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Abstract—Entity matching (EM) aims to identify whether two
entities from different data sources refer to the same real-
world entity. Most existing cross-modal EM assume that images
have simple scenes containing few objects, or do not fully
consider the cross-modal knowledge associated with entities. To
support more practical application scenarios such as multi-modal
knowledge graph integration and visual question answering in
data lakes, we introduce our problem of semantic-driven EM
across graph and images in this paper. Current semantically
matching solutions over cross-modal data face the obstacle of
low training efficiency, since their time complexity quadratically
grows with the number of entities. To alleviate this issue, we
present a novel framework (namely CrossETR) that follows
an exploration-then-refinement paradigm. It firstly proposes a
candidate exploration policy to boost the training efficiency,
which explores candidate pairs according to entity correlations
and captures structural semantics by adaptive sampling the
most informative neighborhood subgraphs. Secondly, it refines
the cross-modal entity representations to break modality hetero-
geneity to support unsupervised matching prediction. Extensive
experimental evaluations on three publicly available benchmarks
demonstrate the superiority of CrossETR over state-of-the-art
approaches in terms of effectiveness and efficiency. Furthermore,
a case study highlights that our proposed semantic-driven EM
is promising to improve the performance of downstream tasks
such as multi-modal knowledge graph integration.

I. INTRODUCTION

Entity matching (EM) is a fundamental and critical task in
data integration research, which aims to identify equivalent
entities between different data sources [1], [2]. With the rapid
increase of data variety in data lakes [3], [4], EM becomes
increasingly important for practical applications. The structural
information of entities in data lake is usually stored in a knowl-
edge graph, while the visual features and scene information
related to the entities are depicted in the form of images.
To link these entities across images and graph, the structural
and visual features of real-world entities can be completed
to support downstream tasks such as multi-modal knowledge
graph construction and visual question answering [5], [6]. For
example, Figures 1(a) and 1(b) describe the structural informa-
tion and visual scene about movie characters in a knowledge
graph and a set of images, respectively. From the entities
linked by blue dashed line, we can clearly know what the “Iron
Man” looks like. The entities connected by red dashed line
describe the visual characteristics and structural information
of “The Avengers”, i.e., its members and appearances. Entity
matching across images and graph can enhance multi-modal
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Fig. 1. Example of entity matching across images and graph.

knowledge graph construction by integrating data from graph
and images [5], which motivates our work in this paper.

Most existing cross-modal matching solutions assume that
visual image has a simple scene containing few objects [7], [8]
such as the top images shown in Figure 1(b), or do not fully
consider the cross-modal knowledge about entities [9], [10]
such as the structural information of “The Avengers” shown in
Figure 1(a). They explore the match described in blue dashed
line well, but may not be able to identity the match depicted
in red dashed line. This is because the image scene is complex
and simply regarding it as one entity to perform cross-modal
EM will result in missing or incomplete matches.

Following the above motivations, we address the problem
of entity matching across images and graph by considering
their structural semantics and scene semantics in this paper.

To efficiently perform semantic-driven EM over multi-
source, existing methods usually properly encode the entity
semantics as representations and then make predictions based
on similarity calculation or matching probability [9], [11].They
are typically classified into two main groups. Firstly, dual-
based group is to first extract entity embeddings by training
feature encoders for different data sources and then measure
their similarity distances, as shown in Figure 2(a). For ex-
ample, CLIP [12] and Sudowoodo [9] first encode the input
pairs separately and then train the models contrastively to keep
similar pairs close and dissimilar pairs apart. Due to modality
heterogeneity, overly simple feature fusion may lead to insuffi-
cient representations for multi-modal entities and further affect
the overall EM performance, as discussed in [13]. Secondly,
fusion-based group leverages pre-trained models to initialize
entity embeddings and then maps them into a common feature
space based on Transformer architecture, as shown in Fig-
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Fig. 2. Semantic-driven EM: (a) Dual-based approaches, which measure the
distances of entity embeddings across different sources; (b) Fusion-based ap-
proaches, which encode entities from different sources into a common feature
space; and (c) our exploration-then-refinement, which explores candidates and
then performs cross-modal refinement, proposed in our CrossETR.

ure 2(b). For example, IMRAM [14] encodes texts and images
into a common feature space using an iterative matching
mechanism with recurrent attention. PromptEM [10] unifies
heterogeneous data as textual sequences and transforms the
generalized EM as a masked language task to predict target
words in a low-resource setting. These methods fuse entity
features from different modalities as much as possible, but are
still empirically limited by memory usage and time complexity
that grows quadratically with the number of entity pairs [13].

From the above investigations and comparisons, we aim
to develop a semantic-driven solution to boost the training
efficiency of cross-modal EM. This remains a challenging
endeavor. Firstly (C1), how to efficiently explore candidate
vertices and effectively capture their structural semantics
related to images? The existing solutions discussed above
with quadratic time complexity in entity number is expen-
sive for large-scale knowledge graph and image repository.
To improve the training efficiency, we intuitively expect to
prioritize exploring those candidate vertices that are most
likely to match the images. Furthermore, the most popular
graph representation methods [15], [16] usually capture the
structural semantics of vertices by expanding on their adjacent
neighborhood substructures. However, vertices have too many
neighbors in real-world large graphs such as Freebase [17]
and WordNet [18], which causes scalability issues and also
introduces noise into the matching models. Secondly (C2),
how to refine entity representations to support cross-modal EM
in an unsupervised manner? Most existing semantic-driven
methods depend on vast label annotations to train the matching
models, which is labor-intensive even unavailable in large data
lake [9], [10]. It remains a challenge to extract entity features
through structure and scene interactions and then unsupervised
back-propagate them to train the matching model.

To tackle these challenges, we propose a novel semantic-
driven framework to address EM across images and graph,
namely CrossETR. It follows an exploration-then-refinement
paradigm that first explores candidates based on entity corre-
lations and then performs cross-modal refinement, as shown
in Figure 2(c). To improve the training efficiency of cross-
modal EM (for C1), we propose a candidate exploration policy
to reduce redundant objects of images and then samples the
most important neighbors for candidate vertices to capture
their structural semantics relevant to images. Subsequently, we
introduce a cross-modal refinement method (for C2) to refine
entity representations by performing cross-modal feature fu-
sion between vertices and images, and guide the training of the
matching model in an unsupervised manner. Our contributions
are summarized as follows.

(1) Semantic-driven matching framework. To the best of our
knowledge, this is the first work on semantic-driven entity
matching across images and graph. As data diversity and
volume increase, our proposed exploration-then-refinement
paradigm will become popular in different practical scenarios.
Details will be shown in Section III.

(2) Candidate exploration policy. We propose a candidate
exploration policy consisting of instance selection and adaptive
subgraph sampling to discover relevant candidate pairs and
boost training efficiency, as described in Section IV.

(3) Cross-modal refinement. We present a cross-modal fea-
ture fusion to break modal heterogeneity, and an unsupervised
training mechanism to obtain entity associations to address our
semantic-driven EM, as detailed in Section V.

(4) Extensive Experiments. We conduct comprehensive
evaluations on semantic-driven EM task compared with some
state-of-the-art approaches. Extensive experimental results ver-
ify the superiority of our CrossETR in terms of effectiveness
and efficiency. A case study indicates that semantic-driven
EM can significantly improve the performance of multi-modal
knowledge graph integration, illustrated in Section VI.

II. PROBLEM DEFINITION

In this section, we formally present the problem definition
of entity matching across graph and images. The notions that
are frequently used in this paper are summarized in Table I.

A. Preliminary

Data Graph. We consider a directed graph defined as G =
(V,E, L), where (a) V is a vertex set; (b) E ⊆ V ×V is a set
of edges; (c) L is the set of all unique words contained in the
labels of edges and vertices; and (d) L(v) and L(e) represent
the labels of vertex v ∈ V and edge e ∈ E, respectively.

Structured and semi-structured data in data lakes can be
converted as graph by encoding tuples or keys into vertices
and foreign keys or references as relationships of graph [3],
[4]. By using some sentence parsing models based on language
structures [19], [20], unstructured text documents can be
constructed as a graph where named entities are represented
as vertices and their syntactic relations are edges.



Images. An image I captures the scene that includes various
objects such as people, landscapes, backgrounds contributing
to the overall understanding or interpretation of the image.
Multimedia data can be cut into images based on frames [21],
[22], and a video is collected as a set of images. This will be
discussed in our future works.

Instance Segmentation. Instance segmentation is a typi-
cally instance-level image understanding task [23], [24] that
focuses on delineating an object with a segmentation mask
in the given image. It is different from the object detection
tasks to recognize individual objects in the given scene with
a bounding box, which may include parts of the background
and is difficult to separate objects from their surroundings.

Segmentation Anything Model (SAM, [24]) has released as
a state-of-the-art foundation model for image segmentation by
Meta AI and can be used to generate masks for all objects
in an image. As for an image I ∈ I, O = {o1, ..., on} is
a set of objects segmented from I using SAM. Each object
oi ∈ O is related to a cropped pixel of I and associated with
different concepts. Here n is the number of segmented objects
from I . Object oi = (bi,mi) consists of a bounding box bi
and a mask feature map mi. A bounding box bi is a tuple
(x, y, w, h, c), where (x, y) is the top-left corner coordinate of
bounding box, w and h are its width and height, respectively.
bi[c] is the segmentation confidence score of bi. A feature map
mi is an object representation in high-dimensional space.

Graph Neural Network (GNN). GNNs learn the repre-
sentation xi of vertex vi following an iterative neighborhood
aggregation scheme, which captures the structural information
associated by its neighbors via graph convolution layers [15].
Let X denote the feature matrix of G, in which xi = X[vi, :]
is a high-dimensional attribute vector of vi ∈ V .

For each vi, its representation at the (l+1)-th layer x(l+1)
i is

learned by firstly aggregating the neighbor feature vectors and
then concatenating with the l-th layer vertex representation.
Let N(vi) be a set of neighbors of vi. x

(l+1)
i is formally

defined as follows:

x
(l+1)
i = Combine(l+1)(x

(l)
i , x

(l+1)
N(vi)

), (1)

x
(l+1)
N(vi)

= Aggregate(l+1)(W (l+1), {x(l+1)
j , vj ∈ N(vi)}),

(2)
where x

(l)
i is the representation of vi at the l-th layer with

x
(0)
i = xi. The Aggregate and Combine are message passing

functions in GNN. W (l+1) ∈ Rd(l)×d(l+1)

is the learnable
aggregation matrix in the (l + 1)-th layer, and d(l) denotes
the hidden dimension at the l-th layer.

B. Problem Formulation

Entity Matching. Entity matching (EM) [1], [2] aims to
determine whether two entities refer to the same real-world
entity, which is regarded as a pairwise matching problem
where two matched entities are called a matching pair. Re-
garding the entity semantic as an embedding generated by
some representation-based methods [9], [10], and entities with

TABLE I
FREQUENTLY USED NOTATIONS.

Symbol Description
I an image in the image repository I
O the segmented objects from I

G = (V,E, L) a directed data graph
oi = (bi,mi) the bounding box and feature map of oi
M,H,F ,A the matching model including a explorer H,

a scoring function F and an aggregator A
S the matching pairs for V and I
O∗ the key objects in an image

fb(b, R) the occlusion factor for a box b in R
Gs the sampled subgraphs for candidates C

Zv , Zo the refined vertex and object representations
p(vj |vi) the sampling probability of vj for vi
f(Vs) the information entropy of the subgraph

induced by vertices Vs
g(vj , S) the information gain of adding vj into S
∇θL the gradient of the training loss L with

respect to θ in the sampling operation
vci the scene-aware vertex representation of vi

Ls(v, I) the matching loss between v and I

related semantics are close in the vector space. We formally
define as follows.

Definition 1: (Matching Pair) For each entity pair (x1, x2),
x1 and x2 form a matching pair if and only if their semantics
are related. The semantic relevance can be measured by using
a given similarity function sim to their embeddings, where
sim is usually the cosine similarity function. The larger
sim(x1, x2) is, the more semantically related they are.

In this paper, we consider the task of entity matching
across two data sources with different modalities. We formally
formulate our semantic-driven entity matching problem across
graph and image as follows.

Definition 2: (Semantic-driven Entity Matching) Given a
graph data G = (V,E, L) and an image repository I =
{Ii}1≤i≤N with N images, entity matching is to find all
matching pairs S of the vertices in V and the images in I
such that:

S = {(v, I)|v ⇔ I, v ∈ V, I ∈ I}, (3)

where ⇔ denotes the equivalent entities in the real world.
(v, I) is a matching pair calculated by the semantic relevance
of their embeddings.

We do not assume a one-to-one mapping across two differ-
ent data sources [25], but mainly focus on the binary relation
between V and I that indicates whether two entities match or
not [9], [11]. The left entity of the matching pair is called
source entity and the right one is called target entity. For each
source entity, the target entity is ranked according to their
semantic matching scores. The higher score indicates the more
likelihood that the target entity matches the source entity.

Definition 3: (Matching Score) For each matching pair of
v ∈ V and I ∈ I, its matching score is computed as:

C(v, I) =
1

|Vs|
∑
vi∈Vs

max
oj∈O

sim(vi, oj) (4)

where sim(·, ·) is an embedding similarity function between
objects and vertices. Vs is the neighboring vertices of v and
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Fig. 3. Overall architecture of our proposed framework CrossETR. The orange zones are collaborated by excellent pre-trained large models.

O is a set of segmented objects from I . How to extract Vs for
v and O for I will be detailed in the following sections.

Example 1: Figure 1 shows a matching pair of the vertex
v1 and the image connected by red dashed line, both of which
describes similar semantics of “Members of The Avengers
include Iron Man, Thor, Caption America, etc.”. This matching
pair is driven by the structural semantics of v1 and the scene
semantics depicted by the objects contained in I .

III. FRAMEWORK OVERVIEW

Following previous studies on embedding-based entity
matching [9], [11], to determine whether two entities match
or not, a matching model is trained to capture their semantics
and calculate the similarities of their representations by using a
matching score. Typically, the semantics of vertices are repre-
sented by considering their neighborhood structures, which can
be achieved through some graph representation methods such
as GraphSage [15], GNN [16]. While the semantics of images
are captured by the objects or instances contained in the
scenes, which can be detected in object detection and instance
segmentation methods [26], [27]. Therefore, we consider the
scene semantics of images and the structural semantics of
vertices to perform semantic-driven entity matching and decide
whether an image and a vertex form a matching pair.

Given a graph G and a set of images I, our CrossETR
framework aims to align an image I ∈ I to a vertex v ∈ V with
similar semantics. To determine whether two entities match
or not, we first employ representation models to generate
the semantic representations of entities, and then leverage
the matching score to calculate the relevance between these
representations. During encoding these entities, CrossETR
follows two phrases: exploration and refinement. It first ex-
plores candidate vertices for each image according to entity
correlations and samples neighborhood subgraphs to capture
the semantics of these candidates. The second phase refines the
cross-modal entity representations to calculate their matching
scores. Therefore, CrossETR is to learn a matching mechanism
M = {H,F ,A} in an unsupervised manner, where H and
F are a candidate explorer and a matching scoring function
for vertices with respect to images, respectively. A is an
aggregator designed to refine vertex and image representations
by cross-modal feature fusion for I and V . Figure 3 overviews

Algorithm 1: CrossETR Training
Input: A graph G = (V,E), a set of images I, learning rate

η, epoch number n.
Output: A cross-modal matching model M

1 initialize weight matrices Wv and Wo;
2 initialize the explorer H and the aggregator A;
3 for epoch from 1 to n do
4 V ← BERT({l(v)|v ∈ V });
5 Split I into batches B = {I1, ..., Im};
6 for Ii ∈ B do
7 O ← SAM(Ii);
8 Gs, O

∗ ← Explorer(G,O, V,Wv,Wo);
9 Zv, Zo ← Aggregator(Gs, O∗,Wv,Wo);

10 L← Loss(Zv, Zo, Gs, Ii,F);
11 M← Back-propagate(L,M, η);

12 M← {H,F ,A};
13 return M, Wv , Wo;

the architecture of our CrossETR framework, which learns
matching model M in the following three stages: feature
extraction, candidate exploration and cross-modal refinement.
The detailed training procedure is illustrated in Algorithm 1.

In the feature extraction stage, CrossETR extracts object
features of images I and initializes vertex representations of V
(lines 4 and 7). We consider the feature extraction of images
as an instance segmentation task [24], [28] that focuses on
delineating an object with a segmentation mask in a given
image. Then, a set of segmented objects O = {o1, ..., om}
for each I ∈ I can be obtained by taking SAM as an image
encoder. Meanwhile, we leverage BERT [29] as a textual
feature extractor and regard the output of the head projection
in vertex labels as the initialized vertex representations of V .

In the candidate exploration stage, CrossETR explores ap-
propriate candidate vertices as well as their neighbors that are
most likely to be associated with the images (line 8). A key
challenge is to train a high-quality explorer H to capture those
vertices that are likely to have structural semantics similar to
the scene semantics of images. To this end, we propose a
candidate exploration policy in Section IV, which works in the
following two steps. It first obtains key objects O∗ by selecting
the most representative visual instances for I to reduce redun-
dant and unnecessary computation, detailed in Section IV-A.



Secondly, it selects candidate vertices that are most relevant
to O∗ and adaptive samples a set of neighborhood subgraphs
Gs that are most informative for these vertices by interacting
with I , illustrated in Section IV-B.

In the cross-modal refinement stage, CrossETR refines
vertex representations Zv and object features Zo leveraging
the aggregator A (line 9). The key challenge lies in extracting
image and vertex features through structural and scene contex-
tual interactions, and then unsupervised back-propagate them
to train the matching model M (lines 10-11). Therefore, our
cross-modal refinement mechanism processes feature fusion
between vertices and objects based on a multi-head cross-
attention [30], which is described in Section V-A. During the
training of matching modelM, CrossETR introduces a vertex-
level loss and a structure-level loss into F guided by a pre-
trained text generation model FlanT5 [31].

The following sections will mainly introduce the exploration
and refinement stages of our CrossETR framework.

IV. CANDIDATE EXPLORATION POLICY

Taking a set of images I as inputs, our explorer H designs a
candidate exploration policy based on the associations between
the visual instances of I and the vertices in V . The goal of
exploration is to sample a set of neighborhood subgraph Gs
for candidate vertices of image I ∈ I, so that CrossETR can
capture the structural semantics related to I . To achieve this
purpose, the explorer is required to address two problems: (1)
determine which are the key instances for each image to reduce
redundancy, as presented in Section IV-A. (2) Decide how
to select candidate vertices relevant to the image and sample
informative neighbors to represent the structural semantics of
these vertices, as described in Section IV-B.

A. Visual Instance Selection

Although the instances O segmented by the segmentation
model from the image I ∈ I are sufficient because they are
separated from the surroundings and backgrounds compared
to those detected by object detection models [23], [24]. It is
still insufficient for our task since some of the segmented
instances are highly overlapped, which leads to excessive
correlation calculations and introducing redundant information
in capturing the scene semantics of I . In this subsection, we
propose a visual instance selection method to choose the most
important instances, which are representative objects of the
image and have low overlapping area with other objects.

Motivation. As multiple segmented instances with highly
overlapping bounding boxes may refer to the same object in
the image, it is necessary to reduce redundancy by consid-
ering these instances. The common practice is to leverage
non-maximum suppression (NMS) [32] to select the objects
whose boxes with highest confidence scores and suppress
the other overlapping boxes. However, the confidence score
does not reflect the overlapping of object boxes. Considering
the example shown in Figure 4(a), boxes in the solid lines
represent different objects with confidence scores. There are
three boxes b1, b2 and b3 are highly overlapped. The standard

Algorithm 2: Instance Selection
Input: The instances O = {o1, ..., on} with boxes B,

overlapping threshold δ, confidence threshold ε.
Output: A set of selected instances O∗.

1 O∗ ← ∅;
2 while O is not empty do
3 i← argmaxi∈[1,|O|]{bi[c]};
4 R← ∅; L← ∅; overlap← False;
5 for j ∈ [1, |O|] do
6 if IoU(bi, bj) > δ then
7 R← R ∪ {bj}; L← L ∪ {oj};
8 O ← O − {oj};
9 overlap← True;

10 if overlap is not true then
11 O∗ ← O∗ ∪ {oj};
12 else
13 b← Mean(R);
14 m← mk, k ← argmaxk∈[1,|L|] IoU(bk, b);
15 b[c]← fo(b,R) ·

∑
bk∈R

IoU(b, bk) · bk[c];
16 if b[c] > ε then
17 o← (b,m);
18 O∗ ← O∗ ∪ {o};
19 else
20 O∗ ← O∗ ∪R;

21 return O∗.

NMS is likely to select all of them because they both have
large confidence scores, but this obviously introduces a lot
of redundancy. Next, we present how to select the most
representative instances for an image to address this problem.

Main idea. The main idea of our method is to select
instances with lower overlapping areas and higher confidence
scores. Taking objects O of I as inputs, it works in the
following two steps: (i) check whether an instance highly
overlaps with others; and (ii) create new instances by merging
these overlaps and select them if they have higher confidences.

We create a new instance o = (m, b) to represent these over-
lapping instances R by merging their boxes, and calculate its
confidence score based on the Intersection-of-Union (IoU) [26]
and the occupied area ratio of the boxes in R. Specifically, an
occlusion factor is defined to represent the area ratio of the
box b towards the overlapping of R, denoted by fo(b, R). The
occlusion factor fo associated with b and R is calculated by:

fo(b, R) =
1

b[w]b[h]

∏
z∈{x,y}

(max
bi∈R

bi[z]− min
bj∈R

bj [z]). (5)

Subsequently, we can formulate the confidence score b[c] of b
as follows.

b[c] = fo(b, R)
∑
bk∈R

IoU(b, bk) · bk[c]. (6)

Algorithm 2 illustrates the procedure of instance selection.
We first iteratively pick the bounding box bi of object oi with
the highest score (lines 1-2) and then collect the overlapped
boxes R for each oi by checking the overlapping between two
boxes using IoU (lines 5-9). Subsequently, a new instance o is
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Fig. 4. Example of visual instance selection.

created based on R (lines 12-20). Its box b is computed by the
mean position of the overlapped boxes in R (line 13), and the
feature map is set to the one that has most overlaps with the
box b (line 14). The confidence score b[c] of b is measured by
using Equations 6 (line 15). Finally, the new created instance
is selected if its confidence is larger than ε.

For example, Figure 4(a) shows three highly overlapped
instances, depicted by their boxes b1, b2 and b3. A new
instance shown in the red solid line in Figure 4(b) is merged
from them and denotes by o = (b,m), where b is computed by
the average position of boxes and m is feature map inherited
from b1 that has the largest IoU with b. Subsequently, we can
select a set of boxes {b, b4, b5}, which is almost no repetition
compared to {b1, b2, b3, b4, b5} obtained by the standard NMS.

The time complexity of this process mainly consists of
two parts: (i) sorting the bounding boxes; and (ii) merging
instances based the IoUs of redundant boxes. The time com-
plexity of visual instance selection totally takes O(N logN)
where N is the number of instances segmented from I .

B. Adaptive Subgraph Sampling

To determine how to select candidate vertices related to
the image and sample informative neighbors to represent
their structural semantics, we propose an adaptive subgraph
sampling method in this section.

Motivation. The original GNN shown in Equations 1-2 can
capture the structural semantics of vertices, which requires
fully expanding their neighbors for all vertices V across
layers and thereby incurs a time complexity of O(|V ||E|).
To circumvent this barrier, sampling operations are introduced
into GNNs to regulate the size of neighbors. Let N(vi) be the
direct neighbors of vi. By defining the sampling probability
of a neighbor vj for the given vi as p(vj |vi) = 1/N(vi), the
Equation 1 can be reformulated as follows [15]:

v
(l+1)
i = σ(

k∑
vj∼p(vj |vi)

α(vi, vj)v
(l)
i W (l)), (7)

where σ(·) is an activation function, α(vi, vj) is an aggregation
weight, v(l)i and W (l) are the hidden embedding of vi and the
transformation parameter at the l-th layer, respectively. k is
the sampling number for each vertex. Until now, the size of

neighbors is regulated as k. Therefore, GNN with sampling op-
eration take a time complexity of O(k|V |) with k � |V | [33],
[34]. Although those methods such as PASS [33] and GCN-
BS [35] successfully address the scalability issue, they do not
sample neighborhood subgraphs for a set of vertices relevant
to a given scene to capture their structural semantics to further
support EM across images and graphs.

Main idea. Given a graph G and an image I with the
selected instances O∗, our sampling aims to extract a set of
subgraphs Gs from G to capture the structural semantics of
the candidate vertices related to O∗ of I . To do this, two issues
are required to be considered: (1) how to select the candidate
vertices C that are most relevant to I; and (2) how to sample
the most informative neighbors for the vertices in C.

Our explorer H presents an adaptive subgraph sampling
method to answer these issues by interacting with I , which
works in the following two phases: (1) The first phrase is
vertex anchor selection that picks a set of anchors C ⊂ V
from G based on the correlations between objects of O∗ and
vertices in V , with the expectation of that the model M
can identify the most likely candidates to match with I; (2)
The second phrase is scene-aware neighbor sampling which
samples neighbors Vs for each anchor vi ∈ C by interacting
with I , and a neighborhood subgraph is induced by Vs. To do
this, the sampling probabilities of neighbors with respect to the
anchors and I are computed, and then the sampled subgraphs
associated with I are used to represent the structural semantics
of anchors. This phase enables the model to learn the sampling
strategy of candidates and their structures relevant to I . Details
are shown in Algorithm 3.

First, we define a sampling graph as an induced subgraph of
G and formally present the definition of vertex-wise sampling.

Definition 4: (Subgraph sampling problem) Given a graph
G = (V,E) and a sampling fraction φ, we sample a set of
vertices Vs ⊂ V such that |Vs|/|V | = φ. A sampling subgraph
S = (Vs, Es) is induced by the vertex set Vs and edge set
consisting of all the edges that have both endpoints in Vs.

Definition 5: (Vertex-wise sampling) The sampling proba-
bility of a neighbor vj in N(vi) for a given vertex vi is defined
as p(vj |vi), where N(vi) is a set of direct neighbors for
vi. Each vertex samples n neighbors following the sampling
distribution P (·|vi) = {p(vj |vi)|vj ∈ N(vi)} at the l-th layer.

Different from layer-wise sampling approaches [34], [36]
where each layer samples n neighbors following their sam-
pling distribution. The sampling probability of vj is defined
as p(vj |v1, ..., vn) for a given vertex set {v1, ..., vn}, and they
may suffer from sparse connection problem as discussed in
[33]. Vertex-wise sampling selects a fixed number of vertices
and allows us to control the memory footprint of the algorithm
during training. At the same time, it allows the policy to
explore the neighbors that are most important to capture the
structural semantics related to the scene semantics of I .

Next, we present the details of each phrase in our vertex-
wise sampling method.

Phase 1: vertex anchor selection. Anchors C are treated as
the vertices that have the higher correlations with the objects



Algorithm 3: Sampling
Input: a graph G = (V,E), an image I with objects O∗ and

a sampling size k.
Output: A set of sampled graphs Gs, learned projection

matrices Wv and Wo.
1 Gs ← ∅;
2 Pov ← (WoO

∗) · (WvV );
3 C ← Top-nv∈V Pov;
4 µ← argo∈O∗ maxPov;
5 for v ∈ C do
6 Vs ← {v}; Queue← {v};
7 while Queue is not empty and |Vs| < k do
8 vi ← Queue.pop();
9 for vj ∈ N(vi) do

10 p(vj |vi) =
exp(τ · sim(Wvvj ,Woµ))∑
exp(τ · sim(Wvvk,Woµ))

;

11 f(Vs) = −
∑
vj∈Vs p(vj |vi) log p(vj |vi);

12 g(vj , S) = f(Vs ∪ {vj})− f(Vs);
13 if g(vj , S) ≥ δ then
14 Vs ← Vs ∪ {vj};
15 Queue← Vs ∪ {vj};

16 subgraph S is induced by Vs from G;
17 Gs ← Gs ∪ S;

18 return Gs, Wv , Wo.

in O∗. We first project the feature maps of objects in O∗ and
attribute embeddings of vertices in V into the a uniform feature
space through learnable transformation matrices Wo and Wv .
The correlation coefficients between them are represented as
a matrix calculated by dot product between the projected
features of O∗ and V , with (|O∗| × |V |) dimensions (line
2). Subsequently, those vertices with top ranked correlation
coefficients are selected as anchors (line 3). Formally,

vi = argv∈V max(WoO
∗) · (WvV ). (8)

Here vi ∈ C is an anchor with the highest correlation for I .
The time complexities of projection and sort in this phase

are O(|V ||O∗|) and O(|V ||O∗| log n), respectively, where n
is the number of the selected anchors. With n � |V |, the
totally time complexity of this phase is O(|V ||O∗|). The space
complexity in this phase is also O(|V ||O∗|).

Phase 2: Scene-aware neighbor sampling. To interact with
the scene semantics and reduce the disturbance of irrelevant
neighbors during learning the structural semantics of anchors,
we perform a scene-aware neighbor sampling.

For each anchor vi ∈ C, k(k = φ · |V | − 1) neighbors
are sampled in a vertex-wise manner. Figure 5 shows an
overview of neighbor sampling, which works in two steps:
(i) correlation-based sampling, which first calculates sampling
probabilities of neighbors with respect to vi based on the
correlations with I; and (ii) gain-based sampling propagation,
which measures the benefits of sampled neighbors to the
structural semantic representation of the induced subgraph in
terms of information gain. Therefore, a subgraph S associated
with vi is formed by iteratively considering the most infor-
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Fig. 5. Scene-aware neighbor sampling consists of two steps: (a) correlation-
based sampling and (b) gain-based sampling propagation.

mative neighbors. And its structural semantic is updated by
propagating through the graph model.

Correlation-based sampling. As for a vertex vi, the sam-
pling probability distribution associated with its neighbors is
denoted as P (·|vi) = {p(vj |vi)|vj ∈ N(vi)} and measured
by the importance scores with respect to the instances of O∗.
Intuitively, the closer a neighbor is to an instance of O∗, the
more important it is for exploring the scene-aware sampling
subgraphs.

The sampling probability of a neighbor vj with respect to
I at the l-th is denoted by p(l)(vj |vi), which is computed by
how much the correlations between vj and the scene context
of I . Treating the object that has the largest correlation with
the vertices of V as the scene context of the image I , i.e., µ =
argo∈O∗ max(WoO

∗) · (WvV ), we can compute p(l)(vj |vi) as
follows.

p(l)(vj |vi) =
exp(τ · < Wvvj ,Woµ >∑

vk∈N(vi)
exp(τ · < Wvvk,Woµ >)

, (9)

where < ·, · > denotes the cosine similarity function and τ is
a temperature hyper-parameter in range of (0, 1]. Wv and Wo

are learnable parameters for V and O∗, respectively.
Gain-based sampling propagation. To measure the contri-

bution of a sampled neighbor vj for vi to induce a sampling
subgraph S, we formulate define its gain for S as follows:

g(vj , S) = f(Vs ∪ {vj})− f(Vs). (10)

f(Vs) = −
∑
vj∈Vs

p(l)(vj |vi) log p(l)(vj |vi), (11)

Here f(·) is defined to measure how much structural informa-
tion related to I the induced subgraph contains.

Sampling Algorithm. The details of sampling are illustrated
in Algorithm 3. Lines 2-3 perform the vertex anchor selection
to obtain a set of anchors C. For each anchor vi ∈ C, lines 5-
17 generate a set of subgraphs based on breath first search as
follows. It first computes the sampling probability distribution
p(vj |vi) for each neighbor vj ∈ N(vi) and then measures their
gains for candidate subgraphs f(Vs) induced by Vs in lines
9-12. Subsequently, the neighbors Vs with higher gains for S
are treated as more important and selected in lines 13-15. It
lastly returns all sampled subgraphs Gs and the learned weight
matrices Wo and Wv .



Theoretical Analysis. Next, we describe how to update
gradients by back-propagating through the sampling operation
and then present the complexity of the sampling algorithm.

Gradient Calculation. Let θ denote the GNN parameters
of transformation matrix W (l) and activation function σ in
Equation 7. We abbreviate the neighbor sampling probabil-
ity p

(l)
θ (vj |vi) to p

(l)
θij

for convenient presentation. Following
previous vertex-wise sampling methods [33], [35], we can ap-
proximate the expectation of Equation 7 with p(l)θij as follows:

v
(l+1)
i = σW (l)(Evj∼p(l)θij

[v
(l)
i ]), l ∈ [0, L). (12)

Given the training loss L and the hidden embedding v(l)i of
vi at the l-th layer, the gradient of L with respect to θ of p(l)θij
is computed as follows:

∇θL =
∂L

∂v
(l+1)
i

σW (l)Evj∼p(l)θij
[∇θ log p(l)θijv

(l)
j ]. (13)

Proof. Firstly, the gradient of v(l+1)
i to θ can be computed

as follows:

∂v
(l+1)
i

∂θ
= ∇θσW (l)(Evj∼p(l)θij

[v
(l)
j ])

= σW (l)(∇θ
N(vi)∑
k=0

p
(l)
θik
v
(l)
k )

= σW (l)(

N(vi)∑
k=0

∇θp(l)θikv
(l)
k )

= σW (l)(

N(vi)∑
k=0

p
(l)
θik
· ∇θ log p(l)θikv

(l)
k )

= σW (l)(Evj∼p(l)θij
[∇θ log p(l)θijv

(l)
j ]),

where the third equation leverages the logarithm property [37]
of ∇θa = a · ∇θ log a to convert the sum into an expectation
with respect to a.

Secondly, the gradient of L to θ is calculated according to
chain rule as follows:

∇θL =
∂L

∂v
(l+1)
i

∂v
(l+1)
i

∂θ

=
∂L

∂v
(l+1)
i

σW (l)(Evj∼p(l)θij
[∇θ log p(l)θijv

(l)
j ]).

Here we omit the gradient propagation through the acti-
vation function σ for convent presentation, but there is no
difference in the final form. In practice, we sum the gradients
of its sampled k neighbors for an anchor vi to train the
matching model. Therefore, the hidden representations of the
structural semantics for the anchors C can be propagated
through the graph model with our sampling operation.

Time and Space Complexities. The time complexity of this
phase is O(|O∗|)+O(k2·|C|) where k is the sampling number.
The space complexity of this phase is O(k2|C|) where k2 is
the approximate size of the sampled subgraph. With k � |C|,

the time and space complexities of this phase are O(|O∗|+|C|)
and O(|C|), respectively.

Totally, our exploration policy takes O(|O∗||V |+|O∗|+|C|)
and O(|O∗||V | + |C|) time and space complexities, respec-
tively. Since the original GNN requires O(|V ||E|) time com-
plexity to extract neighborhood subgraphs in structure repre-
sentation learning. Adapting it to explore vertices matching
with a given image I , O(|O∗||V ||E|) time complexity will be
required. Our sampling theoretically outperforms the original
GNN in scalability, which will be verified in Section VI-B.

V. CROSS-MODAL REFINEMENT

In this section, we present how to refine entity representa-
tions to break the modality heterogeneity in Section V-A, and
then propose how to learn the matching model based on the
semantics of scenes and sampled subgraphs in Section V-B.

A. Cross-modal Feature Fusion

Taking the sampled subgraphs Gs and an image I with
objects O∗ as inputs, cross-modal feature fusion it to learn
the aggregator A to refine the vertex and object features to
break the modality heterogeneity between Vs and O∗.

As for an image I with objects O∗ and a vertex v with
sampled subgraph S, we first fuse the scene knowledge
entailed in O∗ into the vertices Vs, and then calculate the
representation of v by aggregating the neighbor features to
preserve its structural semantics in S.

Firstly, the scene-aware vertex representation vc(l+1)
i at the

(l+1)-th layer is obtained by assigning different weights to the
objects in O∗ based on a multi-head attention [30] as follows.

v
c(l+1)
i =

1

K

K∑
k=1

∑
oj∈O∗

β
(l+1)
i,j · oj , (14)

β
(l+1)
i,j =

exp(Wvvi ·Wooj)∑
ok∈O∗ exp(Wvvi ·Wook)

.

where K is the number of attention heads. β(l+1)
i,j is a cross-

attention coefficient of oj to vertex vi at the (l + 1)-th
layer that indicates how important oj to the refinement of
vi, and computed by the dot product between vi and oj .
Two weight matrices W

(l+1)
v and W

(l+1)
o are designed as

shared transformations for the vertices of V and objects in
O∗. After the feature fusion, the refined object representations
Z

(l+1)
o = {ov(l+1)

i |i ∈ [1, |O∗|]} can also be similar extracted.
Secondly, the vertex refinement z(l+1)

i is calculated by
aggregating the scene-aware representations vci and the ver-
tices contained in sampled subgraph S to avoid the structure
knowledge of vertex itself will vanish. This is computed by
expending the GNN mechanism in Equations 1-2 as follows:

z
(l+1)
i = λ1v

c(l+1)
i + λ2σ(Wv

(l)
i +

∑
vj∈N(vi)

α
(l+1)
i,j Wv

(l+1)
j ),

(15)
where σ is an activation function, λ1 and λ2 are two scalar for
the sum of scene fusion and structure attention, respectively.



α
(l+1)
i,j is a normalized attention coefficient of vj to vi at the

(l + 1)-th layer, computed as follows:

α
(l+1)
i,j =

exp(sim(vi, vj))∑
vk∈N(vi)

exp(sim(vi, vk))
.

Finally, we can obtain the vertex refinement representations
Z

(l+1)
v = {z(l+1)

i |i ∈ [1, |V |]} for all vertices of V at the
(l + 1)-th layer.

B. Training Processing

Considering that a matching vertex-image pair is defined as
the one with similar objects and vertices as well as the se-
mantics between scenes and structures. Therefore, CrossETR
introduces a vertex-level loss for object-vertex and a structure-
level loss for scene-substructure to guide the training of cross-
modal matching model M.

Vertex-level loss. Like other semantic-driven entity matching
approaches [9], [11], we expect that the matched objects and
vertices have close representations in the feature space during
training. As for a vertex v and a subgraph S ∈ Gs, the vertex-
level matching loss between v and I with respect to S and O∗

is inductively calculated as follows.

Fv(v, I) =
1

|Vs|
∑
vi∈Vs

max
oj∈O∗

sim(vi, oj) (16)

Structure-level loss. To determine whether v and I are
similar in structures, we measure the similarity between the
structural semantic of v and the scene semantic of I . Firstly,
the structural semantic of v is represented by a sequence Tv
serialized by the sampled subgraph S. Some existing graph
serialization methods [3], [10] can be used to create sequence
for v with S. Secondly, the scene semantic of I is regarded
as an image-conditioned text TI generated by the pre-trained
large model FlanT5 [31], which is a decoder to generate text
description for a given image following [38]. Therefore, a
structure-level loss with respect to v and I is measured by
the representations of Tv and TI as Fs(v, I) = sim(Tv, TI),
where sim(·, ·) is the cosine similarity function.

To introduce the two parts into the training process of
CrossETR, we integrate them into a triplet-wise ranking objec-
tives [14] to encourage the matched images and vertices to be
closed and unmatched ones to be separated in the embedding
spaces. During training the similarity between v and I is
computed by F (v, I) = Fv(v, I) + Fs(v, I) and the loss is
measured as follows:

Ls(v, I) =

b∑
i=1

max(0, δ − F (vi, Ii) + F (v′i, Ii)) (17)

where δ is a margin value, b is the size of a batch examples.
(vi, Ii) is a matched pair of image and vertex that has
the highest matching score. (v′i, Ii) is a negative example
generated by randomly sample a vertex from the batch.

TABLE II
DATASET STATISTICS.

Datasets # Vertices # Triplets # Images # Pairs
WN18-IMG [7] 41,105 93,003 70,349 2891M

FB15K-IMG [40] 14,541 310,116 145,944 2122.2M
OpenImages [39] 600 374,768 9,178,275 5506.9M

VI. EXPERIMENT

Using three publicly available datasets, we experimentally
evaluate the proposed method CrossETR by conducting exten-
sive experiments in the following three aspects: (i) the overall
performance of CrossETR in effectiveness and scalability
compared to state-of-the-art baselines; (ii) ablation study for
different modules of CrossETR in terms of effectiveness and
efficiency; and (iii) a case study of multi-modal knowledge
graph integration.

A. Experiment Setting

Datasets. We utilize three publicly available datasets Open-
Images [39], WN18-IMG [7] and FB15K-237-IMG [40]. (i)
OpenImages [39] is a large-scale dataset, which provides a
large number of examples for object bounding boxes and ob-
ject segmentation. It consists of a large subset of Freebase [17]
and Google knowledge graph, and a set of diverse images
including complex scenes containing several objects (8.3 per
image on average) with totally 3,290,070 objects. (ii) WN18-
IMG [7] is an extended dataset of WN18 [18] with 10 images
for each entity, where WN18 is a knowledge graph originally
extracted from WordNet. (iii) FB15K-IMG [40] consists of a
subset of the large-scale knowledge graph Freebase [17] and
a set of images associated with the entities in Freebase, which
totally includes 2,122M entity pairs. It is a popular dataset
in multi-modal knowledge completion. We derive three subset
datasets from this to verify the efficiency and scalability of
our methods namely FB-IMG-1, FB-IMG-2, FB-IMG-3 and
FB-IMG-4, which include 154M (million), 616M, 924M and
1386M entity pairs, respectively. Detailed statistics are shown
in Table II.

Metrics. To evaluate the performances of CrossETR quan-
titatively, we use the following two metrics: (i) Hits@k
(k ∈ {1, 3, 5}) and MRR (Mean Reciprocal Rank) are used
to measure the accuracy of entity matching, where Hits@k
measures the number of correct results within the top-k
predictions. MRR measures the average reciprocal ranks of the

top k results i.e., MRR =
1

n

∑n
i=1 1/ranki. Higher Hits@k

and MRR indicate better performance. (ii) Running time in
hour is used to evaluate the training efficiency on ablation
study and measure the scalability on different data size. The
running time means the average training time of each epoch
in every approach. The processing time of feature extraction
is excluded for all methods to make a fair comparison.

Baseline comparisons. To verify the performance of our
proposed method, we typically compare to two types of
state-of-the-art cross-modal matching approaches for a com-
prehensive evaluation. (1) Dual-based approaches, which di-
rectly measure the distance of cross-modal representations,



as illustrated in Figure 2(a). These consist of two parts: (i)
famous models such as CLIP [12] and ALIGN [41]; and (ii)
unified matching methods perform semantic-driven EM in a
uniform modality, which are naive designed for describing
the necessity of our proposed method. (2) Fusion-based ap-
proaches which map multi-modal data into a common feature
space as described in Figure 2(b), including VisualBERT [42],
ViLBERT [43], IMRAM [14] and TransAE [44] .

Dual-based approaches: Firstly, starting from the unified
matching methods: String matching encodes the matching of
vertices and images as a string semantic matching problem
that measures the similarity between graph sequences [3] and
image captions [31] by using pre-trained language model [29].
Graph matching converts our problem as a semantically sub-
graph matching problem. We first generate the scene graphs
of images based on Faster RCNN [26], and then perform sub-
graph matching [45] on these scene graphs and the knowledge
graph. We relax it to only consider the similarity between
vertices and objects. Secondly, CLIP [12] is to contrastively
learn a transferable language-image pre-training model from
natural language supervision by pairing images with relevant
language descriptions. ALIGN [41] trains large-scale models
using large amounts of noisy text data to scale up vision-
language representation learning for various tasks such as
image classification.

Fusion-based approaches: VisualBERT [42] consists of
a stack of Transformer layers that implicitly align elements
of an input text and regions in an associated input image
with self-attention mechanism. ViLBERT [43] is a pre-trained
visual-language model that processes both visual and textual
inputs in separate streams, and then interacts through co-
attention transformer layers for learning joint representations.
IMRAM [14] utilizes recurrent attention memory to integrate
information from both text and image modalities for cross-
modal image-text retrieval. TransAE [44] combines multi-
modal auto-encoder with TransE to encode the visual and
textual knowledge into the unified representation, where the
hidden layer of the auto-encoder is regarded as entity repre-
sentations in the TransE model.

To make a fair comparison, we modify these model by
formatting sequence graph into texts using some graph serial-
ization methods. For the pre-trained methods, we use public
models to predict the results on test dataset. For the last
two methods, we leverage the source code from the original
repositories to produce the results.

To describe the contributions of different modules, we
design variants to conduct ablation study in the following
aspects. (i) For visual instance merging proposed in Sec-
tion IV-A, there are two variants by removing the merging or
replacing it with the original NMS. (ii) For scene-aware sub-
graph sampling presented in Section IV-B, we derive six vari-
ants: (a) removing sampling from CrossETR; and (b) replacing
it with the state-of-the-art sampling methods: GraghSage [15],
GCN-BS [35], PASS [33], FastGCN [36], where the first four
are vertex-wise sampling methods that use a uniform sampling,
a variance reduced sampling based on multi-armed bandits

and an adaptive gradient-propagated sampling, respectively.
The last is a layer-wise sampling method with independent-
identical-distributions in every layer. For fair comparison, all
methods share the same network structure with two GCN
layer and 64 hidden dimensions. (iii) For training objective
introduced in Section IV-B, there are two variants derived by
removing the structure-level loss Fs and the object-level loss
Fv in CrossETR, respectively.

To describe the application of our cross-modal EM task, we
perform a case study to illustrate the advantage of our methods
in multi-modal knowledge graph integration by comparing
with the following approaches, i.e., RotatE [46], PairRE [47],
MKGformer [7], OTKGE [48], MoSE [49], IMF [50], ANAL-
OGY [51], ComplEx-N3 [52], RSME [8], TransAE [44] as
mentioned in VISTA [53].

Implementation details. We implement our methods in Py-
Torch [54] and Huggingface [55]. Unless particularly spec-
ified, CrossETR is trained using the Adam [56] optimizer
with a learning rate of 0.0001 for all experiments. The three
models BERT [29], SAM [24] and FlanT5 [31] are employed
as the pre-trained language model, segmentation model in
feature extraction stage and image-conditioned text generation
module in refinement stage, respectively. The default sample
size n of neighbors is set to 50. For each layer of the cross-
modal feature fusion module, the hidden size and head number
of cross-attention are set to 128 and 8, respectively. We fix
the projection dimension of text and image to 768 and 512,
respectively. The batch size is set to 32, the number of epochs
is set to 20. All experiments are conducted on a machine
with an Intel Core i9-10900K CPU, a NVIDIA GeForce
RTX3090 GPU with 24GB memory. We report the results of
all competitors in their optimal settings.

B. Experiment Results

Exp-1: Accuracy of entity matching. To demonstrate the
accuracy of our proposed method CrossETR, we compare it
with the eight competitors mentioned above on three public
datasets.

From Table III, we have the following three findings. (1)
Overall, CrossETR mostly outperforms other competitors on
the three datasets, followed by CLIP and IMRAM. There are
average 5.28% (from 34.79% to 40.07%) and 0.065 (from
0.287 to 0.352) improvements on three datasets in Hits@3
and MRR values, respectively. It verifies the superiority of our
framework, especially on the OpenImages data with complex
scenes. (2) As for the dual-based methods, the two naive
modal unification based baselines are poorly effects. This
is reasonable that the structures of vertices and the scenes
of images are destroyed during modal unification, resulting
in the inability to effectively represent their semantics for
matching. On the other hand, the famous dual-based model
CLIP is more competitive with ours than other methods. (3)
As for the fusion-based methods, the accuracy performance is
significantly different from ours since they do not consider the
structure and scene semantics of entities to fuse features.



TABLE III
OVERALL ACCURACY ON DIFFERENT DATASETS.

WN18-IMG OpenImages FB15K-IMG
Methods Hits@1 Hits@3 Hits@5 MRR Hits@1 Hits@3 Hits@5 MRR Hits@1 Hits@3 Hits@5 MRR

String matching 0.34 0.98 1.36 0.017 0.72 1.33 2.47 0.011 1.01 1.42 3.54 0.017
Graph matching 2.58 8.93 18.45 0.079 2.03 4.86 8.21 0.039 2.38 6.05 16.67 0.068

ALIGN [41] 22.69 29.45 32.70 0.237 19.79 22.3 29.7 0.219 24.51 35.23 40.28 0.321
CLIP [12] 27.38 34.17 38.07 0.291 27.83 32.4 38.45 0.283 26.06 37.81 41.91 0.287

VisualBERT [42] 2.39 6.07 9.32 0.195 8.32 15.54 21.32 0.176 21.70 32.40 43.90 0.273
ViLBERT [43] 2.43 7.13 12.46 0.284 12.73 27.29 33.12 0.233 23.30 33.50 45.70 0.268
TransAE [44] 0.53 10.54 20.72 0.075 13.8 16.47 24.92 0.149 19.80 37.60 44.10 0.352
IMRAM [14] 8.75 14.22 23.75 0.124 17.80 22.67 28.32 0.192 24.80 39.61 47.80 0.391

CrossETR 26.72 38.20 45.71 0.328 29.71 36.8 42.43 0.334 27.91 45.21 62.37 0.394

TABLE IV
ABLATION STUDY FOR DIFFERENT COMPONENTS OF CROSSETR.

WN18-IMG OpenImages FB15K-IMG
Methods Hits@1 Hits@5 MRR Time Hits@1 Hits@5 MRR Time Hits@1 Hits@5 MRR Time

CrossETR w/o VIM 25.33 42.01 0.278 4.05 26.36 38.72 0.295 0.59 23.42 53.98 0.251 2.26
CrossETR w/ NMS 25.86 44.28 0.281 3.46 27.68 41.12 0.307 0.32 24.96 57.64 0.323 2.19

w/o Sampling 22.16 38.92 0.249 4.29 26.03 35.49 0.286 0.53 18.29 34.45 0.214 3.83
w/ FastGCN [36] 22.98 38.36 0.231 3.16 26.79 36.16 0.277 0.44 20.24 42.37 0.239 3.27

w/ GraghSage [15] 23.17 40.08 0.238 3.22 26.54 36.10 0.271 0.47 21.98 44.71 0.254 3.19
w/ GCN-BS [35] 23.04 39.77 0.228 3.09 27.91 40.23 0.298 0.38 24.31 47.75 0.287 2.86

w/ PASS [33] 25.32 42.74 0.261 3.26 28.41 40.94 0.312 0.32 24.77 50.39 0.302 2.74
CrossETR w/ Fv 24.36 41.27 0.259 2.76 28.03 39.74 0.281 0.29 25.73 54.48 0.269 1.95
CrossETR w/ Fs 21.38 37.98 0.247 2.39 24.67 35.82 0.259 0.28 23.65 47.98 0.257 1.81
CrossETR (full) 26.72 45.71 0.328 2.71 29.71 42.43 0.334 0.27 27.91 62.37 0.394 1.89

TABLE V
SCALABILITY IN DIFFERENT DATA SIZE OF FB15K-237-IMG.

Data sizes 154M 616M 924M 1386M 2122M
Hits@5 50.73 51.26 54.89 58.02 62.37
MRR 0.267 0.278 0.306 0.364 0.394
Time 0.12 0.56 0.71 1.52 1.89

Exp-2: Scalability in different data size. To investigate
the scalability of our proposed method, we evaluate on the
FB15K-IMG dataset with different scales of 154M, 616M,
924M, 1386M and 2122M vertex-image pairs.

Table V reports the accuracy (via Hits@5 and MRR value)
and training time. We can see that as the data size increases,
CrossETR has higher accuracy, and the training time linearly
increases. This is because: (i) the time complexities of ex-
ploration and refinement stages are both proportional to the
size of entity pairs, as discussed in Section IV-B. (ii) With the
increasing of data sizes during training, the sampling policy
learns how to sample vertices and subgraphs that have the
most relevant structural semantics to the image.

Exp-3: Ablation study. We further conduct ablation study
to verify the matching accuracy and training efficiency of
different modules in CrossETR. We compare CrossETR with
two visual instance merging (VIM) designs (i.e., w/o VIM and
w/ NMS), five sampling variants (i.e., w/o sampling and w/
four methods mentioned above) and two loss function modifies
(i.e., w Fv and w Fs).

Overall, we have the following findings from Table IV.
(1) Compared with other variants, CrossETR requires less
training time but achieves higher accuracy. (2) CrossETR
outperforms other variants on matching accuracy in the three
datasets, followed by CrossETR w/ NMS and CrossETR w/o
Fs. They are average 2.49% (from 47.68% to 50.17%) and

5.01% (from 45.16% to 50.17%) improvements in Hits@3
value, and average 0.05 (from 0.303 to 0.352) and 0.083 (from
0.269 to 0.352) improvements in MRR value on three datasets,
respectively. (3) CrossETR takes almost the least training time
(following CrossETR w/o Fs), with training time about 1.5
times to the worst variant on the FB15K-IMG and WN18-
IMG datasets, and about 2 times on the OpenImages.

The effect of visual instance merging. As shown in the 1-st
and 2-nd rows, CrossETR w/ NMS has more close accuracy
but takes too much time on all different datasets compared
to CrossETR. It is because NMS does not sufficiently reduce
instance redundancy and overlapping instances introduce ex-
cessive computations to further reduce training speed. This
verifies the advantage of our proposed VIM.

The effect of subgraph sampling. From the 3-rd to 7-th
rows, we can see that (i) CrossETR w/o sampling has the
worst performance in accuracy and training time, which indi-
cates that our sampling operation can improve the training
efficiency, as discussed in Section IV-B. (ii) CrossETR w/
PASS has more close accuracy but takes too much time on all
different datasets compared to CrossETR. PASS samples graph
structures that are most informative to training objectives in an
importance-based manner. However, CrossETR takes clearly
less training time than CrossETR w/ PASS because the vertices
that have most likely related image are early extracted in
anchor selection stage.

The effect of loss function. As shown the 8-th and 9-th
rows, we have the following two findings: (i) CrossETR w/ Fv
has more closer accuracy than CrossETR w/ Fs to CrossETR
because object-level loss considers the semantic similarity
between vertices and objects; (ii) CrossETR w/ Fs takes more
less training time followed by CrossETR and CrossETR w/ Fv .



TABLE VI
PERFORMANCE OF MULTI-MODAL KNOWLEDGE GRAPH INTEGRATION.

Methods Hits@1 Hits@3 Hits@10 MRR
RotatE [46] 21.83 34.33 49.32 0.310
PairRE [47] 23.99 36.75 51.93 0.333

MKGformer [7] 22.78 33.56 47.40 0.310
OTKGE [48] 25.11 37.39 51.92 0.341
MoSE [49] 23.84 35.32 49.65 0.325
IMF [50] 27.35 40.40 55.73 0.368

ANALOGY [51] 15.16 26.77 43.01 0.242
ComplEx-N3 [52] 25.84 38.47 53.91 0.351

RSME [8] 24.2 34.43 46.70 0.345
TransAE [44] 14.32 22.67 34.59 0.212
VISTA [53] 26.73 41.58 57.18 0.381
CrossETR 27.91 45.21 62.37 0.394

These verify the advantage of our proposed structure-level and
object-level losses in CrossETR.

Exp-4: Case study. Table VI presents the advantage of
our cross-modal EM over multi-modal knowledge graph in-
tegration on the FB15K-237-IMG dataset. We can see that
our proposed methods outperform other state-of-the-art ap-
proaches. For example, CrossETR improves 1.18%, 5.19% and
0.013 in Hits@1, Hits@10 and MRR values over the excellent
VISTA, respectively. This demonstrates that cross-modal EM
can benefit various downstream tasks such as multi-modal
knowledge graph integration.

VII. RELATED WORK

We categorize the related work as follows.
Heterogeneous Entity Matching. Entity Matching (EM)

is one of the fundamental and significant tasks in data man-
agement, and has been widely studied in the data manage-
ment and machine learning communities. Heterogeneous entity
matching is to link those entities with different data formats.
JedAI [57] considers RDF and CSV by first converting entities
to a set of name-value pairs, and then checking their labels and
attributes. PathSim [58] extends SimRank to measure simi-
larity of entities via topological matching under a meta path
framework. MAGNN [59] combines graph neural network
with meta-paths to extract embeddings and measure vertex
similarity. Generalized EM [10], [60] usually converts different
sources into a unify data format. TDmatch [60] performs
relational table and text document matching in an unsupervised
learning way via graph creation and random walk. HER [61]
present a parametric simulation method for linking entities
across relations and graphs. It first converts heterogeneous data
to a canonical graph by direct mapping, and then links entities
based on inductively topology matching. Subsequently, [3]
presents a GNN-based method to integrate semantically related
relational tuples, JSON keys and graph vertices, which first
encodes various data into canonical graphs and then represents
entities based on their attributes and structure representations.
Machamp [62] benchmarks the GEM for different types such
as structured tables, semi-structured, or textual data. Recently,
representation learning technology has been used widely in
EM task and achieved promising performance [9], [10]. For
example, PromptEM [10] unifies heterogeneous data as textual
sequences and designs specific prompt-tuning to transform

GEM as a masked language task to predict target words in
a low-resource setting.

Unlike previous works, we study entity matching across
unstructured images and semi-structured graph not only re-
lational data. Considering that the scene semantics of images
and the structural semantics of graph, we perform semantic-
driven entity matching across images and vertices by parsing
object-vertex and scene-structure semantics. It is different from
existing entity matching in that it requires address cross-modal
candidate exploration and feature refinement.

Cross-modal Matching. Cross-modal matching approaches
mostly are designed for visual and textual data to retrieve a
set of related texts or images from another modalities. The
key is to learn a comprehensive and unified representation
for various data with different modalities. It can be typically
divided into two categories: dual encoder methods that directly
measure the distances of cross-modal representations such as
CLIP [12], ALIGN [41], and fusion encoder methods that map
these data into a common space via attention mechanism or
generative adversarial network such as VisualBERT [42], ViL-
BERT [43], IMRAM [14]. Recently, multi-modal large models
have received widespread attention and large-scale pre-trained
encoders, e.g., CLIP [12], ALIGN [41] and Flamingo [63]
have shown their superiority in cross-modal retrieval tasks.

These approaches work well for texts and images, but
directly extending them to our task has limited by the modality
heterogeneity between graph and image data. Some works
attempt to integrate graph and image, such as multi-modal
knowledge graph completion [7], which mainly focuses on link
prediction, relation extraction and entity recognition. These are
orthogonal to our work. We aims to perform cross-modal entity
matching by considering the scene semantics of images and
the structural semantics of graph.

VIII. CONCLUSION

In this paper, we address the problem of entity matching
across images and graph. To alleviate the issue of training
efficiency in current semantically matching solutions, we pro-
pose a novel semantic-driven framework, namely CrossETR.
CrossETR follows an exploration-then-refinement paradigm
that first explores candidates based on entity correlations and
then performs cross-modal refinement. In exploration stage,
it aims to boost the training efficiency through candidate
exploration policy. It reduces redundant objects of images by
early filtering out irrelevant candidate pairs during training and
captures structural semantics by sampling the most informative
neighboring subgraphs. In the refinement stage, it bridges
the modal heterogeneity via the cross-modal feature fusion,
and refines entity associations in an unsupervised training
mechanism to address the semantic-driven entity matching.
Extensive experimental evaluation on three real-world bench-
marks verify the superiority of our proposed CrossETR in
terms of effectiveness and efficiency compared with some
state-of-the-art approaches. In the feature, we plan to extend
our work to support more data management tasks such as data
cleaning in a general framework.
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