
EMO: Edge Model Overlays to Scale Model Size in
Federated Learning

Di Wu, Weibo He, Wanglei Feng, Zhenyu Wen, Bin Qian, and Blesson Varghese

Abstract—Federated Learning (FL) trains machine learning
models on edge devices with distributed data. However, the
computational and memory limitations of these devices restrict
the training of large models using FL. Split Federated Learning
(SFL) addresses this challenge by distributing the model across
the device and server, but it introduces a tightly coupled data flow,
leading to computational bottlenecks and high communication
costs. We propose EMO as a solution to enable the training of
large models in FL while mitigating the challenges of SFL.
EMO introduces Edge Model Overlay(s) between the device
and server, enabling the creation of a larger ensemble model
without modifying the FL workflow. The key innovation in
EMO is Augmented Federated Learning (AFL), which builds an
ensemble model by connecting the original (smaller) FL model
with model(s) trained in the overlay(s) to facilitate horizontal
or vertical scaling. This is accomplished through three key
modules: a hierarchical activation replay cache to decouple
AFL from FL, a convergence-aware communication controller
to optimize communication overhead, and an ensemble inference
module. Evaluations on a real-world prototype show that EMO
improves accuracy by up to 17.77% compared to FL, and reduces
communication costs by up to 7.17× and decreases training time
by up to 6.9× compared to SFL.

I. INTRODUCTION

Machine Learning (ML) applications in language and vision
tasks usually use centralized data for training models [10].
However, distributed and private data generated or stored
on devices at the edge of the network, such as on mobile
phones, is expected to play an increasingly important role in
training [4]. Federated Learning (FL) is a proposed privacy-
aware solution for training models using distributed data.

However, the models produced by existing FL solutions
are limited in several ways. Firstly, the size of the model
is bound by hard constraints, such as the memory of the
device participating in FL [16]. Secondly, the relatively limited
computing capability on devices results in impractical training
times [19], [21]. For instance, devices used in FL, such as
Nvidia Nano, have 8 to 50 times less memory and 10 to 1,000
times fewer FLOPS than resources available in centralized
servers, such as Nvidia A100 GPU [14].

Corresponding author: Zhenyu Wen.
Di Wu and Blesson Varghese are with the School of Computer Science,

University of St Andrews, UK.
Weibo He and Wanglei Feng are with the Institute of Cyberspace Security

and College of Information Engineering, Zhejiang University of Technology,
China.

Zhenyu Wen is with the Institute of Cyberspace Security and College of
Information Engineering, Zhejiang University of Technology, China; Univer-
sity of Science and Technology of China, China.

Bin Qian is with the State Key Laboratory of Industrial Control Technology,
Zhejiang University, China.

Therefore, the models trained using edge devices in classic
FL systems are small and have limited learning performance.

Split Federated Learning (SFL) has been proposed to mit-
igate the above shortcoming by offloading certain layers of
the model from the device to a server [18]. This reduces the
memory use and the computational workload on the device.
However, SFL introduces the following two challenges:

Challenge 1 - Low parallel efficiency due to the strong de-
pendency between the computations carried out on the devices
and server, referred to as computational locking [16], [18],
resulting in a lower system throughput (see Section III-A).

Challenge 2 - High communication costs are introduced due
to the frequent exchange of activations and gradients between
the devices and the server, thereby increasing latency and
bandwidth requirements (see Section III-B).

We propose a novel system, EMO that enables large models
to be trained in FL without introducing the abovementioned
challenges of SFL. At its core, EMO introduces edge model
overlay(s) between the device and server to facilitate the cre-
ation of a larger ensemble model that can be scaled both hori-
zontally (model boosting) and vertically (model bagging) [2].
The ensemble model is created by augmenting the original
(small) model trained by the FL system with any or all of the
larger models trained in the overlays. This is referred to as
‘Augmented FL’ (AFL). Unlike SFL, AFL does not modify
or replace the FL workflow and the proposed overlays are
decoupled from and executed in parallel to the original FL
system. To achieve the above, EMO incorporates three modules:
the hierarchical activation replay cache, the convergence-
aware communication controller and the ensemble inference
module. The hierarchical activation replay cache enables EMO
to decouple AFL from FL. The convergence-aware commu-
nication controller reduces the AFL communication costs.
Finally, the ensemble inference module augments the original
FL models at the end of training.

This work makes the following contributions:
(1) A new system, EMO to create larger ensemble models

that have up to 17.77% higher accuracy than FL models
without increasing computational overheads on the device.

(2) A novel method, AFL to reduce computational de-
pendencies in SFL accelerating training by up to 6.9× and
reducing communication by 7.17×.

II. RELATED WORK

Training large models in FL remains challenging due to
the computational and memory constraints of participating
devices. There are two categories of methods presented in the

ar
X

iv
:2

50
4.

00
72

6v
1

 [
cs

.L
G

]
 1

 A
pr

 2
02

5

literature to reduce the computational workload and memory
requirements of on-device models in FL. The first is partial
training and the second is SFL.

In partial training methods in FL, devices extract a sub-
model from the global model using various sampling strate-
gies, such as random selection [5], rolling selection [1], or
pruning-based selection [9], and train only the sub-model.
Despite their computational efficiency, partial training methods
introduce further challenges. Since each device trains only a
subset of parameters from the global model, each parameter
receives fewer updates per FL round, resulting in slower
convergence [3]. Moreover, aggregating sub-models extracted
from different locations further degrades the model’s accuracy
compared to FL training. In some cases, these methods offer
no advantage over training smaller models in FL, limiting their
effectiveness in scaling FL to larger models [3].

The SFL method partitions the on-device model across the
device and a server unlike classic FL, where each device
trains the entire model locally. Specifically, the earlier layers
of the global model are trained on devices, while the later
layers are offloaded to a cloud server for training [18]. Despite
its advantages, SFL suffers from low parallel efficiency due
to computational locking—a strong interdependence between
device and server computations. In addition, SFL incurs high
communication overhead due to frequent exchanges of acti-
vations and gradients, leading to reduced system throughput,
increased latency, and higher bandwidth usage.

Unlike the existing methods discussed above, the proposed
system EMO improves the learning performance of FL by creat-
ing a larger ensemble model without additional computational
overhead to devices. Furthermore, the training of augmented
models used for the ensemble avoids computational locking
and incurs lower communication costs than those seen in SFL.

III. COMPUTATIONAL LOCKING AND COMMUNICATION
OVERHEAD IN SFL

In SFL, the later layers of the model trained on a device are
offloaded to the server to alleviate the computation burden on
devices [19]. However, compared to classic FL, SFL systems
have strong computational dependencies and experience high
communication overhead between the devices and the server.

A. Computational Locking

Model splitting in SFL. In SFL, the full-size model Θ is
divided into two parts: a device-side part, Θ[:j], and a server-
side part, Θ[j:], where j represents the split point. Specifically,
layer j acts as the boundary, with Θ[:j] containing all layers
up to and including layer j, and Θ[j:] comprising all layers
following layer j. Therefore, the full model is represented as
Θ = {Θ[:j],Θ[j:]}. Θ[:j] is trained on the device, while Θ[j:]

is offloaded to and trained on the server. In contrast, classic
FL trains the entire model Θ locally on a device.

Forward and backward locking. The mini-batch gradient
descent algorithm is usually the method for updating pa-
rameters during model training [6]. Figure 1 illustrates the
computational dependencies in SFL and EMO. Given a batch

Forward Computation
Through [:]jQ
Forward Computation
Through [:]jQ Transmissionja

jaÑ Transmission Backward Computation
Through [:]jQ
Backward Computation
Through [:]jQ

Device

Network
Cloud

1
1

1 1
1

1 2
2
2 …

SFL

Device

Network

Edge Layer

1
1

1 1

1 2

…

2
2

2 2

3 3
3

3 3 4

…
EMO

Fig. 1: Computational dependencies in SFL and EMO.

of input data, devices perform forward computation on Θ[:j].
The activations generated by Θ[:j], denoted as aj , are then
transmitted to the cloud server for forward computation using
Θ[j:]. The cloud server must wait for the devices to complete
the forward computation using Θ[:j] before it can execute
forward computation using Θ[j:], causing forward locking.
Similarly, after completing the forward computation and mov-
ing to the backward computation, the server first calculates the
gradients ∇Θ[j:]. The gradient of aj , denoted as ∇aj , is then
required to be sent back to devices for computing ∇Θ[:j]. This
introduces backward locking, as devices must wait to receive
∇aj before calculating ∇Θ[:j]. Forward locking and back-
ward locking reduce parallel efficiency compared to classic FL,
thereby decreasing throughput in SFL systems. This motivates
the design of the hierarchical activation replay cache module
in EMO to decouple computations between devices and edge
layers. Consequently, EMO eliminates forward and backward
locking.

B. Communication Overhead

Another challenge in SFL systems is the communication
overhead, which increases latency and raises bandwidth usage.

Communication of activation and gradient in SFL. Com-
pared to classic FL, SFL introduces additional communication
costs for transferring the activations (aj) and corresponding
gradients (∇aj). These costs are substantial and proportional
to the combined size of the datasets on devices and the number
of local training iterations [17]. The communication costs also
depend on the size of the activations and gradients, which may
be larger than the original data [20].

Communication latency and bandwidth consumption.
Transferring the activation aj and gradients ∇aj increases
both communication latency and bandwidth consumption. For
instance, SFL can introduce up to 800× more cumulative
communication time and 610 × more bandwidth consumption
compared to FL for transferring activations and gradients to
the cloud (see Section V-C). This motivates the design of a
convergence-aware communication controller module in EMO
to reduce the communication overhead.

WAN

LAN

EMO

Device

Cloud
Server

Small
FL Model

…

Activations

Sampling
Communication

controller

Activations

Cache

Ensemble Inference

…

Larger
Models

Edge
Server

Fig. 2: The EMO architecture.

IV. EMO: EDGE MODEL OVERLAY(S)

A. Overview

The EMO architecture is shown in Figure 4. Augmented FL
(AFL) in EMO is hosted alongside devices on edge servers
within a local area network (LAN). AFL runs parallel with
the FL and trains larger models - the original FL model can
be connected to the larger models. The activation replay cache
module (see Section IV-B) decouples AFL from the original
FL system. EMO leverages the available activations stored in
the activation replay cache, eliminating the need to wait for
new device activations (forward locking).

During AFL, activations generated by the FL model must
be transferred from devices to edge servers to update the
activation replay cache. The transmission in EMO occurs
within a LAN. Given a LAN’s higher bandwidth than a wide
area network (WAN), this approach is more communication-
efficient than classic SFL, which transmits activations to a
cloud server via a WAN. Additionally, the communication
controller module in EMO further optimizes activation transfer
by adjusting communication intervals (see Section IV-C).

After completing AFL, the original FL model and the larger
model(s) trained in EMO are sent to the cloud server for
aggregation into an ensemble model. Both horizontal scaling
(model boosting) and vertical scaling (model bagging) are
employed on the cloud server to create the ensemble model
(see Section IV-D). The number of models trained in AFL
depends on the number of overlays on the edge servers.

B. Activation Replay Cache

The first module considered is the activation replay cache,
which decouples AFL from FL. EMO eliminates forward
locking seen in SFL by reusing activations received from pre-
vious communications. Classic SFL discards activations after
a single use. EMO preserves the original FL training workflow,
thus avoiding backward locking. Two methods underpin the
activation replay cache: hierarchical activation caching and
activation replay with cache sampling.

Hierarchical activation caching. The challenge in building
an activation cache using previous communications is to store

activations on the edge server efficiently. The size of the acti-
vation cache can be substantial, as it depends on the number
of activations from all devices, which is determined by both
the data size and the number of local training iterations. EMO
employs a hierarchical caching architecture to mitigate the
potentially large storage requirements. As shown in Figure 3,
EMO indexes activations by device ID and batch ID. For each
index (a device-batch ID pair), the most recently updated
activation is stored in the h5 file format1 Additionally, EMO
builds a second-level activation cache on-disk containing all
activations while maintaining a first-level GPU memory cache
generated by a sampling policy. This hierarchical caching
method allows EMO to store all activations on large disks
while minimizing the I/O overhead associated with transferring
activations from disk to GPU memory.

Activation replay with cache sampling. The second key
consideration in the activation replay cache module is to
update the first-level GPU cache. In EMO, the update involves
sampling activations from the disk cache to the GPU cache.
Specifically, after each training iteration using activations
stored in the GPU cache, the cache is refreshed by sampling
new activations from the disk cache. EMO employs a mixed
sampling policy: newly received activations not loaded into
the GPU cache are directly selected for training, ensuring the
prioritization of fresh data. A random sampling strategy is
used if no new activations are available (i.e., all activations
have previously been loaded into the GPU cache). This policy
prioritizes new activations and switches to uniform sampling
once all have been utilized. The random sampling policy can
be replaced with importance sampling, where activations are
selected based on their associated training loss [11].

C. Convergence-aware Communication Controller

To reduce the communication overhead, EMO incorporates a
convergence-aware communication controller to monitor acti-
vation convergence and dynamically adjust the communication
frequency based on the state of convergence of the activations.

Activation convergence. Recent studies have demonstrated
that, during model training, the earlier layers converge faster
than the later layers — a phenomenon referred to as the
bottom-up learning dynamic [15]. This observation provides
an opportunity for EMO to reduce activation transfer costs
by limiting the transfer of activations from the original FL
model as it gradually converges. During the early stages
of training, when the distribution of activations undergoes
significant changes, EMO collects activations from devices
more frequently and updates the disk cache accordingly. As
training progresses and the distribution of activations stabi-
lizes, the intervals for activation collection and cache updates
are gradually extended. During these intervals, EMO reuses
the existing cache, reducing communication overhead. To
assess activation convergence, EMO employs Singular Vector
Canonical Correlation Analysis (SVCCA) [15]. The SVCCA
score is a normalized metric ranging from 0 to 1 to quantify the

1An h5 file is a file format used to store large amounts of numerical data.

L
A

N

GPU Memory

U
pd

at
e

or
 R

et
ri

ev
e

Communication Controller

Sampling policy

Convergence
Analysis

SVCCA

Communication
Interval

Log File
Communication

Interval
ID
Cache Counter

Communication
Request from

Device i, Batch j

Decision Flow
(i,j) in

ID Cache?

Switch On

Y N

Counter
== Interval?

Counter+1Switch On

Y

N

Activations
Transmission

Activation Replay Cache

First-Level Cache
Larger
Models

.h5 .h5

Disk
Storage

Second-Level
Cache

…

.h5.h5 .h5

New Bath

Mixed
Sampling

Cloud server

W
A

N

… …

Av
er

ag
e

Logits

Final
Logits

Ensemble Inference

L
A

N

Fig. 3: The activation replay cache, convergence-aware communication controller and ensemble inference modules in EMO.

Algorithm 1: Convergence-aware activation transmis-
sion protocol

1 Set up: Receive the transfer request for activation
batch (i, j) from device i for batch j. The current log
file consists of an ID cache B, the communication
interval for this batch i(i,j), and the interval counter
c(i,j).

2 if (i, j) /∈ B then
3 Require the activation batch a(i,j) to be sent;
4 Initialize s(i,j) = 0, c(i,j) = 0.
5 end
6 else
7 if c(i,j) == i(i,j) then
8 Require the activation batch a(i,j) to be sent.
9 Extract activation ac(i,j) from the disk cache;

10 Compute the SVCCA [15] score of a(i,j) by
11 s(i,j) ← SV CCA(ac(i,j), a(i,j));
12 Replace the activation in disk cache

ac(i,j) ← a(i,j);
13 Update the communication interval

i(i,j) ← 1
1−s(i,j)

;
14 Reset interval counter c(i,j) = 0.
15 end
16 else
17 Skip sending this batch activation a(i,j).

c(i,j) ← c(i,j) + 1;
18 end
19 end

correlation between two activations; a higher score indicates
higher convergence [15].

Convergence-aware activation transmission protocol. Al-
gorithm 1 outlines the activation transmission protocol imple-
mented in the communication controller, which dynamically
adjusts activation transmission intervals based on the conver-
gence of activations. The decision flow for transferring the
activation batch (i, j) is as follows: the controller first checks
whether the batch ID is already stored in the ID cache B.
If the batch ID is not cached, the device must transmit this
batch. Next, the controller checks the interval between the last
activation transmission and the current attempt. The device

sends activations a(i,j) only if the predefined transmission
interval has been reached; otherwise, the activations are not
sent to EMO, and the communication interval counter is incre-
mented. The communication interval, ID cache, and counter
are logged in a log file for querying. Upon receiving the
activation, EMO checks whether the batch is already cached.
If it is, EMO retrieves the previously stored activation ac(i,j)
and calculates the SVCCA score s(i,j) between the new and
cached activations. The cached activation is then updated with
the new one, and the communication interval is adjusted using
i(i,j) = 1

1−s(i,j)
. This convergence-aware interval adaptation

mechanism effectively minimizes redundant communication
of similar activations while ensuring that non-trivial activation
updates are transmitted.

D. Ensemble inference

After both FL and AFL are completed, the original FL
model, denoted as MFL, along with the models trained in the
overlay M i

EMO generated on edge server i by EMO, are sent
to the cloud for aggregation into an ensemble model. AFL can
be executed across N edge servers, resulting in the generation
of multiple models within EMO.

Two categories of model aggregation are employed. The first
is horizontal aggregation, where the original FL model MFL

is horizontally connected to each overlay model M i
EMO, also

referred to as model boosting [2]. This results in a deeper
model (MFL,M

i
EMO), increasing the number of layers in

the original FL model MFL. The second is vertical aggre-
gation, where the final outputs (logits) from the N pairs of
original FL models and their corresponding overlay models
(MFL,M

i
EMO) are averaged before being used for class

prediction. This approach is referred to as vertical aggregation
or model bagging [2]. The final ensemble model is deployed
in the cloud for inference.

V. EVALUATION

We evaluated EMO against two baselines to assess both
the learning and system performance using metrics such as
accuracy, communication cost, and training time.

A. Experimental Setup

Testbed. We developed a three-tier system comprising end
devices, two edge servers, and a cloud server. The end de-
vices are organized into two clusters: Raspberry Pi 4 Model

TABLE I: Models used for evaluating different methods. The
number following each model represents the total number of
layers. C denotes convolutional layers and F represents fully
connected layers (both are preceded by the number of layers).

Methods CIFAR-10 CIFAR-100
Device Server Device Server

FL-
Small

VGG-6
(4C + 2F) N/A MobileNet-6

(5C + 1F) N/A

FL-
Large

VGG-11
(8C + 3F) N/A MobileNet-12

(11C + 1F) N/A

SFL VGG-4
(4C)

VGG-7
(4C + 3F)

MobileNet-5
(5C)

MobileNet-7
(6C + 1F)

EMO
VGG-6

(4C + 2F)
VGG-7

(4C + 3F)
MobileNet-6

(5C + 1F)
MobileNet-7

(6C + 1F)

TABLE II: Highest test accuracy of EMO and baselines.

Dataset Methods
FL-Small FL-Large SFL EMO

CIFAR-10 76.57% 76.22% 77.13% 79.51%
CIFAR-100 24.92% 33.63% 41.31% 42.69%

B single-board computers and NVIDIA Jetson NX devices
equipped with GPUs. The edge servers are powered by
NVIDIA RTX 3070 Ti GPUs, while the cloud server operates
on an NVIDIA P100 GPU hosted on Alibaba Cloud. All
end devices and edge servers are interconnected via a LAN
with symmetrical upload/download bandwidths of 800 Mbps.
Additionally, both the devices and edge servers are connected
to the cloud server over a WAN, with an upload/download
bandwidth of 100 Mbps.

Baselines. We evaluated EMO against two baselines: FL:
The classic FL approach is applied in two configurations: FL-
Small, where a small model is trained on devices, and FL-
Large, where a large model is fully trained on devices. In
both cases, the entire model resides on devices during training.
SFL: In the SFL baseline, the top seven layers of the large
model are offloaded and trained on a server. We implement two
SFL variants: SFL-Cloud, where the later layers of the model
are offloaded to a cloud server, and SFL-Edge, where they
are offloaded to an edge server. EMO: For EMO, we implement
two edge model overlays on separate edge servers, covering
40% and 60% of the devices, respectively.

Training Setup. The training tasks are conducted on the
CIFAR-10 [12] and CIFAR-100 [12] datasets, using VGG
and MobileNet [7] models, respectively. The datasets are
partitioned across devices in a non-independent and non-
identically distributed (non-IID) manner using the Dirichlet
distribution method [8]. In each training round, 20 devices
are randomly selected from a total of 100 devices. Training
is carried out over 200 rounds with a learning rate of 0.01.
The batch size is set to 16, and the aggregation method used
for both FL and SFL is FedAvg [13]. Table I summarizes
the model configurations employed for different methods and
datasets.

B. Learning Performance

Figure 4 shows the test accuracy curves for the baselines and
EMO. On CIFAR-10, FL-Large, SFL, and EMO achieve higher

6 0 1 1 0 1 6 05 0
5 5
6 0
6 5
7 0
7 5
8 0

Ac
cur

acy

R o u n d

 F L - S m a l l
 F L - L a r g e
 S F L
 E M O

(a) CIFAR-10

0 5 0 1 0 0 1 5 0 2 0 0
5

1 5

2 5

3 5

4 5

Ac
cur

acy

R o u n d

 F L - S m a l l
 F L - L a r g e
 S F L
 E M O

(b) CIFAR-100

Fig. 4: Test accuracy curves of EMO and baselines for CIFAR-
10 and CIFAR-100 datasets.

TABLE III: Average communication cost per round.

Methods Communication cost
CIFAR-10 CIFAR-100

FL-Small 0.60 GB 0.004 GB
FL-Large 2.91 GB 0.12 GB

SFL 0.90 GB 2.44 GB
EMO 0.83 GB 0.34 GB

accuracy in the early stages of training. However, on CIFAR-
100, SFL and EMO significantly outperform the FL methods
during initial training. In the later stages, EMO consistently
surpasses all baselines on both CIFAR-10 and CIFAR-100.
Table II reports the highest test accuracy achieved by EMO
and the baseline methods. On CIFAR-10, FL-Large achieves
accuracy comparable to FL-Small. However, on CIFAR-100,
FL-Large outperforms FL-Small by 8.71%, demonstrating the
benefits of increased model size in FL training. Across both
datasets, EMO outperforms all baselines by a considerable
margin. Specifically, it achieves up to 3.29% and 17.77%
higher accuracy than the FL methods on CIFAR-10 and
CIFAR-100, respectively. Compared to SFL, EMO improves
accuracy by 2.38% on CIFAR-10 and 1.38% on CIFAR-100.

C. System Performance

For system performance, we report the average communica-
tion cost and training time per round, where a round is defined
as a complete cycle of local training on the devices followed
by aggregation on the server.

Communication cost. The communication cost of EMO and
the four baselines for a single training round are presented in
Table III. On CIFAR-10, the size of the VGG model is the
main contributor to communication overhead, requiring 0.6
GB for FL-Small and 2.91 GB for FL-Large. SFL introduces
an additional 0.3 GB of communication overhead compared
to FL-Small, totaling 0.9 GB, while EMO reduces this to 0.83
GB. Using CIFAR-100 and given that the MobileNet model is
lightweight, SFL results in the highest communication cost
at 2.44 GB due to the communication of activations and
gradients. In contrast, EMO achieves a substantial reduction
in communication overhead, lowering it to 0.34 GB, which is
a 7.17× decrease compared to SFL.

Training time. The average training time of a round and
communication time for EMO and the baselines are shown in

F L - S m a l l F L - L a r g e S F L - C l o u d S F L - E d g e E M O

5

1 5

2 5

3 5

4 5
Tim

e C
ost

 (s)

 T o t a l C o m m u n i c a t i o n

1 1 . 5

4 0 . 2 1

F L - S m a l l F L - L a r g e S F L - C l o u d S F L - E d g e E M O

5

1 5

2 5

3 5

4 5

Tim
e C

ost
 (s)

M e t h o d

8 . 4

4 0 . 2

2 2 . 2

1 1 . 5
3 . 26 . 4

3 2 . 5

1 2 . 8

2 . 7 0 . 7

(a) CIFAR-10.

F L - S m a l l F L - L a r g e S F L - C l o u d S F L - E d g e E M O
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

Tim
e C

ost
 (s)

M e t h o d

1 4 6 . 0

0 . 1

3 9 3 . 1

5 5 0 . 4 5 2 8 . 4

1 3 1 . 4

2 . 6
6 9 . 1 1 5 . 7 1 . 7

(b) CIFAR-100.

Fig. 5: Average training time per round for different methods,
including its communication and total time.

Figure 5. Using both CIFAR-10 and CIFAR-100, EMO achieves
the lowest training time. For CIFAR-10, communication time
is the dominant factor for FL-Small, FL-Large, and SFL-
Cloud. However, SFL-Edge and EMO benefit from higher band-
width between devices and edge servers, resulting in reduced
communication time. On CIFAR-100, communication time is
not the bottleneck for FL-Small and FL-Large due to the
smaller size of the MobileNet model. Nevertheless, both SFL-
Cloud and SFL-Edge introduce additional communication time
as a result of transferring activations and gradients to remote
servers. Overall, compared to FL and SFL, EMO reduces round
training time by up to 12.5× and 6.9×, respectively.

VI. CONCLUSION AND FUTURE WORK

We propose EMO, Edge Model Overlay(s), a system that
augments FL by scaling the size of trained models while
addressing the challenges associated with SFL. Unlike SFL
methods, EMO is decoupled from the original FL system and
is executed in parallel without modifying the FL workflow.
The overlays train larger models on edge servers that can
be connected to the smaller FL models trained on devices.
Our experiments demonstrate that EMO improves FL training
accuracy with augmented models by up to 17.77% compared
to FL training with a small model, while also reducing training
time. Additionally, EMO decreases communication overhead
by up to 7.17× and cuts training time by 6.9× compared to
SFL. In future work, we will investigate techniques to enhance
privacy of the activations cached in EMO.

ACKNOWLEDGMENT

This work was supported by UK Research and Innovation
grant EP/Y028813/1; National Nature Science Foundation of
China under Grant 62472387, China; Postdoctoral Science
Foundation under Grant 2023M743403 and Zhejiang Provin-
cial Natural Science Foundation of Major Program (Youth
Original Project) under Grant LDQ24F020001.

REFERENCES

[1] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fedrolex: Model-
heterogeneous Federated Learning with Rolling Sub-model Extraction.
Advances in Neural Information Processing Systems, 35:29677–29690,
2022.

[2] Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensem-
ble of Averages: Improving Model Selection and Boosting Performance
in Domain Generalization. Advances in Neural Information Processing
Systems, 35:8265–8277, 2022.

[3] Gary Cheng, Zachary Charles, Zachary Garrett, and Keith Rush. Does
Federated Dropout Actually Work? In IEEE Conference on Computer
Vision and Pattern Recognition, pages 3387–3395, 2022.

[4] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram
Dustdar, and Albert Y Zomaya. Edge Intelligence: The Confluence of
Edge Computing and Artificial Intelligence. IEEE Internet of Things
Journal, 7(8):7457–7469, 2020.

[5] Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and
Communication Efficient Federated Learning for Heterogeneous Clients.
arXiv preprint arXiv:2010.01264, 2020.

[6] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural Net-
works for Machine Learning Lecture 6a Overview of Mini-batch Gra-
dient Descent. University of Toronto, 14(8):2, 2012.

[7] Andrew G Howard. Mobilenets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications. arXiv preprint arXiv:1704.04861,
2017.

[8] Tzu-Ming Harry Hsu, Hang Qi, et al. Measuring the Effects of
Non-identical Data Distribution for Federated Visual Classification.
arXiv:1909.06335, 2019.

[9] Zhida Jiang, Yang Xu, Hongli Xu, Zhiyuan Wang, Chunming Qiao, and
Yangming Zhao. Fedmp: Federated Learning through Adaptive Model
Pruning in Heterogeneous Edge Computing. In IEEE International
Conference on Data Engineering, pages 767–779. IEEE, 2022.

[10] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. Scaling Laws for Neural Language Models. arXiv
preprint arXiv:2001.08361, 2020.

[11] Angelos Katharopoulos and François Fleuret. Not All Samples are Cre-
ated Equal: Deep Learning with Importance Sampling. In International
Conference on Machine Learning, pages 2525–2534. PMLR, 2018.

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multiple Layers of
Features from Tiny Images. 2009.

[13] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-Efficient Learning of Deep
Networks from Decentralized Data. In Artificial Intelligence and
Statistics, pages 1273–1282. PMLR, 2017.

[14] Kilian Pfeiffer, Martin Rapp, Ramin Khalili, and Jörg Henkel. Federated
Learning for Computationally Constrained Heterogeneous Devices: A
Survey. ACM Computing Surveys, 55(14s):1–27, 2023.

[15] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-
Dickstein. Svcca: Singular Vector Canonical Correlation Analysis for
Deep Learning Dynamics and Interpretability. Advances in Neural
Information Processing Systems, 30, 2017.

[16] Dhananjay Saikumar and Blesson Varghese. NeuroFlux: Memory-
Efficient CNN Training Using Adaptive Local Learning. In Proceedings
of the Nineteenth European Conference on Computer Systems, pages
999–1015, 2024.

[17] Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh
Raskar. Detailed Comparison of Communication Efficiency of Split
Learning and Federated Learning. arXiv preprint arXiv:1909.09145,
2019.

[18] Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit
Camtepe, and Lichao Sun. Splitfed: When Federated Learning Meets
Split Learning. In AAAI Conference on Artificial Intelligence, volume 36,
pages 8485–8493, 2022.

[19] Di Wu, Rehmat Ullah, Paul Harvey, Peter Kilpatrick, Ivor Spence, and
Blesson Varghese. FedAdapt: Adaptive Offloading for IoT Devices in
Federated Learning. IEEE Internet of Things Journal, 9(21):20889–
20901, 2022.

[20] Di Wu, Rehmat Ullah, Philip Rodgers, Peter Kilpatrick, Ivor Spence,
and Blesson Varghese. EcoFed: Efficient Communication for DNN
Partitioning-Based Federated Learning. IEEE Transactions on Parallel
and Distributed Systems, 2024.

[21] Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Krishnamachari,
and A Salman Avestimehr. Federated Learning for The Internet of
Things: Applications, Challenges, and Opportunities. IEEE Internet of
Things Magazine, 5(1):24–29, 2022.

	Introduction
	Related Work
	Computational Locking and Communication Overhead in SFL
	Computational Locking
	Communication Overhead

	EMO: Edge Model Overlay(s)
	Overview
	Activation Replay Cache
	Convergence-aware Communication Controller
	Ensemble inference

	Evaluation
	Experimental Setup
	Learning Performance
	System Performance

	Conclusion and Future Work
	References

