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Abstract—Entity matching (EM) aims to identify equivalent
entities across different data sources. Current EM assumes that
these data are either homogeneous with aligned schema or
heterogeneous but can be transformed into a unified modality.
There is an urgent need to consider the entities with different
modalities to support practical application scenarios over data
lakes such as multi-modal data integration and recommendation
system. It is impractical to unify their data modalities. To support
EM on heterogeneous entity with different data formats and
modalities, we propose cross-modal entity matching in this paper.
Inspired by the promising performance achieved by recent pre-
trained models, we perform cross-modal entity matching by
prompt-tuning pre-trained multi-modal large models (MMLMs)
in an unsupervised manner. However, the prompt-tuning faces
three challenging issues: (i) objective gap between pre-training
and tuning of MMLMs; (ii) data modality gap between the inputs
of MMLMs and our matching task; (iii) prompt efficiency on
large data. Therefore, we firstly propose a novel EM framework
(namely, CrossEM) that addresses cross-modal EM as a matching
probability problem with specific prompt-tuning. Secondly, two
alternative prompt generation methods are designed to extract
structural knowledge from heterogeneous data to overcome the
data modality gap with pre-trained models. Thirdly, we present
an improved matching framework (namely, CrossEM+) to boost
the prompt efficiency on large heterogeneous data. Experimental
evaluations verify that our methods significantly outperform the
state-of-the-art approaches on three benchmarks. Furthermore,
our case study highlights the considerable potential of cross-
modal EM in improving the performance of downstream tasks,
thereby benefitting a wider range of research areas.

I. INTRODUCTION

Entity Matching (EM) aims to identify whether two entities
from different data sources refer to the same real-world entity,
which is one of the fundamental and significant tasks in data
management [1], [2]. Most existing solutions assume that
two sources are either homogeneous with aligned schema or
heterogeneous but can be transformed into a unified format.
For example, [3], [4] study EM over relational tables with the
aligned schema, and [5], [6] address EM across two knowledge
graphs with similar structures. [7], [8], [9] perform EM over
relational, semi-structured and textual data, while these can be
unified into textual modality. However, due to the increasing
data diversity in data repositories such as data lakes [10], there
is an urgent need to generalize the entity matching problem
to more practical scenarios [7]. Taking animal entities as an
example, the attribute information of animals is usually stored
in structured relational tables or semi-structured graphs, while
their visual characteristics are depicted through unstructured
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Fig. 1. Example of cross-modal entity matching.

images or videos. Figure 1(a) shows two types of birds in
colors, wings, origins and foods. Figures 1(b) and (c) illustrate
a portion of knowledge graph and images related to animals,
respectively. It is impractical to unify the modalities of these
data because they have different data formats and visual data
in the form of pixel matrix is schemaless. On the other hand,
it is difficult to represent these various data into a common
feature space, which requires the introduction of expensive
representation learning models in the preprocessing step.

In this paper, we study cross-modal entity matching that
attempts to match cross-modal entities to support more prac-
tical application scenarios over data lake such as multi-modal
knowledge graph creation [6], [11], [12] and recommendation
system [13]. Some works [7], [8], [9], [10] study generalized
entity matching (GEM) to match entities in heterogeneous
data sources. However, they cannot support the multi-modal
scenarios mentioned above due to the modality differences
(e.g., visual and textual). Recent works [4], [6], [7] have
achieved promising results for EM by leveraging the power of
pre-trained large models (LMs) and prompt-tuning paradigm.
Nevertheless, they do not directly support cross-modal EM due
to the need for high-quality labeled examples [7] or limitations
in data modality [4], [6]. To the best of our knowledge,
cross-modal EM considering multiple heterogeneous data with
different formats and modalities such as graph and images
remains unexplored.

To overcome the modality differences and label require-
ments, pre-trained multi-modal large model (MMLM) is a



good choice. MMLMs recently have shown impressive per-
formance in various multi-modal understanding tasks, such
as visual question answering [14] and text-to-vision genera-
tion [15]. These MMLMs are usually trained with large-scale
natural language and visual data, and enable to understand and
recognize user’s intention well. Inspired by this, we attempt to
transfer the multi-modal understanding capabilities of MMLM
to address the problem of cross-modal entity matching. The
challenges mainly include the following three aspects.

Challenge 1: How to tune a pre-trained MMLM for cross-
modal EM in an unsupervised manner (objective gap)? Al-
though fine-tuning and prompt-tuning techniques [16] have
achieved success on matching problem [7], there is a signif-
icant objective gap between the pre-training and tuning on
downstream tasks. Pre-trained MMLMs are usually trained
by computing similarity or learning a common feature space.
However, existing tune-based EM methods [4], [7] treat EM
as a classification problem and address it by adding additional
classification layers, which exploit a different objective from
the pre-trained model. This objective gap affects the transfer
and adaptation of MMLMs to cross-modal EM tasks.

Challenge 2: How to effectively prompt rich knowledge in
heterogeneous data to a pre-trained MMLM (data modality
gap)? Most pre-trained MMLMs are usually learned for vision
and language matching tasks [17], [18], [19], there is a modal-
ity gap between the inputs of pre-trained models (unstructured
textual data) and the heterogeneous data (semi-structured
graph and structured tables illustrated in Figure 1). Some
prompt-based methods first serialize entities with different
formats into texts and then tune pre-trained language models
to perform EM as a sequence classification task [4], [7]. This
restricts the expression of structural knowledge entailed in
graph and relational tables, and hinders the effectiveness of
prompt-tuning MMLMs to cross-modal EM tasks.

Challenge 3: How to efficiently perform cross-modal EM
on large heterogeneous data (prompt efficiency)? Prompt-
tuning MMLMs to perform cross-modal EM usually requires
consuming prohibitive GPU resources. To adapt EM methods
to large-scale data, a prevalent approach is to split the EM
dataset into multiple mini-batches and train the samples in
each mini-batch independently [4], [5]. However, this destroys
the structures and associations of entities, thereby adversely
affects the matching results. Partitioning heterogeneous data to
preserve entity associations and improve the prompt efficiency
on large data is still a challenging endeavor.

To tackle the above three challenges, we propose a new
prompt-tuning framework for cross-modal entity matching,
namely CrossEM. In order to bridge the objective gap between
pre-trained MMLM and cross-modal EM task (for C1), we
address cross-modal EM as a matching probability problem
with specific prompt-tuning, which has the same objective as
MMLM. To break the modality gap between structured data
and the inputs of MMLM (for C2), we propose structure-aware
prompt generation to extract structural knowledge from het-
erogeneous data. To avoid expensive prompt-tuning on large
data (for C3), we develop an improved matching framework

CrossEM+ by considering three efficiency issues, i.e., training
scalability with huge candidate pairs, negative sampling in
contrastive learning and effectiveness of generated prompts.
Our contributions are summarized as follows:

(1) Prompt-based tuning framework. This is the first cross-
modal EM framework that prompt-tunes pre-trained MMLMs
to align entities from different modalities. As data diversity
increases, this problem will become more important in more
practical scenarios. Details will be shown in Section II.

(2) Structure-aware prompt generation. Two alternative
graph prompting methods including discrete hard-encoding
prompt and continuous soft prompt are designed for adapting
pre-trained MMLMs to our cross-modal EM task. The former
requires carefully design based on prior data and task knowl-
edge, while the later is learned from the feedback of model on
the task objective. One can flexibility select them depending
on the realistic applications, introduced in Section III.

(3) Improved matching framework. We propose an im-
proved framework CrossEM+ to scale up cross-modal EM
task on large heterogeneous data with the help of three
optimizations: mini-batch generation, negative sampling and
prompt constraint. CrossEM+ improves the training efficiency
and the matching accuracy over large data in a mini-batch
training manner. Details will be presented in Section IV.

(4) Extensive experiments. We conduct comprehensive ex-
perimental evaluation on cross-modal EM task compared
with some state-of-the-art approaches. Extensive experimental
results verify the superiority of our proposed CrossEM and
CrossEM+ in terms of effectiveness and efficiency. Our case
study indicates that cross-modal EM can significantly improve
the accuracy of multi-modal knowledge graph integration.
Details will be illustrated in Section V.

II. PROBLEM AND FRAMEWORK OVERVIEW

A. Problem Formulation

Data lake. A data lake collects a set of heterogeneous data
sources including structured (e.g., relational tables, Excels,
etc.), semi-structured (e.g., Xml, Json, graph, etc.) and un-
structured data (e.g., images, videos, texts, etc.).

Graph. We consider a directed graph defined as G =
(V,E, L), where (a) V is a finite set of vertices; (b) E ⊆ V ×V
is a set of edges; (c) L is the set of all unique words contained
in the labels of edges and vertices; (d) L(v) and L(e) represent
the labels of vertex v ∈ V and edge e ∈ E, respectively.

Relational table. A relational table is denoted by a set
of tuples T associated with a set of attributes. A relational
database schema includes a collection of relational tables.

Json. A Json document is a collection of Json objects in the
forms of key-value pairs.

During data preprocessing of the data lake, these structured
and semi-structured data can be converted into graph in data
mapping by treating the tuples of tables and the keys of Jsons
as entities, the foreign keys of tables and the references of
Jsons as relationships [10], [20], [21]. A graph is formulated
by encoding entities into vertices and relationships as edges.
For unstructured texts, some sentence parsing models based



on language structures [22], [23] can be used to construct a
graph for named entities and their syntactic relationships.

Images. An image I captures the scene that includes various
elements contributing to the overall understanding or inter-
pretation of the image, such as objects, people, landscapes,
backgrounds, etc. Multimedia data such as videos, can be
divided into a set of images based on frames [24], [25].

Entity Matching. Entity matching [11] aims to determine
whether two entities refer to the same real-world entity,
which is regarded as a pairwise matching problem where two
matched entities are called a matching pair. Embedding-based
methods [4], [7] usually generate a vector representation for
each entity so that related entities are close in the vector space.
We formally define them as follows.

Definition 1: (Matching Pair) Given a data entity x,
an embedding model M takes x as input and outputs its
embedding vector M(x). For each entity pair (x1, x2), we use
a given similarity function sim to measure their embedding
similarity, sim(x1, x2) is large if and only if x1 and x2 are a
matching pair, where sim is usually a cosine function.

In this paper, we consider entity matching task over data
lake D. Using the above mentioned data mapping, structured
and semi-structured data can be encoded as graph. Therefore,
we can define our cross-modal entity matching problem based
on graph and images, which is formulated as follows.

Definition 2: (Cross-modal Entity Matching) Given a graph
data G = (V,E, L) and an image repository I = {Ii}1≤i≤N
with N images, cross-modal entity matching is to find all
matching pairs S between the vertices of V and the images
in I such that:

S = {(xi, xj)|xi ⇔ xj , xi ∈ V, xj ∈ I}, (1)

where ⇔ denotes the equivalent entities in the real world.
(xi, xj) is a matching pair calculated by the similarity between
their embeddings M(xi) and M(xj).

We do not assume a one-to-one mapping across two data
sources [5], but mainly focus on whether two entities match
or not between V and I [4]. For each source entity xi, the
target entity xj is ranked according to their semantic similarity
scores. The higher score indicates the more likelihood that xi
and xj form a matching pair.

According to the data mapping, the left source entity may
be a vertex of graphs, a tuple of tables or a key of Json objects,
and the right target entity is an image entity. Due to the success
of generalized entity matching such as Sudowoodo [4] and
PromptEM [7], we no longer focus on the entity matching
between graphs, tables and Json objects, but only on those
entities with different modalities such as graph and image.

Example 1: As shown in Figures 1(b) and 1(c), v1 and I1
are a matching pair in our cross-modal EM setting, which both
depict the entity “laysan albatross” but in different modalities.
Besides, the tuple t1 shown in Figure 1(a) also forms a
matching pair with I1 by treating t1 as a graph [21], which
illustrates “laysan albatross” with several characteristics such
as “white color” and “long wings”.

B. Prompt Tuning Large Models

In this paper, we aim to effectively build pairwise matching
model to support our cross-modal EM in an unsupervised man-
ner. Multi-modal large models (MMLMs) such as CLIP [17]
and ALIGN [18], have recently shown their superiority in
cross-modal retrieval for texts and images [19], [26], [27].

Contrastive Language-Image Pre-training (CLIP). CLIP is
trained on large scale of multi-modal data and captures implicit
correspondings between texts and images using rich multi-
modal knowledge in a self-supervised manner [17]. CLIP is
built in two encoders where one for images and another for
texts. The image encoder is used to transform an image into a
feature vector via either a CNN model such as ResNet [28], or
a vision transformer such as ViT [29]. The text encoder takes
as input a sequence of word tokens and produces a vectorized
representation in Transformer architecture [30]. CLIP adopts
a contrastive loss to learn a joint embedding space for the
two modalities. Specifically, it minimizes the distance between
similar pairs and maximizes those of dissimilar pairs.

Contrastive Loss. Assume that Xp and Xn are positive
and negative example pairs, respectively. The contrastive loss
maximizes the similarity of (xi, xj) ∈ Xp in the numerator
and minimizes the similarity values between xi and other
elements in the denominator. Let N = N1 ×N2 be the batch
size, N1 and N2 are numbers of vertices and images within a
batch. The sizes of Xp and Xn are N1 and N1 × (N2 − 1),
respectively. Therefore, the contrastive loss can be computed
by averaging all positive pairs as follows.

Lcon = − 1

2N1

∑
(xi,xj)∈Xp

[l(xi, xj) + l(xj , xi)], (2)

l(xi, xj) = − log
exp(sim(xi, xj))/τ∑

(xi,xk)∈Xn
exp(sim(xi, xk))/τ

. (3)

where τ is a temperature hyper-parameter in the range (0, 1].
Generally, Xp is collected from the pairs with top similarity,
and Xn is the remaining pairs within the same batch.

Prompt-based Tuning. Leveraging the transfer ability of
CLIP, we can first define a baseline matching model that
predicts the matching probability between two entities via
prompt tuning the CLIP on a downstream task-specific data
set [16]. For each vertex v in V , a naive prompt tuning function
Pro is used to generate a prompt Pro(v) with a specific text
template, such as “A photo of [MASK]” where “[MASK]” is
a placeholder of vertex labels in G. For instance, “A photo of
laysan albatross”.

To determine whether a vertex v ∈ V and an image I ∈ I
form a matching pair, the baseline first generates a textual
prompt Pro(v) for v and then feeds it into the text encoder
MT of CLIP. Meanwhile, I is fed into the image encoder MI

of CLIP. Subsequently, the matching probability of v and I is
computed as follows:

p(v, I) =
exp(τ · < MT (Pro(v)),MI(I)) >∑

Ii∈I exp(τ · < MT (Pro(v)),MI(Ii)) >
, (4)
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Fig. 2. Overall architecture of prompt-tuning framework CrossEM.

where < ·, · > denote the cosine similarity function and τ is
a temperature hyper-parameter in range of (0, 1].

Since the CLIP is pre-trained to gain semantic understand-
ing capability for visual and textual data, it is expected that
the CLIP can be transferred to perform cross-modal EM over
graph data and images in an unsupervised prompting manner.
The advantage of prompt tuning over fine-tuning is that it can
quickly adapt to new tasks, has more efficiently computing
ability and lower overfitting risk [16].

C. Framework Overview

The baseline prompt-tuning approach mentioned above
works reasonably well, but it is sub-optimal for our cross-
modal EM task. The main reason is that the CLIP [17] has
pre-trained to capture the similarity between textual items and
images. Due to the schema heterogeneity of vertices in the
data lake, vertex labels (e.g., animal ids) in the naive prompt
Pro are too simple to adequately represent the semantics of
vertices. Without tuning for CLIP, it cannot perceive the vertex
semantics, further affecting the quality of EM results.

Our framework CrossEM aims at prompt-tuning the pre-
trained CLIP model to address the cross-modal EM problem.
We present CrossEM by introducing the structural knowledge
of vertices in the graph, where the image encoder MI and the
contrastive loss in the CLIP are frozen.

The main components of CrossEM are summarized in
Figure 2 to provide an overview, and details are illustrated
in Algorithm 1. Taking a heterogeneous graph G and a target
image set I as inputs, CrossEM performs EM cross G and I
to return matching pairs S. For each pair of vertex and image
(v, I), a prompt for v is created by summarizing its associated
structural knowledge via prompt generation (line 5), and then
fed into the text encoder to obtain vector representation (line
6). At the same time, I is represented by leveraging the image
encoder MI (line 7). Subsequently, contrastive learning and
Equation 4 are used to decide whether they are a matching
pair (lines 8-10). Finally, all matching pairs are computed and
returned by the trained matching model M . To adapt different
application requirements, we design two alternative prompt
generation mechanisms, detailed in Section III.

Furthermore, consider the large and heterogeneous multi-
modal data, CrossEM faces huge challenges in terms of
training speed and GPU memory occupation. To improve the
prompt efficiency of CrossEM and the quality of matching
set, we design three optimizations to propose an improved
matching framework (namely, CrossEM+) in Section IV.

Algorithm 1: CrossEM
Input: A graph G = (V,E, L), a set of images I, a

pre-trained CLIP model with text encoder MT and
image encoder MI , number of training epoches n

Output: A prompt-tuning model M
1 S ← ∅;
2 for epoch from 1 to n do
3 Randomly split entity pairs into mini-batches B;
4 for Bi = (Vi, Ii) ∈ B do
5 Pro(Vi)← {Pro(vj)|vj ∈ Vi};
6 Xv ←MT (Pro(Vi));
7 XI ←MI(Ii);
8 P ← {p(v, I)|v ∈ Vi, I ∈ Ii};
9 L← Lcon(Xv, XI , P );

10 M ← back-forward(Pro, L);

11 return M ;

Taking inputs G and I, CrossEM+ first introduces mini-
batch generation (in Section IV-A) to block entity pairs
and increase entity locality, so that most entities can find
their associations within the same mini-batch and unrelated
entities can be pruned during training (for line 3). By doing
this, CrossEM+ expects that the training efficiency on large-
scale data can be improved in a mini-batch training manner.
And then, negative sampling (in Section IV-B) samples a set
of negative entity pairs to enhance the contrastive learning
ability of CLIP by considering the neighbors of vertices and
the local information of images (for line 8). During prompt
learning, an orthogonal prompt constraint (in Section IV-C) is
introduced for vertices to boost the quality of prompt creation
by considering the orthogonality of prompts in a mini-batch
(for lines 9-10). Finally, we can obtain the set of matching
pairs based on the pre-trained contrastive model.

III. PROMPT GENERATION

In this section, we detail how to generate a prompt for each
vertex of G to tune the text encoder of CLIP. We first introduce
structure-aware prompt in Section III-A and then present two
alternative prompt functions in Sections III-B and III-C.

A. Structure-aware Prompt

Instead of exclusively using vertex labels as the baseline
prompt mentioned in Section II-B, we propose structure-
aware prompt generation to improve the prompt quality for
each vertex. For example, the labels “laysan albatross” and
“white” of vertices v1 and v2 represent the animal name and
attribute, respectively. They cannot completely capture the
entity information of “laysan albatross”, such as colors and
wings. Motivated by that, we generate prompts for vertices by
summarizing their expressive neighborhood information.

We give the general mathematical definition of structure-
aware prompting function as below.

Definition 3: (Structure-aware prompting function) A
prompting function is used to encode a prompt for each vertex,
defined by fpro. For each v ∈ V and its associated neighboring
subgraph, the prompt is denoted by fpro(v).
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Fig. 3. Example of the hard prompt in CrossEM.

Here d-hop subgraph is considered for the vertices in G.
Specifically, for each vertex v ∈ V and an integer d, the d-
hop subgraph of v is denoted by d(v) = (Vd, Ed), which is
induced by the vertices Vd within d hops of v, and the edge
set Ed consists of all edges with two endpoints in Vd.

As discussed in early works [6], [31], choosing an appropri-
ate prompting function has great impacts on the performance
of downstream task. We design two alternative graph prompt-
ing methods including discrete hard-encoding prompt and
continuous soft prompt, which separately correspond to two
different work mechanisms of sequence-based text encoder
and feature-based text encoder shown in Figure 4 and will be
detailed later.

B. Hard-encoding Prompt

The key idea of hard-encoding prompt is to first extract the
subgraph for each vertex based on graph traversal algorithms,
and then format it as a textual template based on a pre-defined
concatenate operation.

Specifically, for a vertex v and its d-hop subgraph d(v) =
(Vd, Ed), the hard-encoding prompt is designed by concatenat-
ing its d-hop neighbors and relationships. The hard-encoding
prompt of v is defined by function fdpro(v) as follows:

fhpro(v) = Concat(S, T ), (5)

where S is a set of neighboring sub-prompts for all neighbors
of v in Vd and T is a set of pre-defined tokens. Concat is
a concatenate operation for all sub-prompts in S though the
specific tokens of T . Each sub-prompt si ∈ S, i = {1, ..., l}
is induced by the direct neighbors of vi based on the breadth
first search algorithm, where l is the number of neighbors of
v within Vd. The following illustrates a detailed example.

Example 2: Considering the vertex v1 and its d-hop
subgraph represented by d(v1) = (Vd, Ed). Figure 3 shows
the induction process of fdpro(v1) for v1 based on d(v1). The
blue dashed lines indicate the directions where the neighboring
sub-prompts are inducted toward v1. The red dashed cycle
examples a sub-prompt associated with v4, i.e., s4 = “long-
wings has wing color in grey”. fhpro(v1) is denoted as “Laysan
Albatross has crown color in white, has under tail color in
black, has wing shape in long-wings, and long-wings has wing
color in grey”. Here S = {s1, s4} and T = {“in”, “and”}, it
is formulated by concatenating S with the tokens in T .

Sequence-based text encoder. Figure 4(a) illustrates the
workflow of the text encoder taking hard prompts as inputs.
After textual prompt is generated for each v, the process are
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Fig. 4. Workflow of text encoder with two different prompts. The orange
zones represent (a) the discrete hard prompts and (b) the continuous soft
prompts. The blue zones are the original text encoder.

divided into the following three steps: 1) the prompt is first se-
rialized as {[CLS], fhpro(v), [SEP]} where [CLS] and [SEP] are
special tokens originally designed in [32], which are used to
mark the beginning and end of the sequence; 2) The sequence
is converted as a set of tokens {[CLS], t0, t1, ..., tn, [SEP]}
in a tokenizer; 3) The original text encoder MT extracts
token embeddings {h([CLS]), h(t0), h(t1), ..., h([SEP])} and
finally outputs the head projection of h([CLS]) as the encoded
sequence-level vertex embedding hs(v) of v. This embedding
represents the sequence as a whole and can be compared with
image embeddings extracted from MI to perform our task, as
shown in Section II-B.

Discussion. Though the hard-encoding prompt function fhpro
is often simple and effective for prompting MT , there are
still three drawbacks that need to be addressed. (1) The hard-
encoding prompt template needs to be carefully designed
for different graph structures and even heterogeneous data
entities. (2) MT is initially trained on input tokens with
a maximum length of 77, which means that some token-
level features in fhpro will be truncated, thereby potentially
losing important structural information of entities to harm
the matching performance. (3) The hard-encoding prompt is
essentially a serialization-like approach, and the concatenation
order of sub-prompts is also an important factor affecting the
representations of vertex semantics.

C. Soft Prompt

To release these limitations mentioned above, we present
soft prompt to generate continuous prompt for each vertex by
summarizing its structural information into a feature vector.
And then, the prompt is used to incorporate as part of the
input of text encoder.

As for the vertex v, the soft prompt is extracted by aggre-
gating its d-hop neighbors. The soft prompt of v is defined by
function fspro(v) as follows:

fspro(v) = α · h(v) + (1− α)
∑

vj∈N(vi)

h(vj), (6)



where α is the aggregation weight and h(v) is the representa-
tion of v. Benefit from graph representation methods such as
GraphSage [33] and GNN [34], the structural feature of vertex
h(v) is captured by aggregating information of its neighbors.
We initialize each embedding by utilizing pre-trained language
models such as BERT [32] and Ro-BERTa [35].

Feature-based text encoder. Figure 4(b) depicts the work-
flow of text encoder taking soft prompts as a part of inputs.
After structural prompt feature fspro is generated for each v, we
modify the first several layers of the original text encoder MT

to take the label tokens l of vertices and fspro as inputs. For each
v ∈ V , this process consists of the following three steps: 1) to
introduce textual information of vertices, MT first encodes its
label lv as token positional embedding h(lv), which is obtained
by adding the special token [CLS] in the beginning of lv; 2)
h(lv) is concatenated with the structural feature embedding
fspro(v) to form the input hl(v) of the Transformers in MT ; 3)
the output hf (v) of the last hidden layer in the Transformer
is treated as the feature-level vertex embedding of v.

Specifically, the concatenation of token positional embed-
ding h(lv) and the structural feature embedding fspro(v) is
formulated as follows.

hl(v) = ReLU · (W · (h(lv)⊕ fspro(v))), (7)

where ⊕ and ReLU are a concatenate operation and an
activation function, respectively. W ∈ R|V |×(dl+dv) is a
weight matrix where dl and dv are the dimensions of textual
and structural embeddings. Therefore, the input shape of the
transformer in MT is extended from the original dl to (dl+dv).

Discussion. Our proposed CrossEM essentially computes
the candidate pairs of vertices and images one by one. As
discussed in [36], current entity matching methods [4], [5] face
efficiency issues when dealing with tens of thousands or even
millions of entities. Especially, the multi-modal data processed
in CrossEM is larger in magnitude and more heterogeneous.
The time complexity of training CrossEM (when using soft
prompt) with m epochs is m|I||V |(|Vd| + |Ed|), where |Vd|
and |Ed| are the average number of vertices and edges in d-hop
subgraphs for vertices in G. CrossEM faces huge challenges
to the training efficiency and GPU memory occupation when
processing huge graph (e.g., Freebase [37]) and images (e.g.,
ImageNet [38]) in real-world data lake.

IV. IMPROVED MATCHING FRAMEWORK

To improve the training efficiency of CrossEM and the
quality of matching set, we design three optimizations by
(1) introducing data preprocessing to improve the training
efficiency for huge candidate pairs in data lake; (2) negative
sampling to collect usefully distinctive pairs for contrastive
learning; and (3) designing prompt constrains to create more
effective prompts for vertices during the soft prompt learning.

For (1), we propose a task-specific mini-batch generation
technique to increase entity locality so that most entities
can find their associations within the same mini-batch. The
motivation is to improve the accuracy of entity matching and
the training efficiency on large data in a mini-batch training

manner. For (2), we present a negative sampling method to
sample a set of negative pairs by considering the neighbors
of vertices and local information of images. We expect that
the negative samples becomes more difficult to distinguish,
thus forcing the contrastive representation model to learn more
meaningful features and have stronger discriminant ability.
For (3), we introduce an orthogonal prompt constraint for
soft prompt generation to render the prompts generated for
different vertices as possible as irrelevant with each other.

Figure 5 summarizes the main components of the improved
matching framework CrossEM+ to provide an overview. It
takes as inputs G and I, and performs cross-modal EM in
the following four steps. (1) In the mini-batch generation, the
candidate pairs of vertices in V and images in I are divided
into some data partitions by data preprpcessing. Details in
Section IV-A. (2) In the negative sampling, for each partition
(Vi, Ii), a set of images I′i that have similar local information
with the neighbors of vertices in Vi while are distinct from Vi
are sampled, as presented in Section IV-B. (3) During prompt
learning in a mini-batch manner, the orthogonal constraint
is introduced for vertices in Vi and backward propagates to
advance the learning of soft prompt generation, as introduced
in Section IV-C. (4) We finally obtain the set of matching pairs
based on the frozen image encoder and contrastive model.

A. Mini-batch Generation

Our mini-batch generation approach aims at: (i) splitting a
large-scale candidate pairs of V and I into K partitions; and
(ii) leading every vertex entity and its potentially associated
images to appear in the same mini-batch.

Motivation. The local features of entities contain a lot of
specific characteristics that benefits from identifying and repre-
senting entities, such as patches of images and the neighbors
of vertices, which we call properties of entities. Intuitively,
candidate pairs with more semantically close properties are
more likely to be similar. For instance, the vertex v1 and the
image I1 shown in Figures 1(b) and 1(c) separately depict the
“laysan albatross” entity in two modalities. By considering the
1-hop neighbors of v1, we can get the property set of v1 as
P (v1) = {v2, v3, v4}. From the top of Figure 6(a), we obtain
the property set of I1 as P (I1) = {c11, ..., c1p}. The image I2
shown in the bottom of Figure 6(a) illustrates a “woodpecker”
entity and has properties P (I2) = {c21, ..., c2p}. Compared with
P (I2), P (I1) has more patches close to the items of P (v1),
such as “white crown” (denoted by v2 in P (v1) and c11 in
P (I1)) and “black tail” (denoted by v3 in P (v1) and c1p in
P (I1)). In this way, I1 is more likely than I2 to be partitioned
into the same mini-batch as v1.

Main idea. To generate mini-batches for improving the effi-
ciency of prompt training over V and I, we present a property-
based closeness partition approach, namely PCP. Taking a
graph G and a set of images I as inputs, PCP outputs a mini-
batch data set D = {(Vi, Ii)|Vi ⊆ V, Ii ⊆ I, 1 ≤ i ≤ k}. The
overall workflow of PCP is illustrated in Figure 7, which works
at the following three phrases. (1) Phase 1: property closeness
calculation. It extracts property representations for vertices in
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Fig. 5. Architecture of improved matching framework CrossEM+. The red fonts indicate modules optimized for CrossEM.
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Fig. 6. Example of property and pairwise proximity matrix in PCP.

V and images in I, and computes a matrix Sc indicating the
closeness of properties between vertices and images, as shown
in Figure 7(a). (2) Phase 2: pairwise proximity exploration. As
for a candidate vertex-image pair (v, I), the matching degree
is regarded as the sum of their property closeness in Sc.
Therefore, a matrix S that represents the pairwise proximity
for the candidate pairs of vertices in V and images in I can be
computed based on Sc, as depicted in Figure 7(b). (3) Phase 3:
cluster-based data partition. It blocks image and vertex pairs
into a set of mini-batches to increase entity locality, so that
most vertices can find their associated images within the same
mini-batch and unrelated candidate pairs can be pruned. To do
this, the probability distribution of these images with respect
to the vertices is computed by S, and then clusters them to
generate a set of partitions, as illustrated in Figure 7(c). Details
of the mini-batch generation are presented in Algorithm 2.

Phase 1: property closeness calculation (lines 1-3). Lever-
aging pre-trained vision model such as ResNet [28], we can
crop every image Ii in I as a set of patches Ci and extract
visual features for each patch cj ∈ Ci, j ∈ [1, pi] where
pi is the number of patches in Ii. Thereby, a set of patch
features can be obtained in C = {Ci|1 ≤ i ≤ |I|} (line 1).
Meanwhile, a set of property features A can be obtained based
on vertex labels by using a pre-trained language model such as
BERT [32], i.e., A = {Ai|1 ≤ i ≤ |V |} (line 2). Subsequently,
the property closeness matrix Sc is computed by A×C with
respect to all patches and vertex labels. Sc ∈ R is a matrix
with dimension of |V | × p|I| (line 3), where p is the average
number of patches for all images in I. The time and space
complexities of this phase are both O(p · |V ||I|).

For example, considering v1 and I1 shown in Figures 1(b)
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Fig. 7. Overview of PCP for mini-batch generation.

and 6(a), respectively. Figure 6(b) (left) shows a property
closeness matrix Sc for v1 and I1, which is calculated based on
P (v1) and P (I1) mentioned above. Here Sc with dimensions
of (4 × 3), where Sc[1, 0] = 0.59 represents the closeness
between vertex v2 and patch c11 of I1.

Phase 2: pairwise proximity exploration (lines 4-10). For a
candidate vertex-image pair (v, I), we compute its proximity
value S(v, I) by aggregating the property closeness values in
Sc for neighbors of v and patches of I as follows.

S(v, I) =
∑

vj∈N(v)

max
ck∈P (I)

Sc[vj , ck]. (8)

Specifically, S(v, I) for v and I is calculated in the fol-
lowing three steps: (1) we first obtain a neighbor set N(v) of
v as the union of itself (treated as self-neighbor) and its d-
hop neighbors Vd, i.e., N(v) = {v}∪Vd (line 6); (2) For each
vj ∈ N(v), the closeness between vj and I is calculated as the
maximum value of vj to all patches P (I) of I (lines 7-9); (3)
S(v, I) for v and I is obtained by summarizing the closeness
values of all neighbors to I . The time complexity and space
complexity of this phase are O(|V | · (|Vd|+ |Ed|+ p|I|)) and
O(|V ||I|), respectively, where p is the average patch number
of images in I.

For example, the red numbers shown in Figure 6(b) (left)
are the closeness values between vertices and images. For in-
stance, S(v3, I1) = max(0.27, 0.52) = 0.52. Considering v1
and its neighbor set N(v1) = {v1, v2, v3, v4}, we can induc-
tively obtain the proximity value of the candidate pair (v1, I1)



Algorithm 2: Mini-batch generation
Input: A graph G = (V,E, L), a set of images I, a

pre-trained language model Ma and a vision model
Mv , threshold of proximy θ, number of vertex subset
k1, cluster number k2 of images

Output: Mini-batch data set D = {D1, ..., Db}
1 Extract patch features C for I using Mv;
2 Obtain property features A for V in G using Ma;
3 Compute property closeness matrix Sc by A× C;
4 Initialize matrix S(V, I) as 0 for all v ∈ V and all I ∈ I;
5 for v ∈ V do
6 N(v)← {v} ∪ {vj |vj ∈ Vd};
7 for I ∈ I do
8 for vj ∈ N(v) do
9 S(vj , I)← maxck∈P (I) Sc[vj , ck];

10 S(v, I)←
∑

vj∈N(v) S(vj , I);

11 D ← ∅;
12 Randomly divide V into {V1, ..., Vk1};
13 for Vi ∈ {V1, ..., Vk1} do
14 I′i ← I− {argI∈I S(Vi, I) ≤ θ};
15 Compute Pi(I′i) for I′i and Vi based on S(Vi, I′i);
16 CI ← k-means(Pi, I′i, k2);
17 CI ← shuffle(CI);
18 D ← D ∪ {(Vi, Ij)|Ij ← CIk , CIk ∈ CI , 1 ≤ k ≤ k2};
19 return D;

as S(v3, I1) = 0.23 +max(0.59, 0.18) +max(0.27, 0.52) +
0.46 = 1.8, shown in the blue number in Figure 6(b) (right).

Phase 3: cluster-based data partition (lines 11-18). As for
vertices V and images I, we partition the candidate vertex-
image pairs into a set of mini-batch D in the following four
steps. (1) We first randomly divide V into a set of vertex subset
(line 12). (2) For each Vi ⊆ V , we obtain the candidate images
I′i by pruning irrelevant images with low proximity values to
the vertices in Vi. This is because the pairs formed by these
images and the vertices in Vi may have limited improvement
for the discriminative ability of the model (line 13). (3) Our
cluster-based partition method divides images into a set of
image subsets (line 15-16). (4) For each image subset Ij ⊆ I,
data partition is formed by collecting and shuffling the pairs
of vertices in Vi and images in Ij .

Next, we detailed present our cluster-based partition method
as follows. Intuitively, images with close proximity values
contain more similar patches and have more similar matching
probabilities with respect to the vertices in Vi. As for Vi ⊆ V
and Ij ⊆ I, we define the pairwise proximity for Vi and
Ij as a set of probability distributions in the size of |Ij |,
written as Pi(Ij). For each I ∈ Ij , Pi(I) depicts a normalized
distribution of pairwise matching probabilities between I and
Vi, which is computed by S(v, I) for I to all v ∈ Vi.
Therefore, we compute the proximity distribution Pi(I′i) for
each Vi, and then divide I′i by using a cluster algorithm (such
as k-means) such that images with similar distribution places
in the same partition.

The time complexity of this phase is O(k1 · log |V | · |I|),
and space complexity is O(log |V | · log |I|), where k1 is the

Algorithm 3: Property-based negative sampling
Input: Data partition D, a matrix S(V, I), batch size N
Output: A mini-batch training set B

1 B ← ∅;
2 for Di ∈ D do
3 Di ← shuffle(Di);
4 Bi ← Bi ∪Di;
5 count← ceil(|Di|/N) ·N − |Di|;
6 if count = 0 then
7 Continue;

8 for v ∈ Di.V do
9 obtain random integer number k;

10 Isi ← argI topkS[v :];
11 Pair ← {(v, Ij)|Ij ∈ Isi , Ij /∈ Di.I};
12 for (v, I) ∈ Pair do
13 if count > 0 then
14 Bi ← Bi ∪ {(v, I)};
15 count← count− 1;

16 B ← B ∪ shuffle(Bi);

17 B ← shuffle(B);
18 return B;

size of vertex subsets in V .
Totally, our proposed mini-batch generation takes time

complexity and space complexity are O(p · |V ||I| + k1 ·
log |V | · |I|) and O(p · |V ||I| + log |V | · log |I|), respectively.
By introducing mini-batch generation, candidate pairs used
for the training of CrossEM+ are reduced from |V ||I| in
CrossEM to log |V | log |I|. Therefore, regarding the prompt
learning and contrastive representation as black boxes, the
time complexity of m training epochs in CrossEM+ becomes
O(m log |V | log |I|).

B. Negative Sampling

As mentioned in Section II-C, the default sampling method
in contrastive learning is to uniformly sample data items
to obtain negative examples [4], [17]. This is not sufficient
enough when the pairs associate with the same properties but
are not similar in practice, as it mainly checks whether the
pairs contain overlapping properties and does not capture the
more important features that distinguish one from others.

For example, two images I1 and I2 illustrated in Figure 6(a)
depict the entities “laysan albatross” (i.e., v1) and “wood-
pecker”, respectively. Both of them contain the property “black
tail”, as shown in the patches c1p and c2p. However, we can note
that the property “spots” shown in c21 is a more important
visual feature that can help distinguish I1 from I2. Therefore,
(v1, I2) trends to be sampled as a harder negative example and
put into the same mini-batch as (v1, I2). The model is guided
to learn this essential discriminant feature “spots” such that
brings I1 and v1 close and separates I2 from v1.

We sample a set of negative pairs that are more difficult to
distinguish, so that essential features of entities can be learned
to enhance the discriminitive ability of the model. A property-
based negative sampling method is proposed and works as
follows. Taking inputs as the data partitions D = {D1, ..., Db}



and the proximity matrix S(V, I) created in Section IV-A,
it outputs a set of sampled images I′i for each Di. The
sampling procedure is illustrated in Algorithm 3. Specifically,
for each partition Di = (Vi, Ii) in D, we select images Isi
that have higher proximity values to the vertices in Vi but are
not contained in Ii. And then, Isi is merged into Ii to form
candidate pairs until the number of pairs reaches the nearest
integer multiple of the batch size N (lines 9-15). During
this process, we shuffle candidate pairs within batches (line
16) and batches in data partitions (lines 3 and 17) to reduce
the dependence of the model on data and further ensure the
model’s generalization ability.

In this module, the time complexities of shuffle operation
and selection are O(log |V | · log |I|) and O(log |I| · log k),
respectively, where k is the random integer number and k �
log |I|. There, the total time complexity is O(log |V | log |I|).

C. Orthogonal Prompt Constraint

As presented in Section III-C, structure-aware prompts are
learned by vertices and their neighbor structures. Considering
two entities v1 and I2 that contain similar structural features
but do not form a matching pair. For example, entities “laysan
albatross” and “woodpecker” both have wings, crowns and
bellies, but in different colors. We intuitively expect the two
entities to have distinct prompts to reduce misleading of the
model.

We introduce an orthogonal prompt constraint into
CrossEM+, where prompts for different vertices are as ir-
relevant to each other as possible. During prompt learning,
the orthogonal constraint backward propagates to advance the
learning of soft prompt creation, so that the contrastive model
can further guide vertices to correctly align with images.

Specifically, the soft prompt fspro(vi) for each vertex vi
is first initialized as the token embedding of its label L(vi)
using pre-trained language model such as BERT [32] and
Ro-BERTa [35]. And then, the constraint keeps orthogonality
for each vertex during prompt updating. The loss function
associated with the constraint is formulated as follows.

Lo =

|B|∑
i=0

||fsi · (fsi )T − IE ||F1 , (9)

where IE is an identify matrix and the F1 norm is used for
element-level calculations. fsi is a prompt matrix created by
stacking all prompts of vertices in a mini-batch, i.e., fsi =
{fspro(v)|v ∈ Bi.V }.

To integrate prompt constraint into our CrossEM+, we
linearly combine the contrastive loss with the orthogonal
constraint. Formally, the combined loss function is

L = β · Lc + (1− β) · Lo, (10)

where β is the hyper-parameter controlling the weights of two
loss functions.

TABLE I
DATASET STATISTICS.

Datasets # Vertices # Edges # Tuples # Images
CUB [39] 512 3,245 312 11,788
SUN [40] 819 2,130 717 16,594

FB2K-IMG [42] 2,667 8,382 - 20,455
FB6K-IMG [42] 6,342 30,884 - 44,813

FB10K-IMG [42] 10,856 78,747 - 69,629

V. EXPERIMENTS

In this section, we experimentally evaluate our proposed
CrossEM and CrossEM+ on three real-world datasets in the
following aspects: (i) the overall performance of CrossEM and
CrossEM+ in accuracy, efficiency and scalability; (ii) ablation
study for different modules of our proposed methods; and (iii)
a case study in multi-modal knowledge graph integration.

A. Experimental Settings

Datasets and Evaluation Metrics. We utilize three publicly
available datasets CUB (Caltech UCSD Birds 200, [39]),
SUN (SUN Attribute, [40]) and FB15K-237-IMG [41]. CUB
and SUN are two standard cross-modal semantic grounding
benchmarks equipped with attributes, where CUB includes
11,788 images of 200 birds with 312 attributes, SUN has
16,549 images from 717 scene classes with 102 attributes.
We use the same train-test splits of vertices as in [42] for
CUB and SUN datasets. FB15K-237-IMG is a popular datasets
in multi-modal knowledge completion where the graph is a
subset of the large-scale knowledge graph Freebase [37] and
each vertex associated with 10 images. We derive three subset
datasets from it to verify the efficiency and scalability of
our methods, namely FB2K-IMG, FB6K-IMG and FB10K-
IMG, which include 54M (million), 284M, 755M entity pairs,
respectively. Detailed statistics are shown in Table I.

To evaluate the performance of CrossEM and CrossEM+,
we use the following metrics: (i) Hits@k (k=1, 3, 5, H@k
for short) and Mean Reciprocal Rank (MRR) are employed
for the accuracy evaluation. Higher H@k and MRR indicate
better performance. (ii) Running time (T for short) in seconds
and the maximum GPU Memory usage (Mem for short) in
GB are used to evaluate the training efficiency on different
datasets. Here, the running time means the average training
time of each epoch in every approach. We use the NVIDIA
Nsight Systems to monitor the occupation of GPU memory.

Competitors. To demonstrate the performance of our pro-
posed method, we typically compare to three types of state-
of-the-art multi-modal approaches for a comprehensive evalu-
ation. (1) Dual encoder methods, which directly measure the
distance of cross-modal representations, such as CLIP [17] and
ALIGN [18]. (2) Fusion encoder methods, which map multi-
modal data into a common feature space, including Visual-
BERT [26], ViLBERT [27], IMRAM [19] and TransAE [43].
(3) Prompt-tuning methods, which tune pre-trained model by
specific prompts, containing GPPT [31], CrossEM with hard
prompt (w/ fhpro), soft prompt (w/ fspro) and CrossEM+.

Specifically, CLIP [17] is to contrastively learn a trans-
ferable language-image pre-training model from natural lan-



guage supervision by pairing images with relevant language
descriptions. ALIGN [18] trains large-scale models using
large amounts of noisy text data to scale up vision-language
representation learning for various tasks such as image clas-
sification. VisualBERT [26] consists of a stack of Trans-
former layers that implicitly align elements of an input text
and regions in an associated input image with self-attention.
ViLBERT [27] is a pre-trained visual-language model that pro-
cesses both visual and textual inputs in separate streams, and
interacts through co-attention transformer layers for learning
joint representations. IMRAM [19] utilizes recurrent attention
memory to integrate information from both text and image
modalities for cross-modal image-text retrieval. TransAE [43]
combines multi-modal auto-encoder with TransE to encode the
visual and textual knowledge into the unified representation,
where the hidden layer of the auto-encoder is used to be entity
representations in the TransE model. We modify these model
by serializing the graph into texts as presented in our hard
prompt in Section III-B. GPPT [31] is a supervised graph
prompt model that generalizes graph representation model to
downstream graph tasks. We modify its task objective to binary
classification objective like previous EM works [7] and provide
feedback in a supervised manner. For the first four baseline
methods, we use pre-trained models to predict the results on
test dataset. For the remaining methods, we leverage the source
code from the original repositories to produce the results.

To demonstrate the contributions of different modules, we
conduct ablation study and design five variants introduced as
follows. For prompt generation, we compare with different
prompt mechanisms, i.e., CrossEM w/ fhpro and CrossEM
w/ fspro. For mini-batch generation in CrossEM+, we com-
pare with CrossEM+ w/o MBG by replacing our mini-batch
generation (MBG) module with randomly partition for entity
pairs. For negative sampling in CrossEM+, we compare with
CrossEM+ w/o NS by replacing our property-based negative
sampling (NS) method with uniformly sampling pairs as
introduced in Section II-A. For orthogonal prompt constraint
(OPC) in CrossEM+, we compare with CrossEM+ w/o OPC
by removing OPC from CrossEM+.

To describe the application of our cross-modal EM task,
we perform a case study to illustrate the advantage of our
methods in multi-modal knowledge graph integration by com-
paring with the following approaches, i.e., ViLBERT [27],
TransAE [43], DistMult [44], RotatE [45] and RSME [46]
mentioned in [47], as well as MKGformer [47], our CrossEM
w/ fhpro, CrossEM w/ fspro and CrossEM+. The state-of-the-
art MKGformer [47] integrates visions and texts via coarse-
grained prefix-guided interaction and fine-grained correlation-
aware fusion modules for knowledge graph completion tasks.

Implementation Details. We implement our methods in
PyTorch [48] and Huggingface [49]. Unless particularly speci-
fied, we use RoBERTa-base model [35] as the pre-trained LM
and AdamW as the optimizer for all the experiments. We use
the CLIP model equipped with the ViT/32 image encoder [29]
and 12 Transformer layers in the text encoder [50]. In the
soft prompt generation, we experimentally set the structural

feature extraction in Equation 6 to GNN [34] in CUB and
SUN datasets, and to GraphSage [33] in FB15k dataset. During
prompt learning, we extend the maximum length of input
tokens from the originally 77 to 512. We fix the projector
dimension of text and image to 768 and 512, respectively. In
mini-batch generation, we take the ResNet18 [28] pretrained
on ImageNet as the backbone to extract the patch features
for each image without fine-tuning. The learning rate is set to
0.0005, the batch size is set to 256, the number of epochs is set
to 30. We tune the hyper-parameters by doing a grid search and
selecting the one with the best performance. Specifically, the
aggregation weight of soft prompt α and the loss weight β are
both continuously selected from [0, 1] with a step size of 0.1
each time. All experiments are conducted on a machine with
an Intel Core i9-10900K CPU, a NVIDIA GeForce RTX3090
GPU with 24GB memory. We report all results of competitors
in the optimal settings.

B. Overall Performance.

Exp-1: Accuracy of entity matching. To demonstrate the
accuracy of our proposed methods CrossEM and CrossEM+,
we compare them with the seven competitors above mentioned
on three real datasets.

From Table II, we have the following three findings. (1)
CrossEM w/ fhpro, CrossEM w/ fspro and CrossEM+ have
higher accuracy than others on CUB and SUN datasets. Com-
pared with the dual encoders and single encoders, CrossMat+

at least has 15.91% and 45.29% advancements in Hits@1
average on three datasets, respectively. CrossEM+ also has
higher accuracy than others on FB2K-IMG dataset. It verifies
the superiority of our framework, especially on the attribute-
equipped graph data like CUB and SUN. (2) The results
of CrossEM+ has higher accuracy than CLIP (baseline for-
mulated in Section II-B) on all different datasets. There are
15.91%, 9.86% and 0.14 improvements in Hits@1, Hits@5
and MRR values average on three datasets, respectively. It ver-
ifies the superiority of prompts in our framework. (3) CrossEM
w/ fspro is more accurate than CrossEM w/ fhpro on CUB
and SUN datasets. There are average 4.69% improvements
in Hits@1. CrossEM w/ fhpro has more higher accuracy than
CrossEM w/ fspro on FB2K-IMG dataset, and has 6.95%,
9.63% and 0.08 improvements on Hits@1, Hits@5 and MRR
values, respectively. Meanwhile, CrossEM w/ fspro is only
11.76%, 11.77% and 0.12 away from CrossEM+ with the best
performance. This verifies that our hard and soft prompts are
alternative on different realistic applications and datasets.

Exp-2: Efficiency of prompt learning. To verify the
efficiency, we evaluate the average training time T and the
maximum GPU usage Mem for each epoch on three datasets.

As illustrated in Table III, we can find that (1) CrossEM+

takes less training time for each epoch than others on all
datasets, and its average efficiency is improved by about
22% (reduced by 35.67 seconds) compared to the sub-optimal
method. This is because CrossEM+ trains matching model in a
mini-batch manner, so that entities can find their equivalences
within the same mini-batch to improve training efficiency. (2)



TABLE II
OVERALL ACCURACY ON DIFFERENT DATASETS.

CUB SUN FB2K-IMG
Methods H@1 H@3 H@5 MRR H@1 H@3 H@5 MRR H@1 H@3 H@5 MRR

Dual encoder approaches
ALIGN [18] 33.5 55.5 66.0 0.48 27.04 45.62 50.67 0.38 24.505 35.237 40.286 0.32
CLIP [17] 68.00 82.00 84.00 0.74 26.39 40.28 43.06 0.31 62.06 75.40 78.52 0.66

Fusion encoder approaches
VisualBERT [26] 14.00 19.00 24.00 0.17 3.12 17.29 24.36 0.13 21.70 32.40 43.90 0.27

ViLBERT [27] 24.10 37.50 53.30 0.56 2.40 13.71 18.24 0.11 23.30 33.50 45.70 0.26
TransAE [43] 4.20 11.45 16.30 0.39 19.42 21.50 29.30 0.22 19.80 37.60 44.10 0.35
IMRAM [19] 5.90 16.80 20.10 0.12 16.50 27.30 34.20 0.31 24.80 39.61 42.80 0.36

Prompt-tuning approaches
GPPT [31] 16.94 19.77 25.32 0.19 3.64 8.92 15.91 0.07 1.21 5.34 11.63 0.08

CrossEM w/ fh
pro 72 90 94 0.79 51.39 58.33 58.33 0.54 60.43 70.59 77.54 0.65

CrossEM w/ fs
pro 78.0 94.0 94.0 0.84 54.78 59.51 59.72 0.58 53.48 63.64 67.91 0.57

CrossEM+ 82.00 94.00 96.00 0.86 56.94 58.33 59.48 0.57 65.24 76.47 79.68 0.69

TABLE III
OVERALL EFFICIENCY ON DIFFERENT DATASETS.

CUB SUN FB2K-IMG
Methods T Mem T Mem T Mem

TransAE [43] 44 11.3 194 12.7 237 16.4
IMRAM [19] 86 16.7 647 19.9 461 23.8

CrossEM w/ fs
pro 53 10.5 404 11.7 274 18.6

CrossEM+ 42 9.3 118 10.2 208 16.1
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Fig. 8. Scalability in different data size of FB15K-237-IMG.

CrossEM+ takes less GPU memory than others on all datasets,
and its average save GPU about 7.29% (reduced by 0.93 GB)
compared to the sub-optimal method. The reason is that during
mini-batch training most irrelevant entity pairs are pruned and
do not need to calculate gradients through them. (3) Compared
with CrossEM w/ fspro, Cross+ improves the average training
time and GPU usage by about 51% (reduced by 124 seconds)
and 12.72% (reduced by 1.73 GB) on the three datasets,
respectively. The results show that although the effectiveness
of entity matching is limited by the backbone model CLIP,
CrossEM+ significantly improves the model efficiency through
the optimization techniques proposed in Section IV.

Exp-3: Scalability in different data size. To further inves-
tigate the scalability of our proposed methods, we evaluate on
the FB15K-IMG dataset with different scales of 54M, 284M
and 755M vertex-image pairs.

Figure 8 reports the accuracy (using MRR value), training
time and GPU memory usage of CrossEM+ and CrossEM w/
fspro (marked as CrossEM in the legend). We can see that (1)
CrossEM+ has higher accuracy, takes less training time and
GPU memory than CrossEM w/ fspro at all scales of data sizes.
This is because (i) the mini-batch training increases entity
locality so that entities can find their equivalences in the same
mini-batch as much as possible; (ii) our improved method

CrossEM+ reduces the training complexity from quadratic to
logarithmic in one epoch, as discussed in Section IV-A; (2)
With the increasing of data sizes, the training time and GPU
memory usage in both CrossEM w/ fspro and CrossEM+ in-
crease, while the growth in CrossEM+ is more slow. CrossEM
w/ fspro always has higher accuracy than CrossEM+ in dif-
ferent data scales. These verify that CrossEM+ outperforms
CrossEM w/ fspro in terms of scalability.

Overall, our proposed method CrossEM+ achieves an aver-
age improvement of 15.91% in Hits@1 over the baseline, and
brings 51% and 12.72% improvements on training time and
GPU usage over CrossEM. Therefore, CrossEM+ outperforms
other competitors in terms of accuracy and efficiency, and
scales well on different data sizes.

C. Ablation Study.

We further conduct ablation study to verify the effectiveness
of different modules in CrossEM and CrossEM+. We compare
CrossEM with two prompt designs (i.e.,w/ fhpro and w/ fspro),
and compare CrossEM+ with its variants without the key
module, i.e., mini-batch generation (MBG), negative sampling
(NS) and orthogonal prompt constraint (OPC). The results are
listed in Table IV.

Effect of different prompts on CrossEM. As shown in the
1-st and 2-nd rows, CrossEM w/ fhpro and CrossEM w/ fspro
have close Hits and MRR values on all different datasets. This
verifies that our proposed two prompts are alternative.

Effect of MBG on CrossEM+. From the 3-rd and 6-th rows
in Table IV, we can obviously see that MBG can significantly
improves the training efficiency without reducing matching
accuracy. For example, compared with CrossEM+ w/o MBG,
CrossEM+ reduces the average training time by 152 seconds
and GPU memory usage by 0.95 GB on the three datasets.
This demonstrates the advantage of MBG.

Effect of NS on CrossEM+. From the 4-th and 6-th rows
in Table IV, we know that (1) CrossEM+ w/o NS takes
more GPU memory usage than CrossEM+. (2) In most cases,
CrossEM+ w/o NS requires more training time but has slightly
lower accuracy than CrossEM+.

Effect of OPC on CrossEM+. From the 5-th and 6-th rows
in Table IV, we can obviously see that CrossEM+ w/o OPC



TABLE IV
ABLATION STUDIES IN ACCURACY FOR DIFFERENT COMPONENTS OF OUR METHODS.

CUB SUN FB2K-IMG
Methods H@1 H@5 MRR T Mem H@1 H@5 MRR T Mem H@1 H@5 MRR T Mem

CrossEM w/ fh
pro 72 94 0.79 - - 51.4 58.3 0.54 - - 60.43 70.59 0.65 - -

CrossEM w/ fs
pro 78 94 0.84 53 10.53 56.9 59.7 0.58 404 11.65 53.48 63.64 0.57 273 18.56

CrossEM+ w/o MBG 82 96 0.86 61 9.36 23.6 29.1 0.25 443 11.45 64.71 77.54 0.70 321 16.53
CrossEM+ w/o NS 82 96 0.86 33 10.29 56.9 59.7 0.58 173 10.36 64.17 75.40 0.68 264 18.15

CrossEM+ w/o OPC 81 96 0.86 59 10.53 56.9 59.7 0.58 227 11.26 58.29 68.98 0.62 224 17.26
CrossEM+ (full) 82 96 0.86 42 9.33 56.9 59.7 0.58 118 10.20 65.24 76.47 0.69 208 16.11

TABLE V
PERFORMANCE OF MULTI-MODAL KNOWLEDGE GRAPH INTEGRATION.

Methods H@1 H@3 H@5 MRR
ViLBERT [27] 23.3 33.5 45.7 0.21
TransAE [43] 19.9 31.7 46.3 0.23
DistMult [44] 19.10 30.10 44.60 0.21
RotatE [45] 24.10 37.50 53.30 0.56
RSME [46] 24.20 34.30 46.70 0.24

MKGformer [47] 25.6 36.7 50.4 0.45
CrossEM w/ fh

pro 60.43 70.59 77.54 0.65
CrossEM w/ fs

pro 53.48 63.64 67.91 0.57
CrossEM+ 65.24 76.47 79.68 0.69

has a slight decrease in accuracy compared to CrossEM+,
while taking more training time and GPU memory usage. This
demonstrates the advantage of OPC.

D. Case Study: Multi-modal Knowledge Graph Integration.

Table V presents the advantage of our cross-modal EM
over multi-modal knowledge graph integration on the FB15K-
237-IMG dataset. We can see that (1) our proposed methods
outperform other state-of-the-art approaches. For example,
CrossEM+, CrossEM w/ fspro and CrossEM w/ fhpro are
improved by 39.64%, 27.88% and 34.83% in Hits@1 value
over MKGformer, respectively. (2) CrossEM+ outperforms
CrossEM w/ fhpro, followed by CrossEM w/ fspro, with im-
provements of 4.81% and 11.76%, respectively. This demon-
strates that cross-modal EM can benefit various downstream
tasks such as multi-modal knowledge graph integration.

VI. RELATED WORK

Entity Matching. Entity Matching (EM) is one of the
fundamental and significant tasks in data management. Ex-
isting EM works mainly divided into two categories in data
perspective: traditional EM approaches that perform EM over
homogeneous data with aligned schema [1], [2], [3], and
generalized EM approaches that process EM over multiple
heterogeneous data sources [7], [8], [9], [10], [21]. Generalized
EM [7], [8] usually converts different sources into a unify
data format. TDmatch [8] performs relational table and text
document matching in an unsupervised learning way via graph
creation and random walk. HER [21] links entities across
a relational database and a graph based on a parametric
simulation method. Machamp [9] benchmarks the GEM for
different types such as structured tables, semi-structured,
or textual data. Recently, representation learning technology
has been used widely in EM task and achieved promising
performance [4], [7]. PromptEM [7] unifies heterogeneous

data as textual sequences and designs specific prompt-tuning
to transform GEM as a masked language task to predict
target words in a low-resource setting. Sudowoodo [4] fine-
tuns language model to perform EM for relational tables
by using a contrastive learning model. ZeroEA [6] achieves
zero-training EM for knowledge graph based on pre-trained
language models. However, modality heterogeneity and label
requirements need to be addressed in cross-modal EM task.

Cross-modal Matching. Cross-modal matching approaches
mostly are designed for visual and textual data to retrieve
a set of related texts or images from another modalities. It
can be typically divided into two categories: dual encoder
methods that directly measure the distances of cross-modal
representations such as CLIP [17], ALIGN [18], and fusion
encoder methods that map these data into a common space
via attention mechanism or generative adversarial network
such as VisualBERT [26], ViLBERT [27], IMRAM [19].
Recently, multi-modal large models have received widespread
attention and large-scale pre-trained encoders, e.g., CLIP [17],
ALIGN [18] and Flamingo [51] have shown their superiority
in cross-modal retrieval tasks. These approaches work well for
texts and images, but directly extending them to our task has
limited by the heterogeneity of data modality, especially graph
and image data. Some works attempt to integrate graph and
image, such as multi-modal knowledge graph completion [47],
which mainly focuses on link prediction, relation extraction
and entity recognition. These are orthogonal to our work. We
aims to perform cross-modal entity matching by incorporating
knowledge of graph structures with visual features.

VII. CONCLUSION

In this paper, we study the problem of cross-modal entity
matching based on prompt-tuning, which is the first time to
prompt-tune MMLM to align entities from different modali-
ties. It is non-trivial as three challenging issues: (i) objective
gap; (ii) data modality gap; and (iii) prompt efficiency. There-
fore, our CrossEM framework designs two alternative prompt
generation methods to break the objective and data modality
gaps. To further improve the prompt efficiency on large data,
CrossEM+ is proposed by considering three optimizations: (i)
the training scalability with huge candidate pairs, (ii) negative
sampling in contrastive learning and (iii) effectiveness of
generated prompts. Experimental evaluations demonstrate the
superiority of CrossEM and CrossEM+. In the future, we plan
to explore a general prompt-tuning method to support more
data management tasks such as data cleaning.
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