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Abstract—In a typical distributed Deep Learning (DL) based appli-
cation, models are configured differently to meet the requirements of
resource constraints. For instance, a large ResNet56 model is deployed
on the cloud server while a small lightweight MobileNet model is more
suitable for the end-user device with fewer computation resources. How-
ever, the heterogeneity of the model architectures and configurations
may bring a systemic problem - models may produce different outputs
when given the same input. This inconsistency problem may cause
severe system failure of prediction agreement inside the application.
Current research has not studied the systemic design for efficiently
detecting and reducing the inconsistency among models in distributed
DL applications. With the increasing scale of distributed DL applica-
tions, the challenges of inconsistency mitigation should consider both
algorithm and system design. To this end, we design and implement
DEEPCON, an adaptive deployment system across the edge-cloud layer
with over-the-air model updates. We implement ASRS sampling for
efficiently sampling data to reveal the real data distribution as well as
model prediction inconsistency. Then, we implement DMML-Par, an
asynchronous parallel training algorithm for quickly updating the models
and reducing inconsistency. DEEPCON implements over-the-air updates
with a set of APIS to enable seamless inconsistency detection and
reduction in such deep learning applications. Our experiment results on
both vision and language tasks demonstrate that DMML could improve
the model consistency up to 4%, 7%, and 13% at CIFAR10/100 and
IMDB datasets without sacrificing the accuracy of individual models. We
also show that the ASRS sampling can save 90% network bandwidth of
data transmission and that DMML-Par is up to 60% faster compared to
simple synchronous parallel training.

Index Terms—Model Consistency, Distributed Applications, Knowledge
Distillation, Edge Computing, Internet of Things

1 INTRODUCTION
Modern deep learning applications are distributed across
various hardware platforms such as cloud or edge GPUs,
end-user mobile phones, and IoT devices, as emphasized in
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the work [1], [2]. However, because these devices vary in
their hardware capabilities, there arises a need to deploy
several deep learning models dynamically. These models
should have similar functionalities while differing in their
architectures and parameters, to address various quality of
service (QoS) demands. This adaptive approach is crucial
for efficiently maximizing the use of available resources.

The adaptive deployment strategies, however, could
lead to a significant issue in distributed deep learning ap-
plications. When deploying multiple models within a single
application, these modes may yield inconsistent inference
outcomes in production. For example, a cylinder object may
be classified as either a cylinder or a cube by two different
models. This inconsistency could potentially disrupt the
functioning of the distributed deep learning application,
which depends heavily on the coordinated outputs of vari-
ous models, as detailed in Section 2.

To address this issue, it is necessary for the models to co-
operate and jointly identify the inconsistent instances. They
should engage in interactions, gaining knowledge from one
another, in order to reach an agreement. The inconsistency
problem has been studied in various related works. Works
on model “irreproducibility/disagreement” [3], [4], [5], [6]
identify several factors that may lead to inconsistent predic-
tions during model re-training, including activation func-
tions [3], model randomness [4], model architectures [5],
optimizers [6]. Techniques such as co-distillation [7], [8]
and label smoothing [9] are proposed to reduce such model
inconsistency as well. Nevertheless, these techniques solely
tackle the inconsistency problem in situations where a single
model is consistently updated throughout training. Their
methodology cannot be directly extended to encompass
multiple models with distinct parameters and architectures.
Thus, it becomes imperative to develop innovative commu-
nication structures and learning mechanisms to accommo-
date the emerging challenges.

To reduce model inconsistency in distributed deep learn-
ing applications need to resolve the following challenges:
(1). How to detect the inconsistency among the distributed
models? A distributed DL application can have M versions
(types) of models which are deployed on N edge nodes.
This brings the challenge of how to efficiently interact with
the different outputs of the models to provide a model con-
sistency measurement. Unlike the model accuracy that can
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be measured locally, measuring the inconsistency requires
comparing the outputs of various models. A very intuitive
idea is to offload the data from N nodes to the cloud and
then perform the consistency measurement. This may cause
a waste of the network bandwidth. Hence, in this work,
we seek to design a data acquisition method that efficiently
samples the data from various edge nodes to perform the
consistency measurement in the cloud. (2) How to reduce
the inconsistency among the heterogeneous models? There
are a few works [3], [4], [5], [6] that have studied the model
inconsistency issues, but there are not applicable to the real-
world distributed DL applications in the following reasons.
First, the multiple models’ inconsistency problem presents
a unique challenge in that topologies and parameters of the
models are various, and therefore how to cooperate with
the models to mitigate the gaps is a research question. In
addition, each model needs to fine-tune with the rest of the
models. For example, we assume a distributed DL appli-
cation consists of M models, and we have to perform the
fine-tuning at least M times. Hence, designing an effective
fine-tuning mechanism is a challenge for this paper [10].

To tackle these challenges, we design and implement
DEEPCON to realize our goal of quickly detecting and reduc-
ing the model inconsistency of an edge-based application.
We first motivate the importance of tackling inconsistent
issues, formally define the inconsistent metrics, and conduct
comprehensive experiments to show the difference between
the model prediction accuracy and inconsistency. Then we
develop the core technology Deep Mixup Mutual Learning
(DMML) in DEEPCON, a learning algorithm - We employ
knowledge distillation (KD) [11] to encourage the model
to produce more consistent outputs by devising mixup
labels as the distillation target across different models. Fur-
thermore, we extend DMML and implement asynchronous
parallel DMML (DMML-Par) for accelerating the model
training in multiple GPU workers. Finally, we design an
over-the-air update framework of DEEPCON with Adaptive
stratified reservoir sampling (ASRS), and implement with
a set of APIs to support seamless communications between
edge and cloud for data sampling (Edge), model consistency
validating (Cloud), and model updating (GPU cluster).

Overall, this paper makes the following contributions:
• Definition and quantification of model inconsistency

(§2). We show with an example the severity of the in-
consistent prediction in distributed deep learning appli-
cations. Then we define <Acc-cc> gap, a metric that dif-
ferentiates model inconsistency and accuracy. Extensive
benchmark has been made to show that the <Acc-cc>
gap is ubiquitous in such applications.

• DMML for reducing model inconsistency (§3). We illus-
trate the importance of consistency in evaluating the per-
formance of geo-distributed DL applications and define a
new consistency metric (CC) for measurement. Then we
propose DMML, a KD-based learning algorithm for cross-
model learning, improving consistency among models. To
improve the DMML’s scalability, we develop the DMML-
Par that can scale DMML to multiple GPU nodes.

• Design and implementation of DEEPCON (§4). DEEP-
CON provides over-the-air updates to reduce the model
inconsistency of distributed DL applications. We design
an ASRS sampling method for fast and precise detection

of model inconsistency. Moreover, DEEPCON offers an
algorithm and system co-design solution to maintain a
distributed DL application deployment life-cycle.

• Comprehensive evaluation of DEEPCON (§5). We eval-
uate DMML on vision and language classification tasks:
CIFAR-10, CIFAR-100, and IMDB. We also evaluate the
training speed of DEEPCON on the same dataset. Our
results show that DMML achieves 34.1% to 56.8% CC im-
provement on pre-trained models. DEEPCON can detect
model inconsistency with less than 10% data samples and
also achieve up to 60% speedup compared to the simple
model parallel algorithm.

2 IMPACT OF MODEL INCONSISTENCY FOR DIS-
TRIBUTED DEEP LEARNING APPLICATION

2.1 Model Inconsistencies Lead to System Failures

Multiple models within the application may produce dif-
ferent outputs for the same input, as they are usually
trained individually or calibrated to different configurations
after development. Figure 1(a) shows an application of 4
robot arms that classify items and picks them into differ-
ent boxes from the conveyors. Due to the various model
configurations, a cylinder object as shown in Figure 1(b)
belongs to type B and is correctly classified by ResNet101
and ResNet18, but incorrectly by MobileNet and VGG13. In
such an application [12], [13], inconsistent model prediction
behaviors lead to even worse system failures, which we
reveal via a detailed example shown in Table 1(a) and 1(b).

Table 1(a) shows an example prediction results for both
cases: consistent and inconsistent prediction results among
all models. In case A consistent prediction, MA, MB , MC ,
MD are designed to pick item A, B, C and D respectively.
The models are making correct predictions on example
X1−X16 while incorrect predictions on example X17−X20.
All models produce the same results for all the examples,
achieving 80% accuracy. The setting is the same for case
B as well, with one difference that, in case B, MA1, MB1,
MC1, MD1 may generate different classification results for
the same item: X13 −X20. In this case, models make correct
predictions on example X1 − X12. MA1 and MB1 make
incorrect predictions on example X13−X16, while MC1 and
MD1 make incorrect predictions on example X17−X20. The
4 models also achieve 80% accuracy.

In Table 1(b), we show the system performance when
models make consistent and inconsistent results. Note that
we assume that all models have achieved their best classifi-
cation accuracy after training, where failures are inevitable
in model inference. Thus our focus is mainly on the differ-
ent system failures that arise even when models have the
same prediction accuracy. Generally, when models make
different/inconsistent prediction results, the systems may
encounter much worse failure. 1) incorrect picks on previous
correct picks, i.e., example X13−X14. 2) None picks on pre-
vious correct picks, i.e., example X15 −X16. 3) None picks
on previous incorrect picks, i.e., example X17 − X20. This
inconsistency reduces the ability of the system to correctly
pick objects (from 80% to 60%) and potentially collapses the
whole system and causes much energy waste.
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(b) Classification Error

Fig. 1: An Example of classification application with 4 models collaborating and picking up the right items from the
conveyor. The robot arms are equipped with specifically designed models but serve the same task.

Correct
Incorrect

Predictions
Case A: Consistent Case B: Inconsistent

Examples Class MA MB MC MD MA1 MB1 MC1 MD1

X1 - X12 ... Correct Correct
X13 A A A A A B B A A
X14 A A A A A B B A A
X15 B B B B B D D B B
X16 B B B B B D D B B
X17 C D D D D C C B B
X18 C D D D D C C B B
X19 D C C C C D D A A
X20 D C C C C D D A A

Acc 16/20=80% 16/20=80%
(a) Prediction Results: consistent vs inconsistent

Predictions
Case A: Consistent Case B: Inconsistent

Examples Class Picked by Pick result Picked by Pick result
X1 −X12 ... correct correct

X13 A MA Correct MB Wrong
X14 A MA Correct MB Wrong
X15 B MB Correct None Not picked
X16 B MB Correct None Not picked
X17 C MD Wrong None Not picked
X18 C MD Wrong None Not picked
X19 D MC Wrong None Not picked
X20 D MC Wrong None Not picked

System success 16/20=80% 12/20=60%
(b) System Failure: Consistent vs Inconsistent

TABLE 1: An illustration of how inconsistent predictions cause worse system failures than incorrect ones.

2.2 Relationship between Accuracy and Consistency
We have unveiled the detrimental consequences stem-
ming from inconsistent predictions among multiple mod-
els. Given that pre-trained models have already achieved
their highest possible accuracy through individual training,
addressing this inconsistency necessitates the application
of appropriate optimization techniques. To effectively in-
vestigate this issue, it’s imperative to initially differentiate
between model accuracy and consistency and to pinpoint
the performance gap between them. In this context, we
provide precise definitions for accuracy, consistency, and the
quantifiable disparity existing between these two metrics.
Accuracy (Acc). Accuracy measures the probability of a
model correctly predicting the ground truth labels. For any
given task, a set of N models {M1 ... MN}, Dataset D(X,Y ),
we have the following definition:

Acc(Mn) = E
(x,y)∼D

[1{Mn(x) = y}] (1)

For any model Mn and data {x, y} ∈ D(X,Y ), Acc(Mn)
measures the probability of Mn correctly predicting y. E[.]
denotes the expected accuracy Acc for dataset D.
Consistency (C). Consistency measures the probability of
multiple models producing the same result given the same
input. Given {x, y} ∈ D and N models {M1 ... MN}, we
have the following definition:

C(M1...MN ) = E
(x,y)∼D

[1{M1(x) = ... = MN (x)}] (2)

C measures the probability of models {M1...MN} predict-
ing the same result at a given point x, i.e., E[.] stands for the
expected value of model consistency C for dataset D.

Correct Consistency (CC): the Intersection between Ac-
curacy (Acc) and Consistency (C). Consistency (C) only
measures if all models produce the same results, no matter
if they are correct or not. In real-world applications, we are
more interested in consistent and correct predictions for a set
of models within the same application. Thus, we use correct
consistency (CC) to define this as shown in Eq. 3.

CC(M1...MN ) = E
(x,y)∼D

[1{M1(x) = ... = MN (x) = y}]
(3)

CC measures the probability of multiple models {M1 ...
MN} correctly predicting the target y at the same input
point x. i.e., E[.] stands for the expected value of correct
consistency CC for dataset D.

CC is at the intersection between the Consistent (C)
and correct outputs (Acc) produced by all the models, as
formulated in Eq. 5.

CC(M1...MN ) = C(M1...MN ) ∩Acc(M1)... ∩ ...Acc(MN )
(4)

<Acc-CC> Gap: Theoretical Gap of Improvement between
Accuracy and Correct Consistency. For a set of reported
model accuracy Acc(M1) ... Acc(MN ), the maximum ideal
CC is min{Acc(M1), ..., Acc(MN )}: the accuracy of the
smallest/worst performed model.

Thus for multiple models {M1 ... MN}, the gap for
improvement is defined as:

< Acc−CC >= min{Acc(M1)...Acc(MN )}−CC(M1...MN ).
(5)

Accuracy (Acc) and correct consistency (CC) are cor-
related and serve different purposes in assessing model
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Metrics
Acc1 Acc2 C CC <Acc-CC>

CIFAR-10
ResNet20+ResNet20 91.73 91.78 92.65 88.56 3.17
ResNet20+ResNet56 91.73 93.27 92.51 89.30 2.43
ResNet20+VGG13 91.73 93.26 92.34 89.15 2.58

CIFAR-100
ResNet20+ResNet20 66.86 67.47 70.00 58.28 8.58
ResNet20+ResNet56 66.86 70.47 69.89 59.47 7.39
ResNet20+VGG13 66.86 71.57 68.75 59.74 7.12

TABLE 2: Different Metrics Reported on CIFAR10/100

(a) CIFAR-10 (b) CIFAR-100
Fig. 2: Acc and CC Gap (Eq. 6) for Different Models.

performance. An effective system should minimize the
<Acc-CC> gap, indicating both high accuracy and correct
consistency to be deemed reliable. However, achieving this
balance is often challenging in practice. This motivated the
paper to build a system that can efficiently detect and reduce
model inconsistency within a distributed DL application.

2.3 Factors that impact <Acc-CC> Gap

Model heterogeneity. Table 2 compares the Top-1 accuracy
and consistency metrics (C , CC, and <Acc-CC>) of CIFAR-
10 and CIFAR-100 dataset obtained from our pre-trained
models. Three pairs of model parameters are generated
as follows: (i) The same model architecture but trained
twice with different initialization parameters (ResNet20 and
ResNet20). (ii) Models with the same backbone module but
with different depths (ResNet20 and ResNet56). (iii) Models
with totally different architectures (ResNet20 and VGG13).

Experimental results show that the <Acc-CC> gap is
ubiquitous for models of the same and different architec-
tures. <Acc-CC> gap is around 3% in CIFAR10 to around
8% in CIFAR100. The loss primarily arises from factors such
as the random initialization of models [14], the ordering of
mini-batches [15], data augmentation and processing [16],
and hardware variations [7]. Performing the training multi-
ple times with the same setting can result in models that
produce a surprising number of conflicting predictions,
even when all models achieve very high accuracies [9].
Model architecture and number. Fig. 2 compares the
<Acc-CC> gap among a different number of models. We
randomly initialize parameters for Resnet20, VGG13, Mo-
bileNetv2 x0 5 and repeat model training 20 times on CI-
FAR10 and CIFAR100 respectively. Then, for each model, we
randomly select n models from all 20 models, and report the
<Acc-CC> gap among these models. We report the mean,
upper, and lower bound of the <Acc-CC> gap as well.

From the experimental results, we observe that model
number is positively correlated with the <Acc-CC> gap.
When more models join the evaluation, the gap increase is
almost linear to the model numbers, for both CIFAR10 and
CIFAR100. Model architecture also accounts for large <Acc-
CC> gap. For the same model, MobileNetv2 and ResNet20
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Fig. 3: DEEPCON Overview

report the highest gap on the two datasets. For the mixed
model scenario with 3 different models, the gap is the
highest with large variance as well, compared to the case
where models have the same architecture.

task complexity. Task complexity also accounts for large
<Acc-CC> gaps: Table 2 and Fig. 2 show that CIFAR100 has
3-2 times the gap compared of CIFAR10 when increasing the
model number from 2 to 10.

These findings necessitate the need to improve model
consistency, which is paramount for distributed DL appli-
cations with multiple models and varying configurations.

3 DEEPCON: IMPROVING DISTRIBUTED MODEL
CONSISTENCY VIA DISTILLATION

DEEPCON aims to develop an adaptive deep learning model
deployment system that combines the computing resources
from the cloud server, GPU cluster, and edge devices, which
enables the models to be updated in OTA (over-the-air)
manner. To this end, we build DEEPCON that comprises two
main components: Deep Mixup Mutual Learning (DMML)
algorithm and OTA controller.

The DMML algorithm is running on a cloud, which
is developed to optimize the parameters of the models
to mitigate the inconsistency when the inconsistency is
detected or exceeded a threshold (see §3.2). In order to
maximize the resource usage in distributed cloud GPU
servers, we also propose an asynchronous parallel DMML
in §3.3. The OTA controller orchestrates the model update
and re-deployment across cloud and edge devices (see §4). It
maintains a deep learning application deployment life-cycle
through the following operations, i.e., Deploy → Validate →
Train → Update → Deploy. The high-level system overview
of DEEPCON is shown in Fig 3.

The system achieves the following three goals.

• Seamless OTA. DEEPCON utilizes the computing re-
sources both from edge devices and the cloud to
achieve seamless OTA. This algorithm and system co-
design solution ensures non-stop performance valida-
tion and model updates on the host devices.

• Generability. We develop a generic deep learning
model updating algorithm for easy fine-tuning of mod-
els without being affected by the number of models and
the model architectures.

• Scalability. The proposed model updating algorithm
is able to fine-tune the models in parallel and auto-
matically scale to multiple computing nodes. Therefore,
if the application developers want to reduce update
latency, he/she only needs to add more computing
resources and require zero code changes.
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In this section, we describe the design of DMML. Fol-
lowing the definition in Equation 5, we first formulate
the system optimization goal in § 3.1, and transforms the
problem into a form that can be solved via knowledge dis-
tillation technology. Then, we develop an online knowledge
distillation-based method to solve the problem in § 3.2. We
also accelerate the training of DMML via parallel training as
discissued in § 3.3.

3.1 System Optimization Goal
To ensure the consistency of various models, we have the
following optimization goal.

argminM1..MN Gap < Acc− CC > (M1, ...,MN )

s.t. Acc(Mn;D)−Acc(M
′

n;D) <= ξ

∀Mn ∈ {M1..MN}
ξ ≥ 0

(6)

For any dataset D, we aim to maximize the CC for
all models {M1 ... MN}. Denote Mn and M

′

n as models
before/after re-parameterization, we also add a constraint
for model accuracy. The slack factor ξ enables the retrained
model M

′

n to tolerate maximum accuracy decrease ξ, com-
pared to the original model Mn. Here, ξ is a positive integer
determined empirically during the retraining process, pro-
viding flexibility in balancing model performance. In this
paper, we set ξ = 0, representing a specific case where
the model is constrained to operate without any reduction
in accuracy. For all experiments, we only report results
where the accuracy after retraining is greater or equal to
the original accuracy.
Solving the optimization problem with Knowledge Dis-
tillation. Knowledge distillation (KG) [11] allows teaching
or ”distilling” the knowledge from one or a set of models to
other models, which naturally meets the optimization goal
illustrated in Eq. 6. To transfer the optimization problem to
a KD task, we first have the following goals:

argmin
MS

{x,y}∈DL(MS(x), y) + L(MS(x),MT (x)) (7)

Given a teacher model MT and labeled dataset D(X,Y ),
the goal of KD is to generate a student model MS by learn-
ing from both MT and D(X,Y ) [11]. Two loss functions
L(MS(x), y) and L(MS(x),MT (x)) measures the difference
between MS and D, MT respectively. By minimizing both
loss functions at the same time, the learned MS retains the
knowledge from MT and the dataset D.

We note the ground truth label y could also be regarded
as the output of a perfect model. In order to agree with
the output of all models and the ground truth label, our
optimization goal could be formulated as:

arg min
M1..MN

{x,y}∈DL(y,M1(x)...MN (x)) (8)

Whereby the loss function measures the difference be-
tween all models and the ground truth label. However, it
is infeasible to optimize all the models at the same time.
More practically, we can recursively reparameterize a model
to minimize its difference against all other models and the
ground truth label:

argmin
Mn

{x,y}∈DL(y,M1(x)...MN (x)),∀Mn ∈ {M1..MN}
(9)

Algorithm 1: Deep Mixup Mutual Learning

1 Input: Training data D (X,Y), learning rate γ(t), Mixup
Ratio α, N pre-trained models M = {M1,M2 ... MN}

2 Initialize: t← 0

3 while Not Convergence do
4 for randomly sample batch data {x,y} ∈ D do
5 M̃ ← new list()
6 for n ∈ N do
7 // Compute M̃n(x, y,Mn, α) with E.q. 10
8 M̃n ← M̃n(x, y,Mn, α)
9 end

10 for n ∈ N do
11 Ln ← 0
12 for k ∈ N do
13 if k ̸= n then
14 Ln ← Ln + L(Mn, M̃k)
15 end
16 end
17 Ln ← Ln / (N − 1)
18 Mn ←Mn + γt

∂Ln
∂Mn

19 end
20 end
21 t = t + 1
22 update learning rate γ(t)
23 end

The remaining problem is to construct the loss function
L(Mn;D) of each model Mn on dataset D, which will be
discussed in the following section.

3.2 Basic Deep Mixup Mutual Learning (DMML)
In order to minimize the loss function defined in E.q 9, we
design a DMML algorithm that consists of two components
Deep Mixup Label and Multi-model Distillation (see Fig. 4).
3.2.1 Deep Mixup Label
Deep Mixup Label is a learning target that allows DMML
to improve consistency among models while ensuring that
individual models still maintain or even improve original
accuracy after training. The Deep Mixup Label is a weighted
average between the model’s output and ground truth label
as defined in Eq. 10.

M̃(x, y,Mn, α) = αMn(x) + (1− α)y (10)

At point {x, y}, M̃ averages the ground truth label y and
pseudo label (output) generated from model Mn(x), con-
trolled by the weighting parameter α. The Deep Mixup
Label can be applied to most deep learning tasks, Mn(x)
can be the output of any form generated by the models, i.e.,
bounding box coordinates for detection tasks [17]. For the
classification task we evaluate in this paper, Mn(x) can be
the outputs after softmax indicating the probabilities of one
sample x belonging to any class y ∈ Y .
3.2.2 Multi-model Distillation
Fig. 4 shows the details of how to use multiple generated
Deep Mixup Labels to train a target model through DMML.
Assume we have N models in total, and we would like to
update the k-th model Mk. Then, for each of other N −
1 models and data points {x, y}, we extract the computed
Deep Mixup Label M̃(x, y,Mn, α), ∀n ∈ N,n ̸= k. For each
Deep Mixup Label, we compute the difference of Mk(x)
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Fig. 4: The overview of Basic Computation of Deep Mixup Mutual Learning (DMML). The same inputs are fed to all
models and get results M1 ... MN . Then, each Mn and true label y jointly generate a mixup label M̃n controlled by a
weighting parameter α. For each model, the loss function is computed by comparing its output Mx against all other mixup
labels M̃ . For example, L1 is computed by M1 and M̃ = {M̃2...M̃N}.

against the Deep Mixup Label M̃(x, y,Mn, α) with a loss
function. All loss functions are summed and averaged to
get the final loss function for model Mk, as shown in E.q 11:

L(Mk, {x, y}) =
1

N − 1

N∑
n=1,n̸=k

L(Mk(x), M̃(x, y,Mn, α))

(11)
Finally, the computed loss is sent back to the model

Mk for computing the gradients and updating the model
parameters. (see example M1 in Fig. 4). In this paper, we
use cross entropy for computing each loss in E.q 11.

The design of mixup labels and the loss function in
multi-model distillation forces the model to update pa-
rameters to produce consistent outputs compared to other
models. The accuracy of the models, though, remains stable
during training due to the incorporation of ground truth
labels in the Deep Mixup Labels. We carefully tuned α such
that the consistency is maximized while the accuracy of
individual models is preserved. We validate the effects of
mixup ratio α in Fig. 9 as well.

3.2.3 DMML Algorithm

Based on the Deep Mixup label and multi-model distillation,
we develop DMML, an algorithm that optimizes all models’
parameters simultaneously. Alg. 1 shows details of DMML.

For a given model Mn ∈ M and the sampled data
{x, y}, we compute the Deep Mixup Label M̃n (see line
7). Then, we use E.q. 11 to compute the average of the
difference between the output of Mn and other deep mixup
labels (from line 10 to 19). Next, we update Ln and Mn

as shown in line 17 and 18. In each iteration, the learning
rate γ(t) will be updated based on convergence curves to
speed up algorithm convergence [18]. Obviously, DMML is
not very scaled with the increasing number of models. The
next subsection introduces a parallel DMML algorithm.

3.3 Parallel Training of DMML (DMML-Par)
In this subsection, we propose DMML-Par, an approach
that parallelizes the DMML, which can be scaled up to
multiple GPU nodes [19] in a distributed manner [20], [21].
Alg. 2 illustrates the details of DMML-Par. We develop an
asynchronous mechanism that allows DMML-Par to offer

a lock-free, non-wait model parameter exchange solution
during the fine-tuning phase [22].

We first initialize two lists run model and nodes idle for
maintaining the states of the models and workers, where
their index represents the corresponding worker and model.
All models are not yet allocated and all workers are not
occupied (see line 4). Then for all the workers cn ∈ C in
sequence, we first check if worker cn is idle (line 7), and if
not we will move to the next idle worker. If the worker is
idle, we check the model status in run model and allocate
the selected model Mn ∈ M to an idle worker cn. Then, Mn

and worker cn is marked as running and occupied (line 12).
At the same time, the training process is distributed to the
target worker cn via Train().

For training Mn (from line 26 to 39), we first pull the lat-
est model replica from the global model replica MS . Then,
we compute the deep mixup labels and loss against Mn(x),
calculate gradients, and update Mn. We iterate through the
dataset D until all data has been trained once (from line 28 to
37). Finally, Update() function pushes the Mn to the server
and release the worker c (from line 22 to 24).

Discussion. The asynchronous design of DMML-Par en-
sures maximum utilization of available computation re-
sources across the GPU clusters. We ensure that all models
get the same rounds of training, such to mitigate the perfor-
mance drop brought by the asynchronous parallel training
(see Fig. 8). DMML-Par is also easily scalable and adaptive
to a dynamic number of worker nodes, to meet the latency
requirements of the users.

Example of DMML-Par with 5 models on 4 workers. Fig. 5
shows how DMML-Par allocates the models to various
workers for parallel training. In the first round, we train
models 1 to 4 on workers 1 to 4 respectively. When worker
4 finishes its process, only model 5 (M5) is not trained.
Thus, M5 is allocated to worker 4. Next, when worker 3
completes the training process for M3, two models i.e., M3,
and M4 are able to be allocated to worker 3 (the other three
models are still doing first-round training). Since M3 was
trained on worker 3 already, we directly run the second-
round training for M3 on worker 3. Following the same
scheduling policy, we allocate M2, M1, and M4 to workers
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Algorithm 2: Parallel Deep Mixup Mutual Learning

1 Input: Training data D (X,Y), learning rate γ(t), Mixup
Ratio α, N pre-trained models M = {M1,M2 ... MN},

2 GPU workers c ∈ C, server S

3 Initialize: t← 0, Server model replica: MS ←M
4 run model← new list([ False for n in N ]) ,

nodes idle← new list([ True for c in C ])

5 while Not Convergence do
6 for c ∈ C do
7 if nodes idle[c] == False then
8 continue
9 else

10 for n ∈ N do
11 if run model[n] == False then
12 nodes idle[c]← False, run model[n]

← True
13 Train(Mn, α, t, c, n) // Remote

procedure call to train Mn on
worker c

14 break
15 end
16 end
17 end
18 end
19 t = t + 1
20 update learning rate γ(t)
21 end

22 Function Update(c, n, Mn):
23 MS

n ←Mn // Update Mn in S
24 nodes idle[c]← True, run model[n]← False
25 return

26 Function Train(Mn, α, t, c, n):
27 M ←MS // Worker c pulls latest model from

S
28 for randomly sample batch data {x,y} ∈ D do
29 Ln ← 0
30 for k ∈ N do
31 if k ̸= n then
32 M̃k ← M̃k(x, y,Mk, α) // Compute

M̃k(x, y,Mk, α) with E.q. 10
33 Ln ← Ln + L(Mn, M̃k)
34 end
35 end
36 Ln ← Ln / (N − 1)
37 Mn ←Mn + γt

∂Ln
∂Mn

38 end
39 Update(c , n, Mn) // Remote procedure call to

update model n and release the worker c
40 return

1, 2, and 3, respectively. Notably, before starting a training
process on a worker and a training process finishes, DMML-
Par will pull the latest version of all models from the master
node (see Alg. 2 line 27) and push the trained model to
the master node (see Alg. 2 line 23), this operation allows
the models to be updated asynchronously maximizing the
utility of computing resources.
4 OVER-THE-AIR UPDATE IN DEEPCON
Over-the-air (OTA) updates play a crucial role in distributed
deep learning applications, ensuring seamless integration of
the latest advancements and improvements, and empower-
ing the models to continuously evolve and adapt to emerg-
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Fig. 6: The High-level Implementation of DEEPCON

ing system failures [23], [24]. By integrating computation
and communication across the edge and the cloud [25], OTA
updates can accomplish the fine-tuning of the deployed
models via efficient data sampling and parallel computa-
tion, thereby significantly improving the update efficiency.

4.1 Over-the-air update in DEEPCON

This section provides an overview of the OTA update im-
plementation in Fig.6, with its high-level API call in table 3.

Cloud. The cloud holds replicas of all models within the
system and implements the OTA Controller (see Fig. 3) via
multiple modules for coordinating with the GPU cluster
and edge nodes, updating and deploying models. When
the Consistency Validator detects the inconsistency of models,
the Training Task Scheduler will be triggered and perform
the model fine-tuning process over the GPU cluster. The
updated models are then pushed to the corresponding edge
nodes for deployment. The Edge-Cloud Coordinator commu-
nicates with the GPU cluster, CPU server (Master node),
and edge nodes through the Communication Module for
operations like model deployment, data uploading, model
training, model validation, and model update.

Edge node. Each edge node deploys a pre-trained model to
make predictions on incoming streaming data. The cloud
server remains unaware of the model’s performance. To
gain an overall perspective of the model’s performance, data
must be transmitted to the cloud server for validation and
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subsequent model updates. Nevertheless, data transmission
could result in excessive bandwidth consumption. Thus, a
sampling mechanism is essential to precisely represent real-
time data distributions while minimizing bandwidth usage. The
ASRS Sampler utilizes an adaptive stratified reservoir sam-
pling method that periodically samples the data and shares
them with the cloud in a pre-defined time interval. These
data will be used to check the consistency of models de-
ployed on various edge nodes. Consistency Validator notifies
the edge nodes to upload full training data when the <Acc-
cc> gap of the sampled data is too large.

I: Training Task Scheduler. The scheduler is de-
signed to orchestrate training algorithms to update
the models in the GPU cluster. We, therefore, define
two main APIs: trainModels(w,m, t) and getModels(t).
trainModels(w,m, t, a) defines that in task t a set of models
m are trained on w workers (i.e., GPU nodes) via algorithm
a. getModels(t) returns the updated models in task t.

II: ASRS Sampler & Consistency Validator. During each
model-update window, i.e., every T seconds, each edge
node collects input streams and samples a subset of the
frames via ASRS(images, sampleSize) (see §4.2). The
sampled frames are sent to the Consistency Validator. Based
on the collected samples and the newest cloud replicas,
getV alid(m, r, l) checks the <Acc-cc> gap with Equation 5
of a set of models m based on the inference results in r and
true labels l of the collected sample data.

III: Communication Module. This module interacts the
Edge-Cloud Coordinator in Cloud with the edge node to
provide seamless OTA solution. To this end, in Edge-Cloud
Coordinator the getDeploy(m, e) specifies the pre-trained
model m to be deployed on the edge node e. Next, the
getReplace(m, e) is designed to replace the running model
on the edge node e with the updated model m. To provide
a “no stop” model replacement operation, the three high-
level APIs i.e., install(m), migrate(m1,m2) and stop(m) in
edge node agent are designed. install(m) builds a instance
of model m, and migrate(m1,m2) moves the input streams
from model m1 to model m2 for inference, and stop(m)
is to stop and remove the instance of model m. Finally,
the getUpload(d, r) uploads the sampled data stream d
and their corresponding inference results r to the cloud for
further validation. In this paper, we assume that both cloud
and edge nodes have the right to access the raw data, and
privacy preserving will be considered in future work.

4.2 Adaptive stratified reservoir sampling

Reservoir sampling. Reservoir sampling draws data from
a stream and keeps a sample in a storage area termed the
reservoir [26]. Initially, this method fills the reservoir with
the stream’s first N items. Once past those initial N items,
for every subsequent i-th item (where i > N), each of the
reservoir’s N items has a 1

i chance of being substituted
with the i-th item. This means the i-th item has an N

i
likelihood of being accepted and then randomly replaces an
item already in the reservoir. The beauty of this approach
is that it doesn’t require knowing the stream’s total item
count, and it guarantees every item in the stream has an
equal chance of making it into the reservoir.

Stratified sampling. While reservoir sampling is a prevalent
method in stream processing, it might compromise the sta-
tistical integrity of the sampled data when the input stream
has multiple sub-streams with varying distributions [27].
This stems from the fact that reservoir sampling could
potentially miss out on sub-streams that consist of only a
few data items. Specifically, it doesn’t ensure that every sub-
stream is given an equitable chance for its data items to be
chosen for the sample. To address this, stratified sampling
was introduced. This method first divides the input data
stream into distinct sub-streams and then conducts sam-
pling, such as simple random sampling, on each sub-stream
separately. This ensures each sub-stream’s data items have
an equal chance of selection, ensuring none are missed.
However, a limitation of stratified sampling is that it’s
effective only when it has prior knowledge of the statistics
of all sub-streams, like the length of each one.

Adaptive stratified reservoir sampling. To reduce the
bandwidth cost while transmitting data from edges to the
cloud for consistency validation, we develop a novel sam-
pling method, i.e., Adaptive Stratified Reservoir Sampling
(ASRS). It accomplishes the benefits of both stratified and
reservoir sampling without inheriting their limitations. No-
tably, ASRS ensures no sub-streams are missed regardless of
how popular they are, requires no prior knowledge of the
sub-stream statistics for sampling, and operates efficiently
in real-time across a distributed system [28], [29].

Algorithm 3 summarizes the workflow of applying
ASRS to sample the streaming data (e.g., images or texts)
in an edge node. We stratify the input stream into sub-
streams according to the inference results of the model
deployed on the edge node (line 9). Thus, each sub-stream
is sampled independently (see line 8-12). To this end, we
determine the sample size Ni of each substream based on
the previous stream interval’s input rate and then perform
without replacing reservoir sampling to select the data items
without exceeding its sample size Ni.

5 EVALUATION
5.1 Experiment Setup

Datasets. CIFAR-10 and CIFAR-100 [30] datasets contain 10
and 100 classes respectively, with 50,000 images and 10,000
test images, each 32 x 32 colored pixels. IMDB [31] is a
binary text classification task with 25,000 data samples for
both the train and test sets.

Models. For the image classification task, we use three
network architectures and vary their architecture depth
when generating models: ResNet-20, ResNet-56 [32] and
MobileNetv2 x0 5, MobileNetv2 x1 4 [33] and VGG13 [34].
For text classification task, 5 different structures are imple-
mented for the experiments: TextRNN, BiLSTM, TextCNN,
TextRCNN and Self-Attention. All models use pre-trained
glove embeddings for feature representation.

Cluster and Training Setup. We implement all neural net-
works and training processes with Pytorch and conduct
experiments on an Ubuntu 16.04 server with 5 Nvidia Tesla
V100 GPUs, 40 Intel Gold 5218 CPUs, and 100GB memory.

All pre-trained models are generated by ourselves serv-
ing as base models for further fine-tuning. For pre-training
CIFAR models, we use an SGD optimizer with an initial
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TABLE 3: DEEPCON APIs

Cloud APIs Description
trainModels(w,m, t, a) In task t a set of models m are trained on w workers via algorithm a.
getModels(t) Returns the updated models in task t.
getV alid(m, r, l) Returns the CC of a set of models m based on the inference results r and true labels l of the

collected sample data.
getDeploy(m, e) Specifies the pre-trained model m to be deployed on edge node e.
getReplace(m, e) Replace the running model on the edge node e with the updated model m.

Edge node APIs Description
install(m) Builds a instance of model m.
migrate(m1,m2) Moves the input streams from model m1 to model m2 for inference.
stop(m) Stop the instance of model m.
getUpload(d, r) Upload the sampled data stream d and their corresponding inference results r to the cloud.
ASRS(images, sampleSize) get sampleSize number of samples from the collected images.

Algorithm 3: Adaptive Stratified Reservoir Sampl.

Input: images, sampleSize
Output: sample

1 Function ASRS(images, sampleSize):
2 sample← [] // Set of items sampled within the

time interval
3 Sub← [] // Set of sub-streams seen so far

within the time interval
4 Ni ← getSampleSize(sampleSize, Subi) //

Determine the sample size for each substream
5 for Subi ∈ Sub do
6 Ci ← 0 // Initial counter to measure items

in each sub-stream
7 // arriving items in each interval
8 for itemj ∈ Item do
9 itemi

j ← getSubstream(itemi) //
inference and determine belonging to
which sub-stream

10 samplei ← RS(itemi
j , Ni) // Reservoir

sampling
11 sample← samplei // add the selected

sample to global sample
12 end
13 return sample
14 end
15 return

learning rate of 0.1. The training lasts 100 epochs, and
we decrease the learning rate to 0.01, 0.001, and 0.0001 at
30, 60, and 90 epoches. For pre-training on IMDB, ADAM
optimizer is used and the learning rate is set to 0.0001 for
200 epochs of training.

During re-training, we fine-tune the model learning rate,
mixup ratio, and the training epochs to get the best perfor-
mance, i.e., we perform training on CIFAR for 50 epochs,
set the learning rate to 0.01, 0.001, 0.0001 at 0, 20, and 40
epochs. We perform model re-training on IMDB with a fixed
learning rate of 0.0001, ADAM optimizer for 100 epochs.

We perform data pre-processing and augmentation for
vision and language dataset: For vision CIFAR dataset, we
augment the data set with random crops of 4 padding
sizes and horizontal flips. For language IMDB dataset, we
perform data augmentation by randomly replacing words
with default tokens. We use Glove embeddings 1 with 100
dimensions for converting texts into word embeddings. The
input of the Glove embedding is the word token while the
output is the vector representations. It works as a dictionary

1. https://nlp.stanford.edu/projects/glove/

for converting words into vector representations. We fix
word embedding during all experiments.

Note that for pre-training we do not aim to reach the
best-benchmarked accuracy for respective model architec-
tures and datasets. For all our settings, the pre-trained
models have converged to a stable point and we show the
benefits of different techniques for improving the CC and
reducing the <Acc-CC> gap.

Baselines. We compare our method against the following
baselines. 1) Vanilla-KD [11] assume all students learn from
the teachers and true labels with distillation loss and cross-
entropy loss. KD is widely studied for training small net-
works that mimics the behaviors of large networks. 2) Label
Smooth [35], [8], [9] regulates the true label and is capable of
reducing model churn during training. We extend KD with
label smoothing for comparison. 3) Mixup Distillation [8]
proposes distillation based training for reducing model
churn. We extend the method to multiple models where all
models but the best-performed model learn from the best
models. 4) Ensemble Distillation: Ensemble methods are not
directly applicable to models with different architectures.
We implement ensemble distill where each model learns
from the ground truth label and the average ensemble logits
from all models in the group. 5) KDCL [36] is similar to
ensemble distillation but implements random augmentation
to different models during model training. The training loss
consists of both entropy loss with true label and distillation
loss with ensemble digits. 6) Deep Mutual Learning [37] is
an online-KD method that jointly learns multiple models
at the same time. The loss consists of entropy loss with
true label and pair-wise distillation loss against all other
models. 7) Co-Distillation [38] is another online-KD method
that enables parallel training of multiple models. The train-
ing loss includes entropy loss and distillation loss against
average logits over all other models. For a fair comparison,
all baseline results and DMML use the same optimizer and
training epochs. We vary the weighting parameters and
report results with the best Correct Consistency (CC) metric.

Metrics. The evaluation metrics used in the paper include: 1)
Correct Consistency (E.q 3 CC): the percentage of all models
to all produce the positive results given the same input.
2) Performance gap between ACC and CC: <Acc-CC> =
min{Acc(M1), ..., Acc(MN )} − CC(M1...MN ) (E.q 5).

All experiments are repeated 5 times with mean value,
and standard deviation reported in the results. We report
results that maintain or increase individual model accuracy,
making sure no accuracy loss during training.
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CIFAR10 CIFAR100 IMDB
CC ↑ <Acc-CC> ↓ CC ↑ <Acc-CC> ↓ CC ↑ <Acc-CC> ↓

ResNet20 + VGG13 ResNet20 + VGG13 TextRCNN + SelfAtten
Pretrained 89.15 2.58 59.74 7.12 62.76 11.89
vanilla kd 89.34±0.05 2.69±0.07 60.02±0.07 7.36±0.18 66.58±0.43 7.79±0.38

ls 89.45±0.06 2.63±0.06 59.79±0.02 7.35±0.08 67.12±0.23 7.53±0.13
mixup 89.48±0.18 2.64±0.13 60.31±0.11 7.19±0.13 67.21±0.32 7.44±0.41

ensemble-distill 90.00±0.21 2.21±0.16 61.81±0.07 5.69±0.15 67.44±0.18 6.66±0.26
kdcl 89.87±0.14 2.21±0.12 61.84±0.11 5.95±0.05 66.89±0.22 6.74±0.17
dml 90.44±0.12 1.88±0.12 62.59±0.24 5.06±0.23 67.35±1.15 6.29±0.23

co-distill 90.40±0.05 1.96±0.09 62.91±0.07 5.01±0.18 67.30±0.74 6.25±0.45
dmml 90.74±0.07 1.7±0.02 62.83±0.06 4.57±0.18 69.75±0.13 5.14±0.33

5 Models 5 Models 5 Models
Pretrained 84.27 8.34±0.78 50.35 19.69±2.13 46.86 26.61±1.97
vanilla kd 85.00±0.10 7.85±0.61 50.82±0.15 19.4±1.90 52.67±0.10 21.88±1.16

ls 85.29±0.09 7.64±0.62 50.77±0.05 19.57±2.09 53.01±0.26 21.62±1.10
Mixup 85.61±0.11 7.36±0.63 52.35±0.20 18.32±2.08 53.3±0.03 21.32±1.09

ensemble-distill 86.85±0.17 6.39±0.73 55.22±0.20 16.45±2.27 51.41±2.61 21.96±0.79
kdcl 86.51±0.20 6.66±0.70 54.34±0.15 17.26±2.25 51.05±3.21 22.18±0.91
dml 87.50±0.17 5.80±0.67 56.11±0.18 15.74±2.20 57.21±0.24 18.2±0.66

co-distill 87.23±0.10 6.05±0.72 55.64±0.09 16.15±2.29 57.21±0.07 18.31±0.63
dmml 88.17±0.07 4.98±0.52 57.38±0.07 13.93±2.11 59.45±0.19 16.31±0.59

TABLE 4: Correct Consistency (%) and <Acc-CC> Gap on the CIFAR10/100 and IMDB Dataset with 2 and 5 Models.

5.2 DMML Performance on Vision and Language Tasks

Table 4 compares the performance of DMML to other base-
lines on three popular datasets: CIFAR10, CIFAR100 and
IMDB. We conduct 2 sets of experiments with 2 models and
5 models respectively.

Generally, in all experiments, the implemented baselines
and DMML are capable of improving the consistency CC
among models, indicating that cross-model learning is ef-
fective in generating more similar models, regardless of the
model architectures and parameters. Online KD methods
(e.g., dml, codistill, dmml, kdcl and ensembledistill) are
more effective as compared to offline-KD (e.g., vanilla kd,
label smooth, mixup) in overall performance.

In experiments with 2 models, DMML is able to reduce
about 34.1%, 35.8%, and 56.8% of <Acc-CC> for 3 datasets
respectively. DMML achieves higher CC than baseline solu-
tions in most cases. However, DMML reports slightly worse
CC than codistillation on ResNet20 + VGG13, CIFAR100
experiment. This is because the codistillation improves all
models’ Acc thereby resulting the better CC. However, this
method only works in rare cases and very randomly.

On the IMDB dataset (NLP), we observe a higher incon-
sistency in pre-trained TextRCNN and SelfAttention models
due to the bigger difference between their model architec-
tures. After applying our methods, the CC can be greatly
improved, meaning that DMML is more effective for models
of greater difference. KDCL [36] as reported in the paper
can improve model invariance by adding image distortion
for each model but is less effective in improving model
consistency. In the following, we conduct experiments with
5 models of different architectures to show the scalability of
DMML in improving model consistency.

Comparing the experiments of 5 models and 2 models,
we see a larger difference of <Acc-CC>: 8.34%, 19.69%,
and 26.61% for the three datasets. After applying DMML,
the <Acc-CC> has reduced to 4.98%, 13.93%, and 16.31%,
indicating 40.28%, 29.25% and 38.70% reduction to this gap.
Comparing the computer vision tasks and NLP tasks, we
also see a larger gap in the latter, despite that all models
use the same glove embeddings at the first layer. In the

(a) <Acc-CC> Gap Shift Compar-
ison

(b) Data Transmission Savings
with Various Sample Size

Fig. 7: Evaluation of sampling methods in revealing system
inconsistency metrics (CIFAR100)

(a) Convergence Curve on CI-
FAR100 validation set, 5 GPU
workers

(b) CIFAR10

(c) CIFAR100 (d) IMDB
Fig. 8: Evaluation of DMML-Par with 5 models on 3 datasets

future, we will investigate the performance of DMML for
other basic language tasks, i.e., semantic parsing [39].
5.3 Performance of ASRS Sampling method
In this subsection, we validate the effectiveness of the pro-
posed ASRS sampling methods in precisely revealing the
performance gap during application run-time. We sample
various proportions of data from the CIFAR100 dataset and
test the <Acc-CC> gap with the sampled data. Then we
show the performance gap shift as compared to inference
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with the whole dataset. For comparison purposes, we es-
tablish the baseline with random sampling methods. Both
results are shown in Figure 7(a).

We can see from the figure that when sampling 2% of
data from the dataset, the performance shift is around 1.45%.
When more data is sampled, the shift is generally becoming
less, with 50% of the data revealing barely any shift. When
we shift 6% - 10% percentage data from the dataset, the per-
formance shift is small enough, around 0.5%, which shows
the effectiveness of our method in precisely revealing the
real data distributions during the application running pro-
cess. As a comparison, the random sampling methods barely
show any performance improvement when less than 10% of
the data is sampled from the whole dataset, indicating a gap
shift of around 1.5%. When sampling 4% to 10% data sam-
ples, the random sampling methods show 1.6X, 2.8X, 4X,
and 3.2X performance shift than ASRS sampling method.
Thus, the stratified sampling in our ASRS sampling is capa-
ble of selecting the most valuable data samples that reveal
the true data distributions from the real data, capable of fast
detecting the system performance variance. As Figure 7(b),
when making predictions for data, the ASRS sampling can
substantially save transmission bandwidth when preparing
data for consistency check. When making predictions for
stream data of around 50,000 samples (CIFAR100), 45,000
samples are excluded to transmit to the cloud when we
sample 10% of the data during the application run-time.
This is especially valuable when the models are distributed
at different locations with limited bandwidth resources.

5.4 Performance of DMML-Par
Fig. 8 plots the performance of DMML-Par implemented in
our DEEPCON, trained on 1, 3, and 5 workers (GPU nodes)
with three datasets. As a comparison, we extend DMML
to a simple synchronous parallel training algorithm namely
DMML-SP. We iteratively allocate model training tasks to
available workers and wait for all the models to be trained
once. Then we update the whole server model replica and
push them to the next round of training. We also report the
performance of DMML as a baseline. All training setup and
parameter setting are the same as the DMML, including the
Mixup ratio, the learning rate, and optimizers.

Fig. 8(a) shows the convergence curve of DMML-SP and
DMML-Par with 5 models on the CIFAR100 validation set.
Generally, we see that the training speed of DMML-Par is
much faster than DMML-SP. It takes 725 and 1838 seconds
for DMML-Par to complete 20 and 50 rounds of model
training, nearly 60% reduction as compared to DMML-SP
(i.e., 1739 and 4427 seconds respectively.) As far as the CC
metric, DMML-Par also reports faster and stable growth as
compared to the DMML-SP. After finishing 50 rounds of
training, the highest CC reported is 56.45, slightly worse
than the best CC (57.38) reported in Tab. 4. However, when
we continue training for a few rounds, we can still guarantee
the best CC as compared to synchronous DMML-SP.

Fig. 8(b), 8(c), and 8(d) report latency of three algorithms.
We report the minimum time it takes for each algorithm to
reach the best CC as marked by Tab. 4. Overall, on three
datasets, DMML-Par can reduce 20%, 14%, and 20% training
time compared to DMML-SP and DMML on average, while
reaching the same CC. In reality, we can opt to sacrifice few

CC for much less training time, e.g., in Fig. 8(a), DMML-
Par already achieves 56.12% CC (1% less than best CC)
when training for only 1100s, much faster than 1950s when
reaching the best CC as reported in Fig. 8(c).

Also, we can observe that the training time of both
DMML-SP and DMML-Par decreases with the increase in
the number of workers. However, DMML-SP has to wait for
all models to finish their round of training and then update
the models, which may cause some nodes to be idle.
5.5 The impact of parameter α
We analyze how the weight parameter α affects the model
accuracy and correct consistency (CC) metric. In Fig. 9 we
report the hyper-parameter tuning results of α on the two
datasets, with varying the α from 0 to 0.9.

(a) CIFAR-10 (b) CIFAR-100

Fig. 9: Metrics (%) with α, Resnet20 + VGG13
As α increases (more model output in the label mixup),

the CC metric is getting better, while the accuracy remains
stable, and slightly outperforms the accuracy of the pre-
trained models respectively. The maximum point is reached
around 0.7/0.8 and then starts to drop when further increas-
ing α. This indicates that around 20% of information from
the true label is already a strong indicator, enough to keep
the model stable from the accuracy perspective.

6 RELATED WORK
Model Consistency. Model consistency measures the ability
of models to produce identical outputs when given the
same/similar inputs. It is different from accuracy in that
the latter measures the prediction of each model, without
considering the relationship between different models.

Model consistency has been studied in several related
areas by different terminologies. [5], [6] attempt to quantify
the disagreement level between two networks trained on
the same dataset. They reveal that model disagreement
could arise from different architectures and initializations,
training samples, and optimizers. [3], [4] study the repro-
ducibility problem during model re-training and conclude
that factors like activation functions or data order could
lead to drastic prediction differences between the fine-tuned
model and the base model. [40], [41] report model instability
which measures the output variation of a given model
when slight perturbation is added to the input sources.
A stability loss is added to the training loss to mitigate
the model instability. Prediction Churn [8], [7], [9] propose
churn, another definition to measure model consistency
during the training process. By using techniques such as
mixup label [8], adaptive label smoothing [9], models at
different phases are forced to produce same results during
the training process. [42] is most related to the definition in
our paper, which apply ensemble-based techniques during
model training to improve model consistency. However, the
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ensemble technique is limited in applicability when models
are different in sizes or architectures.

In summary, model inconsistency is ubiquitous during
both training and deployment. While some have aimed to
improve model consistency, but are limited to the model
training phase with the same model architecture. There is
no study on the severity of model consistency with the
growth of system complexity, i.e., the growing model size,
and different model architectures. Also, a general method is
required to guarantee consistency between the models in an
ML system that needs consistency guarantee.
Model Distillation. knowledge distillation [43], [11] trains
a shallow network that mimics the behavior of a deep net-
work. The training process leverages knowledge from both
the ground true label and the teacher network. Knowledge
representation from the teacher model could be from the
model output at the final layer [11] or feature maps from
middle layers [44], with loss computed by KL divergence
loss, or MSE loss. When there is a lack of pre-trained teacher
models, however, online knowledge distillation [37] enable
simultaneous training of both the teacher and student mod-
els at the same time. In Deep Mutual Learning (DML) [37],
the model update is implemented via averaged pair-wise
distillation loss for the current model against all other
models. Co-distillation [36] is similar to DML and is directly
applicable to training large-cohort models in a collaborative
way. It is also studied that co-distillation in effective in
reducing model inconsistency. Many other works extend
the training paradigm of online KD by by using ensembles
of model outputs and the true label [36], adding diverse
peers [45] or multi-branch architecture [46].

We compare DMML with many of the above baselines on
online-KD and techniques on improving model consistency.
We show that DMML is easy to implement, effective in
improving model consistency and generic on different data
sources, i.e., vision and language datsets.

7 CONCLUSION

In this paper, we propose DEEPCON, an adaptive deploy-
ment framework for quickly detecting and reducing the
model inconsistency via over-the-air parallel training. We
design a whole pipeline for quickly detecting the inconsis-
tency within the systems, and propose an efficient learning
algorithm (DMML) based on knowledge distillation for
improving the consistency between the models. In order
to further accelerate the training process, we implement
DMML-Par, asynchronous parallel training of DMML, a
high-scalable algorithm that is easily adapted to various
numbers of computation resources. We prototype DEEPCON
and implement a set of APIs for seamless communication
between the edge and cloud layers. The evaluation results
show the effectiveness of DMML in improving model con-
sistency. We also evaluate the training speed up of DMML-
Par, which can guarantee the best consistency improvement
while greatly reducing the training time.

In the future, we plan to explore cross-domain appli-
cations by evaluating how our inconsistency measurement
performs across tasks like human activity recognition, and
person re-identification, providing valuable insights into its
adaptability and effectiveness. Additionally, exploring the
impact of contextual factors on model inconsistency will be

essential: we plan to analyze how different input conditions
or environments affect predictions, and develop strategies
to mitigate inconsistency in real-world applications.
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