to support modern search services, such as PageR-
ank web search, social networking search and knowledge
graph search. As such graphs are maintained globally and
very huge (e.g., billions of nodes), we need to efficiently
process graph queries across multiple geographically dis-
tributed datacenters, running geo-distributed graph queries.
Existing graph computing frameworks may not work well
for geographically distributed datacenters, because they
implement a Bulk Synchronous Parallel model that requires
excessive inter-datacenter transfers, thereby introducing ex-
tremely large latency for query processing. In this paper,
we propose GeoGraph–a universal framework to support
efficient geo-distributed graph query processing based on
clustering datacenters and meta-graph, while reducing the
inter-datacenter communication. Our new framework can
be applied to many types of graph algorithms without
any modification. The framework is developed on the top
of Apache Giraph. The experiments were conducted by
applying four important graph queries, i.e., shortest path,
graph keyword search, subgraph isomorphism and PageRank.
The evaluation results show that our proposed framework
can achieve up to 82% faster convergence, 42% lower WAN
bandwidth usage, and 45% less total monetary cost for the
four graph queries, with input graphs stored across ten geo-
distributed datacenters.
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1 INTRODUCTION

Currently, most search engines offer geographically distribut-
ed (geo-distributed) search services to users in multiple
geographic locations. For example, in support of global
product searching, Amazon currently has 15 service regions
geo-distributed around the world [1], Bing operates from
eight regions [4], Google provides search services from 20
geo-distributed regions [2], and Facebook has built four geo-
distributed datacenters to manage social search [5]. The
popular multi-site web search engine is composed of a
number of search sites geo-distributed around the world [18].

On the other hand, graph queries serve as the foundation
of many popular search services, including PageRank web
search [9], social networking search [11], knowledge graph
search [29], and navigation map search [33]. In these graph
queries, the processed graphs are typically as huge as billions
of nodes and trillions of edges [10, 37], taking unlimited
storage and computational resources. For instance, it is
reported that the Google search engine needs to handle
a web-scale graph consisting of more than 70 billions of
websites and one trillion hyperlinks between them [10]. Such
huge graphs with rapid rates of change [45], coupled with
high costs of Wide-Area Network (WAN) data transfers [36]
and regulatory constraints [46], make it extreme expensive
or infeasible to move the entire dataset to a central location.

Therefore, it is critical to design an efficient geo-distributed
graph query processing mechanism for search services across
multiple datacenters. In particular, the fundamental chal-
lenge of processing the graph queries in a geo-distributed
scenario is the high latency caused by the large number
of communications via wide-area networks (WANs). Unfor-
tunately, existing distributed graph computing frameworks
are not sufficiently competent to address this challenge.
The state-of-the-art frameworks or systems, e.g., Pregel [31],
PowerGraph [19] and GraphX [20], are solely designed and
optimized for processing graphs within a single datacenter
with 100 Gbps of bandwidth capacity between worker nodes
in the datacenter. Such high network bandwidth is far
beyond the reality in inter-datacenter WANs, whose typical
capacity is hundreds of Mbps [21].

The inefficiency of geo-distributed graph queries stems
from the Bulk Synchronous Parallel (Pregel) model, which is
the dominating synchronization model implemented by most
of the popular graph computing frameworks [31]. Pregel runs
processes in a sequence of “supersteps”, which apply updates
on nodes and edges iteratively. Each superstep typically
allows communication among neighboring nodes only, and
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it usually takes many supersteps until the algorithm con-
verges [7]. The message exchanges among neighboring nodes
may incur excessive inter-datacenter communications if two
nodes are allocated in different datacenters. To our best
knowledge, only Monarch [23] modifies Pregel to support
geo-distributed graph analytics. However, as shown in our
experiments, Monarch still surfers large inter-datacenter
transfer time and overhead due to that Monarch still inherits
the synchronous parallel computation from Pregel. As a
result, Monarch is not suitable for online search services that
require short response time.

To solve the problems, in this paper, we propose Geo-
Graph–a universal framework to support efficient geo-distrib-
uted graph query processing. The inputs of GeoGraph are a
geo-distributed graph G across m datacenters, each of which
stores a fragment (Fi) ofG, and a graph queryQ. The output
of GeoGraph is the answer of Q in G, Q(G). GeoGraph works
with a coordinator Mc and m datacenters.

GeoGraph consists of offline and online phases. In the
offline phase, GeoGraph groups all the datacenters into k
(k < m) clusters {C} based on the WAN latency, and selects
a head datacenter DCh in each cluster. In the online phase,
GeoGraph advocates a evaluation–assembling framework to
process Q within each C. Specifically, GeoGraph first com-
putes local answer Q(Fi) for every Fi in C. Q(Fi) is sent
to DCh. DCh assembles all Q(Fi) to compute the answer
Q(C) of the cluster C. Every Q(C) is then sent to Mc that
assembles all Q(C) to compute the final answer Q(G). For
assembling at everyDCh, we construct ameta-graph MG(C)
of cluster C to compute Q(C). For assembling at Mc, we
construct a meta-graph MG(G) of G based on all MG(C)
to compute Q(G). The design of GeoGraph is to minimize
the inter-datacenter communication to process Q over G.

In the application of GeoGraph, we process four typical
graph queries by GeoGraph, i.e., source-destination shortest
path (SDSP), graph keyword search (GKS), subgraph iso-
morphism and PageRank, which are important to search ser-
vices. Nevertheless, GeoGraph can process all graph queries
that can be run on Pregel. We implement GeoGraph on
Apache Giraph [32] which is an open-source Pregel-based
graph processing system. Take the SDSP query as an
example: we query a graph (with 40.3M nodes and 180M
edges) geographically distributed across ten datacenters
on Amazon Cloud. The experimental results show that,
compared to Pregel, GeoGraph reduces the running time by
82%, the WAN bandwidth usage by 42% and the monetary
cost by 45%, respectively.

2 PROBLEM STATEMENT

In this section, we first present some backgrounds of geo-
distributed datacenters and challenges of running graph
queries across geo-distributed datacenters. Then, we formal-
ized our research problem.

2.1 Geo-distributed Datacenters

Many search engine providers and large companies are
deploying their services globally to guarantee low latency

to users around the world. For example, Microsoft currently
deploys eight regions [4] for cloud service, and Google has
tens of datacenters distributed in four different regions [2].

Let Ui (resp. Di) denote as the uplink (downlink) band-
width from a datacenter DCi to an endpoint of the WAN.
There are three observations for computations over geo-
distributed datacenter [16, 34].

Table 1: Uplink/downlink bandwidths (GB/s) of
cc2.8xlarge instances from three Amazon EC2
regions to the Internet.

US East AP Singapore Sydney

Uplink Bandwidth 0.52 0.55 0.48

Downlink Bandwidth 2.8 3.5 2.5

(1) The WAN latency is a significant bottleneck. The
large WAN communication latency is orders of magnitude
larger than the local network latency within a datacenter.
For example, the local round-trip time (RTT) is 1ms on
average, whereas the average WAN RTT is 100ms. (2) The
uplink/downlink bandwidths of a single datacenter can be
heterogeneous. As shown in Table 1, the downlink band-
widths of all the three regions are several times higher
than their uplink bandwidths. (3) The uplink/downlink
bandwidths among datacneters are very various. For example,
the uplink and downlink bandwidths of the Singapore region
are 17% and 40% higher than those of the Sydney region,
respectively.
Computing Model. In this paper, we study graph query
processing over geo-distributed datacenters. We assume that
there are unlimited computation resources in each single
datacenter, and the inter-datacenter data communication is
the bottleneck to graph processing in geo-distributed data-
centers, since the WAN bandwidth is much more scarce than
the computation resources such as CPU and memory [48].

2.2 Problem Definition

Data Graphs. A data graph is a node-labeled, directed
graph G = (V,E,L), where (1) V is a finite set of data nodes;
(2) E ⊆ V × V , where (v, w) ∈ E denotes a directed edge
from node v to w; and (3) L() is a function such that for each
node v in V , L(v) is a label from an alphabet Σ. Intuitively,
L() specifies e.g., interests, social roles, ratings [30].

To simplify the discussion, we do not explicitly mention
edge labels. Nonetheless, our techniques can be readily
adapted for edge labels.
Geo-distributed Graph. Given m geo-distributed data-
centers, a strategy P partitions a data graph G = (V,E, L)
into disjoint fragments F = (F1, ..., Fm) such that each Fi =
(Vi, Ei) is a subgraph of G, E =

∪
i∈[1,m] Ei, V =

∪
i∈[1,m] Vi,

and Fi resides at a datacenter DCi. Denote by

• Fi.I the set of in-nodes v ∈ Vi such that there is an
edge (v′, v) incoming from a node v′ in Fj (i ̸= j);

• Fi.O the set of out-nodes v ∈ Vi such that there is an
edge (v, v′) with a node v′ in Fj (i ̸= j); and
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• Fi.O
′ the set of virtual nodes v′ such that there exists

an edge (v, v′) in E, v ∈ Vi, and v′ is in some Fj(i ̸= j).

We refer to the nodes in Fi.B = Fi.I
∪

Fi.O as the border
nodes of Fi w.r.t. P . For an edge e = (v, v′), v ∈ Fi.O and
v′ ∈ Fi.O

′, we refer to e as a cross edge of Fi, denoted as
cEi. �

Intuitively, each fragment Fi is specified by (Vi

∪
Fi.O,Ei∪

cEi). Specifically, Vi

∪
Fi.O of Fi consists of (a) those

nodes in Vi and (b) each node in Vi that has an edge to
another fragment. The edge set Ei

∪
cEi consists of (a) the

edges in Ei and (b) cross edges in cEi, i.e., edges to other
fragments. Fi maintains its virtual nodes Fi.O

′ so that Fi

can communicate with other fragments.

DC4

8
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13

9

11

144 5

6 7

C1

DC1

01

23

DC3

DC2

C2

Figure 1: Example of geo-distributed graphs

Figure 1 shows a geo-distributed graph G across four data-
centers DC1, DC2, DC3 and DC4 which maintain fragments
of G, F1, F2, F3 and F4, respectively. For simplicity, we
choose F1 and F2 to illustrate the above definitions. Node
v2 is an in-node of F1, i.e., v2 ∈ F1.I, since there is an edge
incoming from node v5 in F2. Node v3 is an out-node of F1

i.e., v3 ∈ F1.O, since there is an edge from v3 to v4 in F2.
Node v4 is a virtual node of F1, i.e., v4 ∈ F1.O

′. Nodes v3
and v2 are border nodes of F1, and edge (v3, v4) is a cross
edge from F1 to F2.

We can advocate state-of-the-art strategies (e.g., [43, 48])
to partition data graphs to different datacenters as a set of
geo-distributed graphs. In the following of the paper, we will
alternate the two terms fragment and datacenter in a clear
situation.

Based on the geo-distributed graphs, we can define geo-
distributed graph processing problems. We refer to a graph
computation problem as a class Q of graph queries. Denote
AlgQ as an algorithm to process Q over geo-distributed
graphs. We then can formally define our problem.

Definition 2.1 (Geo-distributed Graph Processing).
Given a query Q and a fragmentation F = {Fi} of a geo-
distributed graph G, we compute the answer Q(G) of Q in
G and minimize the total processing time TimeQ of AlgQ.
For a cross edge (v, v′) of Fi, let Sv denote as the size of data
that needs to be transferred from v to v′, and let Yv′ denote
as the number of times of AlgQ visiting v′ from v. TimeQ

is given as the time consumption of AlgQ transferring data
among datacenters:

TimeQ = MAXk
i=1{

∑
v∈Fi.O

∑
(v,v′)∈v.cE

Yv′Xv(
Sv

Ui
+

Sv

Dv′
)} (1)

Where Xv is a binary, if AlgQ visits v, Xv = 1, otherwise
Xv = 0. Ui is the uplink bandwidth of Fi;Dv′ is the downlink
bandwidth of the fragment Fv′ containing v′ as an in-node;
and v.cE is the set of cross edges incident to v. �

Equation 1 can be explained as follows. The item YvXv(Sv

/Ui+Sv/Dv′) computes the time T(v,v′) of AlgQ transferring
data through the cross edge (v, v′). This is because any
current data in Fi is transferred through a cross edge of Fi,
and because the datacenters are connected with a congestion-
free network as stated in the computing model. For the node
v ∈ Fi.O, there is a set of cross edges v.cE incident to v.
After summarizing T(v,v′) over v.cE, we get the time Tv of
transferring data through node v. After summarizing Tv over
all out nodes v in Fi.O, we obtain the total time of AlgQ
transferring values from Fi. AlgQ can be performed across
m fragments in a parallel. Therefore, T imeQ is the longest
computation time among the m fragments.

In Section 3, we will propose a universal framework to
processQ. In Section 4, we will present how to implement the
framework by advocating two typical Q, i.e.,graph traversal
(source-destination shortest path, SDSP) and graph keyword
search.

3 FRAMEWORK

This section will present the general framework of geo-
distributed graph processing, denoted as GeoGraph. We first
show the high-level structure of GeoGraph and then its
detailed steps.

3.1 Idea of GeoGraph

The inputs of GeoGraph are a geo-distributed graph G and
a query Q. The output of GeoGraph is the answer of Q
in G, i.e., Q(G). The idea of GeoGraph is to employ the
local evaluation–assembling framework to compute its local
answer Q(Fi) and then assemble all local answers Q(Fi) at
a coordinator Mc to compute the final answer Q(G).

When there are too many datacenters, Mc may be
bottleneck due to the large number of inter-datacenter com-
munications transferred to Mc. To remedy the shortcoming,
GeoGraph groups m datacenters into k (m ≥ k) clusters, and
selects a head datacenterDCh in each cluster. GeoGraph then
applies the local evaluation–assembling framework within
each cluster C. Specifically, GeoGraph computes local answer
Q(Fi) for every Fi in C. Q(Fi) is sent to DCh. DCh

assembles all Q(Fi) to compute the local answer Q(C) of
the cluster C. Every Q(C) is then sent to Mc that assembles
all Q(C) to compute the final answer Q(G). The k head
datacentes can share the inter-datacenter communications
to Mc.

Based on the above discussion, GeoGraph contains two
assembling phases, i.e., assembling at DCh and Mc. While
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assembling at DCh, we need a meta-graph MG(C) of cluster
C to compute Q(C). Similarly, while assembling at Mc, we
need a meta-graph MG(G) of G to compute Q(G)

Definition 3.1 (Meta-graphs). After we obtain k clusters
of datacenters, the fragments F = (F1, ..., Fm) of G are clus-
tered into k disjoint cluster subgraphs CS = (CS1, ..., CSk).
For a cluster subgraph CSi ∈ CS, denote by CSi.I the set
of in-nodes v ∈ CSi such that there is an edge (v′, v) from
a node v′ in CSj (i ̸= j), and CSi.O the set of out-nodes
v ∈ CSi such that there is an edge (v, v′) with a node v′ in
CSj (i ̸= j). Denote by CSi.B = CSi.I

∪
CSi.O the set of

border nodes of CSi. For an edge e = (v, v′) with v ∈ CSi.O
and v′ ∈ CSj .I, we refer to e as a cross edge of CSi, denoted
as CSi.cE.

Based on these definitions, the meta-graph of G is
MG(G) = (Vmg, Emg), where Vmg =

∪k
i=1 CSi.B and Emg

=
∪k

i=1 CSi. cE. Assume that cluster Ci consists of ci
fragments Fij (1 ≤ j ≤ ci) of F . The meta-graph of
C is MG(C) = (Vmc, Emc), where Vmc =

∪ci
j=1 Fij .B and

Emc =
∪ci

j=1 Fij .cE \ CSi.cE. �

3

4

2

5

(a) MG(C1)

13

82

105

7

(b) MG(G)

Figure 2: Meta-graphs of C1 and G in Figure 1

For example, in Figure 1, assume that F1 and F2 are
in cluster C1, and F3 and F4 are in another cluster C2.
Figure 2(a) shows the meta-graph of C1, since edges (v3, v4)
and (v5, v2) are cross edges between F1 and F2. Figure 2(b)
shows the meta-graph of the geo-distributed G, since edges
(v2, v8), (v10, v2), (v13, v5) and (v7, v10) are cross edges
between C1 and C2.

3.2 Detailed Steps of GeoGraph
Based on the meta-graphs MG(G) and MG(C), Figure 3
illustrates the detailed steps of GeoGraph. GeoGraph consists
of the offline and online phases, introduced as follows.

3.2.1 Offline Phase. The offline phase is to cluster datacen-
ters, and to construct MG(G) and MG(C), which consists
of the following three steps.

(1) GeoGraph groups m datacenters into k (k ≤ m) cluster-
s based on the metric of the transferring time ti,j between
datacenters (line 1). Here we can advocate any clustering
algorithm, e.g., k-means [35]. Let ti,j be the transferring
time between datacenters DCi and DCj . Let S(Fi.O) be the
size of Fi.O, and ti→j (resp. tj→i) be the transferring time
fromDCi toDCj . We then have ti,j =min(ti→j , tj→i), where
ti→j = S(Fi.O)/Ui + S(Fi.O)/Dj and tj→i = S(Fj .O)/Uj +
S(Fj .O)/Di. The meaning of the estimation is as follows.
When DCi communicates with DCj , AlgQ usually transfers

Procedure GeoGraph Framework {
Input: G, Q

Output: Q(G)
//The offline phase
(1) Group all datacenters into k clusters based on the

inter-datacenter transferring time;
(2) Within each cluster C, select a head datacenter DCh

to maintain the meta-graph MG(C) of C;
(3) Select a head cluster Ch to maintain the meta-graph MG

(G) of G;
//The online phase
(4) Post Q to every datacenter DCi;
(5) Every DCi computes its local answer Q(Fi) of Fi

that is sent to its DCh;
(6) DCh assembles Q(Fi) based on MG(C) to compute

the local answer Q(C) of C. Q(C) is then sent to Ch;
(7) Ch assembles Q(C) based on MG(G) to compute

the global answer Q(G) of G;
(7.1)Ch sends Q(G) to every DCh to update Q(C) if

necessary;
(7.2)DCh sends Q(C) to every DCi to update Q(Fi) if

necessary;}

Figure 3: Framework of Graph Query Processing
over Geo-distributed Datacenters.

the local answers associated with nodes in Fi.O from DCi to
DCj . Thus, we adopt the size of Fi.O, S(Fi.O), to estimate
ti→j . We then obtain the calculation of ti→j similar to
Equation 1.

(2) Within each cluster C, GeoGraph selects a head
datacenter DCh to maintain the meta-graph MG(C) of C
(line 2). The principle of selecting DCh is as follows. Recall
that C has ci fragments. For a datacenter DCi, we calculate
the average transferring time ti between DCi and other ci−1
datacenters as: ti =

∑ci−1
j=1 ti,j/(ci − 1). DCh is then the

datacenter with the smallest ti. This principle shows that
DCh can use the least time to receive all Fi.O. To construct
MG(C), DCi sends Fi.B and Fi.cE to DCh.

(3) GeoGraph selects a head cluster Ch to maintain the
meta-graph MG(G) of G (line 3). The principle of selecting
Ch is similar to that of selecting DCh. For a cluster Ci,
denote DCi,h as its head datacenter. We calculate the
average transferring time ti between DCi,h and other ci − 1

head datacenters as: ti =
∑ci−1

j=1 ti,j/(ci − 1). Here, tij =

S(Cj .B)/Uj + S(Cj .B)/Di. Ch is then the cluster with the
smallest ti. After receiving all Cj .B and Cj .cE, Ch can
construct MG(G). Note that DCh in Ch is responsible for
constructing and maintaining MG(G).

3.2.2 Online Phase. The online phase is to compute the
answer Q(G) of Q in G based on MG(G) and MG(C), which
consists of the following four steps.

(1) Query Q is posted to every datacenter DCi (line 4).
(2) Every DCi computes its local answer Q(Fi) of Q in

Fi (line 5). Computations on graph data are often iterative.
e.g., the algorithm like PageRank and the shortest path that
require to update graph data repeatedly until a fixed point.
Q(Fi) is the answer of graph algorithms for Q that finishes
iterations on Fi. For a query Q, Q(Fi) usually contains the
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values associated with Fi.O. Therefore, only values of nodes
in Fi.O are sent to DCh, which is lightweight. Note that
any existing graph computing model (e.g., Pregel) can be
advocated to compute Q(Fi). In this step, once Q(Fi) is
obtained, it can be sent to DCh, without waiting for the
outcome or messages from any other datacenter.

(3) After DCh receives all Q(Fi), DCh assembles these
Q(Fi) based on MG(C), to compute the local answer Q(C)
of C. DCh then sends Q(C) to Ch (line 6).

(4) Ch assembles Q(C), based on MG(G), to compute the
global answer Q(G) (line 7). This step is similar to the third
step. However, for some graph queries Q, (e.g., PageRank),
Q(G) includes all nodes of G. For these Q, the current Q(G)
only includes partial answers. To obtain a complete Q(G),
Ch sends Q(G) to every C to update Q(C). DCh in C also
sends Q(C) to every DCi to update Q(Fi) if it is further
necessary.

Remark. From the global view, GeoGraph employs an asyn-
chronous parallel computation. That is, every datacenter
(resp. every cluster) computes its local answers in an asyn-
chronous parallel. The local computation can be efficient due
to that nearby datacenters are clustered together. GeoGraph
also utilizes meta-graphs to speed up the global computa-
tion. Moreover, unlike the existing models, our proposed
framework can significantly reduce the inter-datacenter com-
munication, thereby improving the performance of geo-
distributed graph processing.

3.3 Running Example

0

3

2

7

5

4

(a) AMG(C1)

0

7

2

5

8

10

13 14

Source

Destination

(b) AMG(G)

Figure 4: Augmented meta-graphs of C1 and G in
Figure 2.

We take the source-destination shortest path problem
(SDSP) as an example to present how GeoGraph works. The
detailed solution to SDSP will be introduced in Section 4.1.
Given a graph G and a pair of nodes (s, d) in G, the SDSP
problem is to compute the shortest distance dist(s, d) from
s to d in G.

The idea to compute dist(s, d) is as follows. Recall that all
datacenters are grouped into k clusters Ci (1 ≤ i ≤ k) and
three cases are considered. Case 1: C1 contains s. In this case,
GeoGraph computes dist(s, u) for each out-node u of C1. Case
2: C2 contains d. In this case, GeoGraph computes dist(v, d)
for each in-node v of C2. Case 3: Ci (3 ≤ i ≤ k) contains
neither s nor d. In this case, GeoGraph computes dist(u, v) for

each pair of in-node u and out-node v of Ci. These distances
are computed in parallel over clusters. The coordinator Mc

assembles these partial distances to construct an augmented
meta-graph AMG(G) of G which composes of s, d and the
meta-graph MG(G). Mc then computes the dist(s, d) by
running the Dijkstra’s algorithm over AMG(G). Note that
the distance dist(s, u) (resp. dist(u, v) and dist(v, d)) can
also be calculated in parallel within cluster C1 (resp. C2 and
Ci (3 ≤ i ≤ k)). The details are illustrated in Section 4.1.

The following compares our proposed algorithm with
Pregel to process the geo-distributed graph G in Figure 1.

To compute dist(v0, v14), Pregel runs the single-source
shortest path (SSSP) from v0 to v14 as follows. Within a
superstep, each node in G tries to update itself with the
smallest distance from v0 if it received a message from the
last superstep. If the node has updated, it will send new
messages along its outgoing edges. A node becomes inactive
as soon as it cannot get further updates. Pregel needs 11
supersteps until converges, and incurs 21 inter-datacenter
messages.

In terms of GeoGraph, it first parallel computes Q(Fi) in
four datacenters according to the three cases classified as
above. Take the cluster C1 as an example. Since F1 contains
the source node v0, Q(F1) is dist(v0, v3). Since F2 contains
neither v0 nor v14, Q(F2) are dist(v4, v7) and dist(v5, v7).
Similarly, Q(F3) are dist(v11, v10) and dist(v8, v10), and
Q(F4) is dist(v12, v14). Second, GeoGraph assembles Q(Fi)
to compute Q(C) based on AMG(C). For C1, GeoGraph
obtains AMG(C1) in Figure 4(a), after it assembles Q(F1),
Q(F2) and MG(C1) in Figure 2(a). That is AMG(C1) =
MG(C1) ∪ (0, 3) ∪ (4, 7), where edges (0, 3) and (4, 7) are
dotted lines in Figure 4(a). GeoGraph then obtains Q(C1) =
dist(v0, v7) based on AMG(C1). Similarly, GeoGraph obtains
Q(C2) = {dist(v8, v14), dist(v10, v14)}. Finally, GeoGraph
obtains AMG(G) in Figure 4(b) by assemblingQ(C1),Q(C2)
and MG(G) in Figure 2(b). Based on AMG(G), we can
compute the final answer Q(G) = dist(v0, v14) by running
the Dijkstra’s algorithm over AMG(G) from v0 to v14.

Based on our calculation, Pregel incurs 21 inter-datacenter
communications, but our GeoGraph only needs 4, reduced 5
times unnecessary messages. Also, the benefit will be ampli-
fied with the increase number of geo-distributed datacenters
(see Section 5).

4 APPLICATION WITH FRAMEWORK

In this section, we feed GeoGraph with specific graph queries
Q, i.e., SDSP and GKS. Recall that AlgQ is an implementa-
tion of GeoGraph on a specific graph query. The offline phase
of AlgQ is to cluster datacenters, which is irrespective of Q.
Therefore, to process a specific Q, we only need to give the
detailed steps of the online phase of AlgQ.

4.1 Graph Traversal

We start with the source-destination shortest path problem
(SDSP). Consider a directed graph G = (V,E, L) in which
for each edge e, L(e) is a positive number. The length of a
path (v0, ..., vk) in G is the sum of L(vi−1, vi) for i ∈ [1, k].
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For a pair (s, d) of nodes, denote by dist(s, d) the shortest
distance from s to d. SDSP is stated as follows.

◦ Input: A directed graph G as above, and a pair of two
nodes s and d in G.

◦ Output: Distance dist(s, d) in G.

4.1.1 Steps of AlgQ. The online phase of AlgQ is to paral-
lelize computations over clusters C and fragments Fi in every
C. Since each Fi follows the same computation logic and is
computed in parallel. The following illustrates one instance
of applying AlgQ to Fi

AlgQ conducts local evaluation to compute Q(Fi) at every
Fi, and then assembles Q(Fi) to compute Q(C) at DCh,
which is introduced below.
(1) Local evaluation at Fi. In this step, we consider three
cases.

◦ Case 1: Fi contains s. For each out node u of Fi,
AlgQ computes dist(s, u). AlgQ then sends the set
{dist(s, u)} to DCh.

◦ Case 2: Fi contains neither s nor d. For each in-node u
and out node v of Fi, AlgQ computes dist(u, v). AlgQ
then sends the set {dist(u, v)} to DCh.

◦ Case 3: Fi contains d. For each in-node v of Fi,
AlgQ computes dist(v, d). AlgQ then sends the set
{dist(v, d)} to DCh.

(2) Assembling at DCh. In this step, we need an augmented

meta-graph of CG, denoted by AMG(C) = (Vamc, Eamc

,Wamc), where Vamc is the node set, Eamc is the edge set,
and Wamc is the set of edge weights.

Assume that C has c fragments F = {F1, F2, ..., Fc},
where F1 contains s, F2 contains d, and Fi (i ∈ [3, c])
contains neither s nor d. AMG(C) is constructed from
MG(C) = (Vmc, Emc) as follows.

◦ Vamc = {s}
∪
{d}

∪
Vmc;

◦ Eamc = Es,u

∪
Ev,d

∪
Emc, where Es,u = {(s, u)| u ∈

F1.O} and Ev,d = {(v, d)|v ∈ F2.I};
◦ Wamc = {dist(s, u)}

∪
{dist(u, v)}

∪
{dist(v, d)}.

Based on AMG(C), we can obtain local answers Q(C)
of C, i.e., {dist(s, a)}, {dist(a, b)} and {dist(b, d)}, where
a and b are border nodes of C. These Q(C) are sent to
Ch to construct an augmented meta-graph AMG(G) of G
similar to AMG(C). Based on AMG(G), we can compute
the final answer Q(G) = dist(s, d) by running the Dijkstra’s
algorithm over AMG(G) from s to d.

For the complexity of inter-datacenter transfers, we have
the following conclusion.

◦ AlgQ incurs O(m) inter-datacenter data transfers,
where m is the number of datacenters.

◦ Pregel incurs O(|F.B| · m) · D inter-datacenter data
transfers, where D is the diameter of G.

4.2 Graph Keyword Search

We consider graph keyword search (GKS) with distinct roots
in the same setting of [8, 25]. A keyword query Q is of
the form (k1, ..., kw), where each ki is a keyword. Given a
directed graph G and a bound b, a match to Q in G at node

r is a tree T (r, l1, ..., lw) such that (a) T is a subgraph of G,
and r is the root of T , (b) for each i ∈ [1, w], li is a node in T
containing ki, i.e., it matches keyword ki, (c) dist(r, li) ≤ b,
and (d) the sum

∑
i∈[1,a] dist(r, li) is the smallest among all

such trees, called answer trees. Here dist(r, li) denotes the
shortest distance from r to li, i.e., the length of a shortest
path from r to li. GKS is as follows.

◦ Input: A directed graph G, a keyword query Q =
(k1, ..., kw), and a positive integer b.

◦ Output: The set Q(G) of answer trees to Q at node r
in G within b hops, for r ranging over all nodes in G.

4.2.1 Steps of AlgQ. Similar to SDSP, the procedure con-
sists of local evaluation at fragments Fi and the assembling
at head datacenter DCh.
(1) Local evaluation at Fi.AlgQ enumerates the answer trees

using a backward search algorithm from the nodes containing
keywords, called keyword nodes. Given a set of w keywords,
AlgQ first finds the set of keyword nodes, Si, for each
keyword ki in Fi. This step can be accomplished efficiently
using an inverted list index. Let S =

∪
i Si. Accordingly, the

backward search algorithm concurrently runs |S| copies of
Dijkstra’s single source shortest path algorithm, one for each
keyword node v in S with node v as the source. The |S| copies
of Dijkstra’s algorithm run concurrently using iterators. All
the Dijkstra’s single source shortest path algorithms traverse
graph Fi in a reverse direction. When an iterator for keyword
node v visits a node u, it finds a shortest path from u to
the keyword node v. The concurrent backward search is to
discover a common node from which there exists a shortest
path to at least one node in each set Si. Such paths will
define a rooted directed tree with the common node as the
root and the corresponding keyword nodes as the leaves. The
answer trees computed by AlgQ are approximately sorted in
an increasing weight order.

Once AlgQ finds an answer tree in Fi, AlgQ returns it
to users. When the backward search reaches border nodes
of Fi, AlgQ finds a set of paths (from keyword nodes) that
are potential parts of answer trees, called partial trees. The
partial trees are also sent to DCh to obtain local answer
Q(C).

Also, AlgQ specifies the b-neighbor Nb(v) of each node
v ∈ Fi.B, where Nb(v) is the subgraph of Fi induced by
the nodes within b hops of v. Note that Nb(v) consists of
inner nodes of Fi but not nodes in another Fj (i ̸= j).
Let G(Ni.B) = (V (Ni.B), E(Ni.B)) denote as the graph
consisted of all Nb(v), i.e., G(Ni.B) =

∪
b∈Fi.B

Nb(v). In

addition to the partial trees, G(Ni.B) is sent to DCh.
(2) Assembling at DCh. In this step, we need an augmented

meta-graph of C, denoted by AMG(C) = (Vamc, Eamc),
where Vamc is the node set and Eamc is the edge set. |C| is the
number of datacenters in cluster C. AMG(C) is constructed
from MG(C) = (Vmc, Emc) as follows.

◦ Vamc =
∪|C|

i=1 V (Ni.B)
∪

Vmc;

◦ Eamc =
∪|C|

i=1 E(Ni.B)
∪

Emc.
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AlgQ then continues the backward search from the partial
trees over AMG(C) to find Q(C). All Q(C) from clusters are
sent to Ch to construct an augmented meta-graph AMG(G)
of G similar to AMG(C). Over AMG(G), AlgQ computes
the set Q(G) of all answer trees.

For the complexity of inter-datacenter transfers, we have
the following conclusion.

◦ AlgQ incurs O(m) inter-datacenter data transfers.
◦ Pregel incurs O(m · b · w) inter-datacenter data trans-
fers.

5 PERFORMANCE EVALUATION

We evaluate the effectiveness and efficiency of GeoGraph
by comparing with other two state-of-the-art algorithms.
All experiments are conducted by using real-world graph
datasets and running over Amazon EC2.

5.1 Experimental Settings

Table 2: Dataset

Graph Dataset Node Size Edge Size

GoogleWeb(GW) 0.8 M 4.6 M

IMDB(ID) 1.3 M 6.2 M

liveJournal(LJ) 3.5 M 46.1 M

Dbpedia(DP) 28 M 33.4 M

Freebase(FB) 40.3 M 180 M

Synthesized Graph (SG) 620 M 24 B

Datasets. Five real-world graphs and one synthesized graph
are advocated in our experiments to represent social net-
works, web graphs and knowledge graphs. Table 2 shows the
number of nodes and edges for these graphs [3].

Graph queries. We test four graph queries which are
widely used in search services. (1) source-destination shortest
path (SDSP) is introduced in Section 4.1 and can find the
relationships between nodes in a web search graph. (2) graph
keyword search (GKS) is introduced in Section 4.2 and
has been widely used in search engines [8]. (3) PageRank
(PR) [9] is a graph algorithm widely used in search engines to
measure the importance of webpages. The web is modeled as
a graph, where each webpage is a node and the links between
webpages are edges of the graph. Each node has a rank value,
which indicates an importance of a particular page. The
value of a node is defined recursively and depends on the
number of all nodes that link to it. (4) Subgraph Isomorphism
(SI) [14] is a type of graph pattern matching, which finds all
matched subgraphs of the query pattern in a large graph.
It has many applications in social networks, multimedia
analysis and knowledge base which can be modeled by graph-
structured data.

Compared approaches.We compare GeoGraph with Pregel,
and also with Monarch [23] that modifies Pregel to support
geo-distributed graph processing.

We have implemented GeoGraph, Pregel and Monarch on
Apache Giraph 1.2.0 [32] which is an open-source graph
computing platform. Also, the default graph partitioning
strategy of Giraph is used to partition data graphs to obtain
geo-distributed graphs.

Configuration details. We select ten regions of Amazon
EC2 as the geo-distributed datacenters, namely US East
(USE), US West Oregon (USW-O), US West North Cali-
fornia (USW-NC), EU Ireland (EU-I), EU France (EU-F),
EU Germany (EU-G), Asia Pacific Singapore (SIN), Asia
Pacific Tokyo (TKY), Asia Pacific Sydney (SYD) and South
America (SA). In each region, we construct a cluster of
eight cc2.8xlarge instances [48]. The number of clusters is
advocated as 2–10, and the default value is 6.

In the experiments, we compare the transfer time and
WAN usage of graph queries supported by GeoGraph and
the two compared algorithms. We also evaluate the monetary
cost of inter-datacenter communications, using the real net-
work prices charged by Amazon EC2. This is because WAN
bandwidths are charged differently in different geographic
locations.

5.2 Experimental Results

(a) Source-Destination Shortest
Path

(b) Graph Keyword Search

(c) PageRank (d) Subgraph Isomorphism

Figure 5: Normalized results of the inter-datacenter
transfer time supported by the compared methods
for the four graph queries.

Exp-1: transfer time. Figure 5 shows the normalized
inter-datacenter transfer time supported by the compared
methods for SDSP, GKS, PR and SI algorithms on the five
real-world graphs. All results are normalized to the result of
Pregel. From the results we observe that GeoGraph is able
to obtain the lowest inter-datacenter transfer times under
all settings. Compared to Pregel and Monarch, GeoGraph
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Table 3: Actual WAN usages (GB) supported by the
compared methods for the four graph queries.

(a) Shortest Path

Graph Pregel (GB) Monarch (GB) GeoGraph (GB)
GW 0.67 0.53 0.32
ID 0.83 0.69 0.46
LJ 1.26 0.93 0.69
DP 1.73 1.35 1.12
FB 2.25 2.02 1.51

(b) Graph Keyword Search

Graph Pregel (GB) Monarch (GB) GeoGraph (GB)
GW 2.06 1.36 1.5
ID 2.92 2.33 2.18
LJ 4.19 3.73 3.51
DP 5.81 5.52 4.76
FB 9.74 9.06 7.87

(c) PageRank

Graph Pregel (GB) Monarch (GB) GeoGraph (GB)
GW 14.68 11.75 8.22
ID 20.38 17.52 12.22
LJ 23.53 19.77 13.65
DP 38.72 30.97 23.24
FB 56.28 46.73 29.27

(d) Subgraph Isomorphism

Graph Pregel (GB) Monarch (GB) GeoGraph (GB)
GW 0.98 0.85 0.86
ID 1.57 1.43 1.37
LJ 3.39 3.22 2.71
DP 5.12 4.61 4.52
FB 8.32 6.91 7.32

Table 4: Actual monetary costs (US $) supported by
the compared methods for the four graph queries.

(a) Shortest Path

Graph Pregel $ Monarch $ GeoGraph $
GW 0.05 0.04 0.02
ID 0.05 0.05 0.03
LJ 0.09 0.07 0.05
DP 0.12 0.09 0.08
FB 0.16 0.14 0.11

(b) Graph Keyword Search

Graph Pregel $ Monarch $ GeoGraph $
GW 0.14 0.1 0.11
ID 0.2 0.16 0.15
LJ 0.29 0.26 0.25
DP 0.41 0.39 0.33
FB 0.68 0.63 0.55

(c) PageRank

Graph Pregel $ Monarch $ GeoGraph $
GW 1.03 0.82 0.58
ID 1.43 1.23 0.86
LJ 1.65 1.38 0.96
DP 2.71 2.17 1.63
FB 3.94 3.27 2.05

(d) Subgraph Isomorphism

Graph Pregel $ Monarch $ GeoGraph $
GW 0.07 0.06 0.06
ID 0.11 0.1 0.1
LJ 0.24 0.23 0.19
DP 0.36 0.32 0.32
FB 0.58 0.48 0.51

reduces the transfer times of the SDSP, GKS, PR and
SI algorithms by 77% and 42%, 72% and 38%, 82% and
26%, and 80% and 42%, respectively. This is because
GeoGraph advocates the meta-graphs which are very effective
to accelerate graph queries. Pregel does not take into the
account of the WAN impact. Monarch still needs many inter-
datacenter rounds, though it transfers inter-datacenter data
in a lightweight manner. This is because Monarch inherits
the synchronous parallel computation from Pregel.

Exp-2: WAN usage. Table 3 shows the WAN usages
obtained by the compared methods for the SDSP, SI, GKS
and PR queries on the five real-world graphs. All results
are the actual WAN usages measured by the transfer data
sizes. As shown in the table, GeoGraph consumes the lowest
WAN usages under all settings, and needs average 0.82G,
3.36G, 3.96G and 17.32G for the SDSP, SI, GKS and PR
algorithms, respectively. PR costs much more WAN usages
than other three graph queries, due to that PR visits every
datacenters more times. Compared to Pregel and Monarch,
GeoGraph reduces the WAN usages of the SDSP, GKS, PR
and SI algorithms by 42% and 26%, 21% and 12%, 40%
and 25%, and 14% and 6%, respectively. The reductions of
the WAN usages are obvious similar as the transfer times.
This shows that GeoGraph is both effective at the low inter-
datacenter transfer time and traffics.

Exp-3: monetary cost. Table 4 shows the actual monetary
cost results obtained by the compared methods for inter-
datacenter data transfer. The calculation follows the Ama-
zon Cloud pricing model. As reported in the table, GeoGraph
obtains lower monetary cost than Pregel in all settings.
Comparing with Monarch, GeoGraph is able to obtain lower
monetary cost in most cases due to its low WAN usages.
In some cases, such as for GW graphs running GKS and
SI queries, the monetary cost of Monarch is lower than
GeoGraph. The reason is that the WAN usages of the two
algorithms in these cases are very close and Monarch can
distribute most communications to less expensive datacen-
ters. The above observations show that GeoGraph is able to
achieve good monetary costs, although it is not specifically
designed for monetary cost optimizations.

(a) Normalized transfer time (b) Actual WAN Usage

Figure 6: Impact of different numbers of clusters on
GeoGraph for source-destination shortest path.

(a) Normalized transfer time (b) Actual WAN Usage

Figure 7: Impact of different numbers of clusters on
GeoGraph for graph keyword search.

Exp-4: impact of the cluster number. Finally, we
examine the performances of GeoGraph with respect to the
cluster number, i.e., k = 2, 4, 6, 8, 10. Figure 6 shows the
transfer times and WAN usages of the SDSP query on the
five real-world graphs. Figure 7 shows the results of the GKS
query. As reported in the figures, when the cluster number is
6, GeoGraph consumes both the smallest transfer times and
WAN usages under all settings. This is because the 6 clusters
correspond to 6 regions (i.e., US, EU, SIN, TK, SYD and SA)
which are best clusters according to the distance measure.
We also observe that, the transfer times and WAN usages
decrease from k = 2 to k = 6 and increase from k = 6 to
k = 10. The reason is that, for 10 datacenters, GeoGraph has
the same procedures for both 10 clusters and 1 cluster.
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6 RELATED WORK

We categorize the related work into two parts reviewed as
follows.

Graph Processing System. A large number of graph
processing systems have been proposed [26][31][19][41][40].
Most of them allow users to provide a node program which
is run repeated on node (in parallel) via the system. These
systems are based on different frameworks or computation
models, such as MapReduce, BSP and GAS.

(1) The typical MapReduce-based systems include PEGA-
SUS [26], HaLoop [13] and Twister [17]. PEGASUS [26] is a
large-scale graph mining algorithm library proposed to solve
the scalability problem of large-scale graph data mining.
Through adding caching mechanism and modifying MapRe-
duce’s task scheduling framework, HaLoop [13] optimizes
the iterative processing for graphs. Different from HaLoop,
Twister [17] assumes that all data resides in memory and
the task process is saved through the buffer pool for graph
processing. (2) Most popular systems are based on the Bulk
Synchronous Parallel (BSP) model [31][12][49]. Pregel [31]
is the most typical BSP-based graph computation system.
A typical Pregel computation consists of input, when the
graph is initialized, followed by a sequence of supersteps sep-
arated by global synchronization points until the algorithm
terminates, and finishing with output. GPS [7] is one of the
most popular BSP-based systems that is a completely open-
source project and designed for large-scale and fault-tolerant
graph processing. (3) The works [40] [50] [19] are based
the GAS model which iteratively executes user-defined node
computations until convergence. The GAS model, which
proposed in PowerGraph [19], divides the node computation
into three stages, namely Gather, Apply and Scatter.

However, due to no consideration of the high latency
and transmission cost under the geo-distributed background,
none of them support geo-distributed graph processing. As
shown in the experiments, Pregel incurs 82% and 45% higher
inter-datacenter time and traffics than our proposed system
GeoGraph.

Geo-Distributed Analytics. A number of recent works
have made the case for geo-distributed analytics [47][46][36][6]
[45] which focus on data processing, SQL-support, streaming
processing, scalability and so on. For traditional distributed
data analytics, data is assumed to be processed in a sin-
gle, centralized datacenter. However, in a geo-distributed
environment, data is generated and stored at geographically
distributed datacenters. Hence, the traditional strategies are
not suitable for the new cases.

(1) For data processing and analytics, like G-Hadoop [47],
G-MR [24], Nebula [39] and Medusa [15], all these systems
are map-reduced based framework, require to distribute a
job over multiple clouds and then aggregation of outputs,
but they need many MapReduce rounds to obtain query
answers and in each round it produces a large number of
intermediate results that are iterated into next round. (2)
Geode [46], Google’s F1 [42] and Spanner [6] are the SQL-
style processing frameworks. Unfortunately, these works

only focus on simple queries and largely ignored iterative
workloads like distributed graph processing. (3) Iridium [36],
Pixida [28] and JetStream [38] consider the bandwidth
influence during the geo-distributed stream processing. They
either move data out of the site with low uplink band-
width before query arrives or place many of query’s reduce
tasks in it. However, simple task placement techniques do
not work well as there is a need to deal with affinity
and these approaches may soon be rendered impossible
by sovereignty regulations governing data movement. (4)
Reseal [27], Flutter [22] and Tudoran [44] aim at how to
assign tasks to each datacenter reasonably, so as to obtain
faster job completion time, but the challenge comes in
finding a straggler process. WANalytics [45] and Geode [46]
studied data replication and result caching, but it has
additional costs to maintain the caching of results. (5) G-
Cut [48] is proposed to partition data graphs across geo-
distributed datacentres. G-Cut is orthogonal to our work,
i.e., GeoGraph can process geo-distributed graphs partitioned
by G-Cut. Particularly, G-Cut aims at minimizing the inter-
datacenter data transfer time of the graph partitioning in
geo-distributed datacenters while satisfying the WAN usage
budget, but it still needs edge migrations to diminish the
data traffic in bottleneck datacenters to further reduce the
inter-datacenter data transfer time. Monarch [23] modifies
Pregel to support geo-distributed graph analytics. However,
as shown in our experiments, Monarch still surfers large
inter-datacenter transfer time and overhead due to that
Monarch still inherits the synchronous parallel computation
from Pregel.

7 CONCLUSION

We introduce GeoGraph, a universal framework that is de-
signed to process graph queries over geographically distribut-
ed datacenters efficiently. Based on meta-graph and clustered
datacenters, GeoGraph behaves synchronous computations
within a datacenter and asynchronous computations across
datacenters. Such mechanism of GeoGraph guarantees fast
convergence and correctness of existing graph queries that
serve as the foundation of search services. Our prototype
implementation and evaluation show that GeoGraph can
reduce the running time and WAN bandwidth usage by up
to 82% and 45%, respectively, while significantly reducing
the monetary cost for running graph queries on multiple
clouds. We conclude that GeoGraph is a general, efficient,
and readily implementable framework that can benefit geo-
distributed graph query processing. In the future, we will
adapt GeoGraph to processing more complex graph analytics,
e.g., graph convolutional network and graph embedding.
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in the clouds: An environment-aware system for geographically
distributed data transfers. In CCGrid, pages 92–101. IEEE, 2014.

[45] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and
G. Varghese. Wanalytics: Analytics for a geo-distributed data-
intensive world. In CIDR, 2015.

[46] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye,
and G. Varghese. Global analytics in the face of bandwidth and
regulatory constraints. In NSDI, pages 323–336, 2015.

[47] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and
D. Chen. G-hadoop: Mapreduce across distributed data centers
for data-intensive computing. Future Generation Computer
Systems, 29(3):739–750, 2013.

[48] A. C. Zhou, S. Ibrahim, and B. He. On achieving efficient data
transfer for graph processing in geo-distributed datacenters. In
ICDCS, pages 1397–1407. IEEE, 2017.

[49] C. Zhou, J. Gao, B. Sun, and J. X. Yu. Mocgraph: Scalable
distributed graph processing using message online computing.
Proceedings of the VLDB Endowment, 8(4):377–388, 2014.

[50] S. Zhou, R. Kannan, H. Zeng, and V. K. Prasanna. An fpga
framework for edge-centric graph processing. In Proceedings of
CF 2018, pages 69–77. ACM, 2018.

Session 4A: Query and Representation  SIGIR ’20, July 25–30, 2020, Virtual Event, China

628




