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Abstract—Big data processing systems, such as Hadoop and Spark, usually work on large-scale, highly-concurrent, and multi-tenant
environments that can easily cause hardware and software malfunctions or failures, thereby leading to performance degradation.
Several systems and methods exist to detect big data processing systems’ performance degradation, perform root-cause analysis, and
even overcome the issues causing such degradation. However, these solutions focus on specific problems such as straggler and
inefficient resource utilization. There is a lack of a generic and extensible framework to support the real-time diagnosis of big data
systems. In this paper, we propose, develop and validate AutoDiagn. This generic and flexible framework provides holistic monitoring of
a big data system while detecting performance degradation and enabling root-cause analysis. We present the implementation and
evaluation of AutoDiagn that interacts with a Hadoop cluster deployed on a public cloud and tested with real-world benchmark
applications. Experimental results show that AutoDiagn has a small resource footprint, high throughput and low latency.

Index Terms—Online analysis, Outliers, Root-cause analysis, Big data systems, QoS, Hadoop, Performance

1 INTRODUCTION

The rapid surge of data generated through sectors like social
media, financial services, multimedia and industries has
led to the emergence of big data systems. The big data
systems enable the processing of massive amounts of data
in relatively short time frames. For instance, the Netflix big
data pipeline processes approximately 500 billion events
and 1.3 petabytes (PB) of data per day, further, during peak
hours, it processes approximately 11 million events and 24
gigabytes (GB) of data on a per-second basis. Facebook has
one of the largest data warehouses in the world, capable
of executing more than 30,000 queries over 300 PB data
every day. However, the enormousness and complexity of
these big data systems result in heterogeneous computing
resources, multiple tenant environments, as well as concur-
rent execution of big data processing tasks, which makes
a challenge of efficiently and reliably utilizing the big data
systems [1]. For example, Fig.|1|shows that the performance
degrades at least 10% when the resources are not utilized
efficiently with Setting 2.
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Fig. 1. Six Big data applications are executed in a cloud-based Hadoop
cluster with two settings: 1) the input data and jobs are allocated in
the same node; 2) the input data and jobs are allocated in different
nodes. In Setting 2, the execution time of each application is delayed
by transmitting data across nodes.

To overcome this, it is imperative to continuously moni-
tor and analyze all available system resources at all times in
a systematic, holistic and automated manner. These include
CPU, memory, network, I/O and the big data processing
software components.

Most of the commercial [2][3][4] and academic big
data monitoring systems mainly focus on visualizing task
progress, and the system’s resource utilization [5]. How-
ever, they do not focus on the interaction between multiple
factors and performing root-cause analysis of performance
degradation [6][7Z]. For instance, works such as [8], [9] aim
to find the best parameters to optimize the performance of
big data processing systems, they do not focus on the root-
cause analysis that may indicate the viable reasons behind
performance degradation and may provide intuitions for



parameter tweaking.

Mantri [10] presents a systematic method that catego-
rizes the main reasons that cause outliers in a big data
system. The authors’ work was focussed on the MapRe-
duce programming framework in the Hadoop system; they
do not dicuss how Mantri can be applied to other big
processing frameworks (e.g., Apache Sparlﬂ and Apache
FlinkEb. Garraghan et al. [11] proposed an online solution
to detect long-tail issues in a distributed system. However,
these solutions were built for specific scenarios with much
scope left for analyzing a variety of problems that can exist
in a large scale big data processing system.

To the best of our knowledge, there is a lack of a generic
and comprehensive solution for the detection of a wide
range of anomalies and performance of root-cause analysis
in big data systems. Developing a general and extensible
framework for diagnosing a big data system is not trivial.
It requires well-defined requirements which could enable
the broader adoption of root-cause analysis for the big
data systems, flexible APIs to interact with an underlying
monitoring system and integration of multiple solutions for
detecting performance reduction problems while enabling
the automatic root-cause analysis. In this paper, we tackle
this research gap, and design and develop AutoDiagn to au-
tomatically detect performance degradation and inefficient
resource utilization problems, while providing an online
detection and semi-online root-cause analysis for a big data
system. Further, it is designed as a microservice architecture
that offers the flexibility to plug a new detection and root-
cause analysis module to adapt to various types of big data
systems.

The contributions of this paper are as follows:

o Anonline and generic framework: We develop a general
framework called AutoDiagn which can be adapted
for the detection of a wide range of performance
degradation problems while pinpointing their root-
causes in big data systems.

o A case study: We develop a novel real-time stream
processing method to detect symptoms regarding
outliers in a big data system. After that, we develop
a set of query APIs to analyze the reasons that cause
the outlier regarding a task.

o A comprehensive evaluation: We evaluate the feasibility,
scalability and accuracy of AutoDiagn through a set
of real-world benchmarks over a real-world cloud
cluster.

The paper is organized as follows. The design require-
ments and idea are outlined in §2] In §3} we illustrate the
high-level system architecture. §4 presents a case study we
implemented and the case study is evaluated in
discusses the limitations of this paper and highlights our
further work . Before drawing a conclusion in §8} we discuss
the related work in §7}

2 REQUIREMENTS AND DESIGN IDEA
In this section, we analyze the key requirements of the
real-time big data diagnosis system, extracting the essential

1. https:/ /spark.apache.org/
2. https:/ /flink.apache.org/
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features from the literature. Next, we present the key idea
of the framework design.

2.1 Fundamental prerequisite for diagnosing big data
processing systems

In order to design the a generic framework for diagnosing
big data processing systems, we classified the fundamental
requirements of building a diagnosis system on big data
processing systems as follows:

o Infrastructure monitoring: Collecting the informa-
tion of underlying system, such as network condi-
tions, CPU utilization, memory utilization, and disk
1/0 status.

o Task execution monitoring: Collecting the task infor-
mation, including execution time, progress, location,
location of its input data, input data size, output
data size, CPU/Memory usage, and process state
(running, waiting, succeeded, failed, killed).

e Abnormal behavior or fault detection: Detecting
abnormal behaviors in big data processing systems,
such as slowing tasks, failed tasks, very high/low
resource usage, and experiencing very high response
time for the requests.

e Root cause analysis: Finding the root cause of per-
formance reduction in big data processing systems,
such as the reasons why: tasks are slowing down,
resource utilization is low, the response time is high,
or when the network latency is high.

e Visualization: Visualizing the collected metrics and
the results of root-cause analysis of any failures caus-
ing performance reduction in the cluster with a user-
friendly interface in real-time.

2.2 Key design idea

Motivated by the above-mentioned requirements and in-
spired by the medical diagnosis, we highlight the design
idea of root-cause analysis for big data processing systems
as shown Fig. |2} which aims to provide holistic monitoring
and root cause analysis for big data processing system. First,
a set of Symptom Detectors is defined and developed in
Symptom Detection to detect the abnormalities of the big
system by processing collected system information stream
in real-time. Once a symptom (abnormality) is detected,
the Diagnosis Management may launch the corresponding
Diagnosers to troubleshoot the cause of the symptom. One
symptom may correspond to root causes. Finally, the deci-
sions are made based on the root-cause analysis results.

2.3 The generalizability of AutoDiagn

The modern big data processing systems consist three main
types: Big data analytics (e.g., Hadoop, Spark) and Stream
processing (e.g., Flink, Spark Stream). Based on our de-
sign idea, our AutoDiagn is an independent framework
that can be deployed alongside existing big data cluster
management systems (e.g., Apache YARN), and ideally it
is suitable for root-cause analysis of any big data processing
system. However, for the scope of this paper and practi-
cal certainty, the implementation of AutoDiagn focus on
debugging root-causes of performance degradation (e.g.,
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slow task execution time) in Hadoop due to faults such as
data locality, cluster hardware heterogeneity, and network
problems (e.g., disconnection). Although we have validated
the functionality of AutoDiagn in the context of Hadoop and
considering different classes of workload (e.g., WordCount,
Grep, TPC-H, TPC-DC, K-means clustering, PageRank), it is
generalizable to other big data processing systems executing
similar classes of workload.

3 AUTODIAGN ARCHITECTURE

Following the design idea laid out in §2} we introduce Auto-
Diagn, a novel big data diagnosing system. We first illustrate
the high-level system architecture and then describe the
details of each component. AutoDiagn is implemented in
Java and all source code is open-source on GitHulﬂ

3.1 Architecture overview

AutoDiagn provides a systematic solution that automati-
cally monitors the performance of big data systems while
troubleshooting the issues that cause performance reduc-
tion. Fig. 3| shows its two main components: AutoDiagn
Monitoring and AutoDiagn Diagnosing. AutoDiagn Monitoring
collects the defined metrics (logs) and feeds AutoDiagn Diag-
nosing with them in real-time. Once the abnormal symptoms
are detected by analyzing the collected metrics, a deeper
analysis is conducted to troubleshoot the cause of abnormal
symptoms.

AutoDiagn Monitoring. AutoDiagn Monitoring is a de-
centralized real-time stream processing system that collects
comprehensive system information from the big data system
(e.g., Hadoop Cluster). The Collected Metrics is a set of
pre-defined monitoring entities (e.g., CPU usage, memory
usage, task location, task status) used to detect the abnormal
symptoms. Moreover, the system information, required for
understanding the cause of detected abnormal symptoms,
is collected in this module.

AutoDiagn Diagnosing. AutoDiagn Diagnosing is an event
based diagnosing system. First, the carefully crafted met-
rics are injected into Symptom Detection Engine which is a
real-time stream processing module to detect the abnormal
symptoms in a big data system. In this paper, we use
the outlier which is a common symptom for performance
reduction in a Hadoop cluster as a case study to demon-
strate the proposed framework. illustrates the details
of technology that we developed for the symptom detec-
tion. Moreover, our system follows the principle modular
programming; the new symptom detection method can be
easily plugged in. Diagnoser Plugins is a component for
trouble-shooting the reasons behind the detected symptom.
A set of Diagnosers are instantiated by the Diagnoser Manager
when their corresponding symptoms are detected. Then the
instantiated Diagnosers query a time series data base to
obtain the required input and their outputs illustrate the
cause of the detected symptoms.

3. https:/ / github.com/umitdemirbaga/AutoDiagn

3.2 AutoDiagn monitoring framework

AutoDiagn monitoring framework is a holistic solution for
continuous information collection in a big data cluster.
The framework needs to have a fast, flexible and dynamic
pipeline to transfer the collected data as well as a high per-
formance, large scale storage system. We now describe an
implementation of the framework for a big data computer
cluster, and the high-level system architecture is shown in
Fig. [

Information Collection. In each compute node, we develop
and deploy an Agent to collect real-time system information.
For the worker node, the Agent collects the usage of com-
puting resource via SIGAR API{ﬂ including CPU, memory,
network bandwidth, and disk read /write speeds. Moreover,
the Agent in the master node collects the usage of computing
resource as well as the job and tasks information. The Filter
is developed by using GSon Libraryﬂ to remove the less im-
portant information obtained from ResourceManager REST
API'sﬂ thereby reducing the size of data transmission. The
collected information is sent to RabbitMQY| cluster which is
a lightweight and easy-to-deploy messaging system in each
time interval via Publisher.

Storage. The acquired information is time series data, we
therefore choose InfluxDqﬂ for data storage. InfluxDB is a
high performance, scalable and open source time series data
base which provides a set of flexible open APIs for real-time
analytics. The Consumer subscribes the related stream topics
from RabbitMQ and interacts with InfluxDB APIs to inject
the information to the data base.

Interacting with AutoDiagn Diagnosing. The information
required for symptom detection is directly forwarded and
processed in AutoDiagn diagnosing via a consumer. If a
symptom is detected, InfluxDB will be queried by AutoDi-
agn diagnosing for root cause analysis. Finally, the analysis
results are sent back to the database to be stored.

User visualization. The user visualization allows the users
to have a visible way to monitor their big data system. We
utilize InfluxDB'’s client libraries and develop a set of REST-
ful APIs to allow the users to query various information,
including resource utilization, job and task status, as well as
root cause of performance reduction.

3.3 AutoDiagn diagnosing framework

In this section, we discuss the core components of the
AutoDiagn Diagnosing framework (see Fig.[3), as well as the
interactions with each other and the AutoDiagn Monitoring
framework.

Symptom Detection Engine. The symptom detection en-
gine subscribes a set of metrics from the real-time streaming
system. § illustrates the technique that we developed
for outlier detection. This component follows microservices
architecture that new symptom detection techniques can be
directly attached, interacting with other existing techniques
to detect new symptoms.

4. https:/ /github.com /hyperic/sigar

5. https://github.com/google/gson

6. https:/ /hadoop.apache.org/docs/r3.2.1/hadoop-yarn
7. https:/ /www.rabbitmq.com/

8. https:/ /www.influxdata.com/
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Fig. 3. The high-level architecture of the AutoDiagn system

Diagnoser Manager. The diagnoser manager is the core
entity responsible for selecting the right diagnosers to find
the reasons that cause the detected symptoms. Additionally,
the diagnoser manager is developed as a front-end com-
ponent, triggered by various detected symptoms (events)
via a RESTful API, exposing all diagnosing actions within
our framework. The API includes general actions such as
starting, stopping or loading a diagnoser dynamically, and
specific actions such as retrieving some metrics. Importantly,
the diagnoser manager is able to compose a set of diagnosers
to complete the diagnosing jobs that may require the coop-
eration of different diagnosers.

Diagnoser Plugins. The diagnoser plugin contains a set of
diagnosers; and a diagnoser is the implementation of the
specific logic to perform root-cause analysis of a symptom.
Each diagnoser refers to a set of metrics stored in a time
series database as the input of its analysis logic. Whenever
it is activated by the diagnoser manager, it will perform
an analysis, querying the respective metrics, executing an-
alytic algorithm, and storing the results. discusses the
algorithms to detect the outlier problems, for example, in a

Hadoop cluster. The diagnoser plugins is also designed as
a microservice architecture which has two advantages: i) a
new diagnoser can be conveniently plugged or unplugged
on-the-fly without affecting other components; ii) new root-
cause analysis tasks can be composed by a set of diagnosers
via RESTful APIs.

3.4 AutoDiagn diagnosing interfaces for Hadoop

AutoDiagn exposes a set of simple interfaces for system
monitoring, symptom detection and root-cause analysis.
Table [1| shows that two types of APIs are defined: high-
level APIs and low-level APIs. The high-level APIs consist
of Symptom Detection, Diagnoser and Decision Making.
The Symptom Detection APIs are a set of real-time stream
processing functions used to detect the defined symptoms
causing the performance reduction in the Hadoop system.
Each Diagnoser is a query or a set of queries, which aim
to find one of the causes of a symptom. For example,
QueryNonLocal () tries to find all non-local tasks within a
time interval, which is one of the reasons that causes an out-
lier. Finally, the Decision Making APIs are used to analyze
the results from each Diagnoser and make the conclusion.
These high-level APIs have to interact with the low-level
APIs (Information Collection) to obtain system information
including resource usage, and the execution information of
the big data system (e.g., ask and job status in a Hadoop
system). Based on this flexible design, users can define
and develop their own Symptom Detection, Diagnoser and
Decision Making APIs and plug them into AutoDiagn.

3.5 Example applications

We now discuss several examples for big data system root
cause applications using AutoDiagn API.

Outliers. Outliers are the tasks that take longer to finish
than other similar tasks, which may prevent the subse-
quent tasks from making progress. To detect these tasks,
the real-time stream query QueryOutlier () is enabled
in the Symptom Detection Engine. This function consumes
each task’s completion rate (i.e., progress) and the executed
time to identify the outlier tasks (detailed in §4.1I). Next,
three APIs QueryNonlocal (), QueryLessResource ()
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and QueryNodeHealth (), corresponding to three Diag-
nosers that are used to analyze the reasons causing the de-
tected symptom, are executed. QueryNonlocal () queries
whether the input data is allocated on the node on which
an outlier task is processed. In addition, QueryLessRe~
source () investigates whether outlier tasks are running
on the nodes that have less available resource. Moreover,
QueryNodeHealth () examines if an outlier task is the
task that is a restarted task due to the disconnected nodes
from the network. Finally, RootcauseOutlier () is used
to process the results from the three Diagnoser and make
the conclusion. All the APIs are shown in Table [l and the
technical details are illustrated in §4]

Inefficient resource utilization. In our case means that some
tasks are pending (or waiting) to be on worker nodes; at the
same time, some worker nodes are idle, e.g., low CPU and
memory usage. There are many reasons that cause this issue,
but here we consider two key causes: task heterogeneity and
resource heterogeneity. The type of tasks in a big data system
are various, including CPU intensive tasks, IO intensive
tasks and memory intensive tasks. However, the underlying
computing resources are typically equally distributed to
these tasks, thereby causing inefficient resource utilization.
The latter is caused by the heterogeneous underlying com-
puting resources due to the multiple concurrent processing
task environments and the queues are built on the saturated
nodes.

To detect the inefficient resource utilization in a big data
system, the real-time stream query QueryResourceU-
til (), is used within a defined time interval. We com-
pute the mean and standard deviation of the usage re-
sources of the whole cluster. If the standard deviation is
far from the mean, we will further query whether the
tasks are queued on the nodes which have high resource
usage rate. If inefficient resource utilization is detected,
two Diagnosers, QueryOversubscribed () and Query-
DiskIOboundTasks (), which are the root-cause anal-
ysis APIs shown in Table are executed to perform
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root-cause analysis. QueryOversubscribed () checks the
type of tasks, queuing on the saturated nodes. The
QueryDiskIOboundTasks () checks whether the satu-
rated nodes have less available computing resource, while
processing the allocated tasks. The conclusion of the
cause of inefficient resource utilization is made in Root-
causeResInef ().

3.6 Parallel Execution

Following the key design idea, the diagnosers are triggered
by the corresponding detected symptom. However, we are
able to parallelize the execution of each symptom detector
and its diagnosers, by partitioning the input data. For exam-
ple, if one symptom detector needs to process too many data
streams, we can use two of the same instances of the symp-
tom detector to process the data streams and the aggregate
the results from two symptom detectors. The diagnoser can
follow the same strategy for parallel execution.

3.7 Reliability Analysis

AutoDiagn follows the centralized design for data collec-
tion, which simplify the implementation of the Symptom
Detection, Diagnosis Management and Decision Making. They
can easily obtain the required information from one place,
instead of interacting with entire big data system. Moreover,
the centralized design doesn’t mean unreliable, due to the
high-availability of RabbitMQ. The RabbitMQ cluster can
overcome the node fail in the message queuing system while
ensure the scalability.

4 CASE STUuDY

In the previous section, we have discussed that our frame-
work supports detection of multiple types of symptoms
(e.g., outliers, inefficient resource utilization). However, de-
tecting these symptoms is non-trivial; and each symptom
can be detected by using different algorithms with different
input metrics. In this section, we present a case study that



TABLE 1

AutoDiagn diagnosing interface. See §[3.4]for definitions and examples

Symptom Detection (High-level APIs)

Description

QueryOutlier ()
QueryResourceUtil ()

Execute a Query that returns the list of outliers if any.

Execute a Query that returns the list of the worker nodes that the computing resources are not utilized

effectively if any.

Diagnoser (High-level APIs)

Description

QueryNonLocal ()
QueryLessResource ()
QueryNodeHealth ()
QueryOversubscribed ()
QueryDiskIOboundTasks ()
Decision Making (High-level APIs)

Execute a Query that return the list of non-local tasks if any.

Execute a Query that returns false if the cluster is not homogeneous in terms of having resource capacity (CPU/memory).

Execute a Query that returns the list of disconnected worker nodes in the cluster if any.
Execute a Query that returns the list of the oversubscribed tasks if any.

Execute a Query that returns the list of the disk- or IO-bound tasks if any.
Description

RootcauseOutlier ()
RootcauseResInef ()

Execute a Query that illustrate the main reason of the cause of the outlier.
Execute a Query that illustrate the main reason of the cause of inefficient resource utilization.

Information Collection (Low-level APIs)

Description

taskExecTime ()
taskProgress ()
taskInput ()
taskBlock ()

taskHost ()
taskCPUusage ()
taskMemoryUsage ()
taskContainerCPU ()
taskContainerMemory ()
blockHost ()
pendingTasks ()
nodeTotalCoreNum ()
nodeCPUUsage ()
nodeTotalMem ()
restartedTasks ()
nodeMemUsage ()
nodeDiskReadSpeed ()
nodeDiskWriteSpeed ()
nodeUploadSpeed ()
nodeDownloadSpeed ()

Return the execution time since the task started in sec.

Return the progress of the running task as a percent.

Return the input data size of the running task in mb.

Return the block id this task process.

Return the name of the node this task ran on.

Return the CPU usage of the task.

Return the memory usage of the task.

Return the allocated CPU to the container this task ran on.
Return the allocated memory to the container this task ran on.
Return the names of the nodes that host the block.

Return the number of the tasks waiting to be run.

Return the number of the CPU core number of the node.
Return the CPU utilization of the node.

Return the total memory capacity of the node.

Return the name of the restarted tasks due to nodes that got disconnected from the network.
Return the memory utilization of the node.

Return the disk read speed of the node.

Return the disk write speed of the node.

Return the network upload speed of the node.

Return the network download speed of the node.

details the technology of detecting outliers and its root- 4.1

causes. The notations used in this paper are summarized
in Table[2]

TABLE 2
A summary of symbols used in the paper

Symbols | Description

Jp Job progress

N Name of the task

N; List of N

P Performance of the A/

P, List of P

o Progress of the N

Oy List of O

T Execution time of the N/

T, List of T

Med The performance of median task

D Non-local tasks

Dy List of Non-local task

R Task running on the node with less resources
R List of R

w Restarted tasks due to the nodes’ network failure
\%%} List of W

S List of outlier task

Sd Non-local outlier

Sd; List of Sd

Sr Outlier stemming from the resource variation
Sry List of Sr

Sw Outlier stemming from disconnected nodes
Sw; List of Sw

F Factor value of 1.5 used to find the S

Symptom detection for outliers

Ananthanarayanan et al. [10] defined the outlier tasks” run-
time to be 1.5 times higher than that of the median task
execution time; their method is based on the assumption
that all tasks are started at the same time and are the same
type (i.e., the same input data and the same processing
code), which is not suitable for real-time symptom detection,
because in a time interval the tasks may be submitted at
different times; the input data size of the tasks and the code
for tasks are not always the same. In this paper, we use
Performance (P) to measure the outlier as shown in Eq[I} O
represents the normalized value of the task progress in terms
of percent work complete, and 7 is the normalized value of
the task execution time.

O
P = T @
Eq P is used to normalize the O and T, where i,
and Z,,q, are the minimal and maximal values of the given
metrics (eg., task progress and execution time) in a time
interval. We set b = 1 and a = 0.1 to restrict the normalized
values within the range from 0.1 to 1 [12].

( — Tnin) (b —a)

Tmaz — Tmin

Tnorm = @ + (2)

Moreover, we define the outlier tasks which have 1.5
times less performance value than the median performance
value in each time interval. Fig. f|shows a snapshot of a time



Algorithm 1: Automated symptom detection for
outliers
Input:

Jp - job progress in percentage,
F - factor,
N - name of the running task,
N - list of N,
O - progress of the task,
O - list of O,
T - execution time of the task,
T -list of T
Output: S; - list of outliers S.
// Create a list S to store the S
Sl < Sl [0]
// Initialize the mqq
Med < med[o]
while J,, < 100.0 do
//Clear the S; and P,
S; < Clear (Slnew’ S1)
Py - Clear (P/*°", P)
for each N in N; do
//Compute P
pP=g
2
/ /Insert the P into the P;
Py.add(P)

© B NG R W N R

o a
@ N R o

end

//Get the m4 from the P,

Meq < Median value of P

for each value of P, do

if (P *F) < meq then
/ /Insert the A into the S;
Sp.add(N)

end

[
NGB RBE3Iaa R

N
[~

end

/ /Update the S; in Diagnosis Generation component
S; < Update (S°", S1)

//Update the N, Oy, Ty, Jp

N < Replace (N/*°", N;)

O; < Replace (O7'°", Oy)

T; < Replace (T7*°%,Ty)

Jp < Replace (J;ww, JIp)

NNNNNDNNN
® IR U R @ N

N
°

end

@
S

interval (e.g., three seconds), and two mappers are identified
as outliers. More evaluations will be discussed in
Algorithm [I| demonstrates the proposed ASD (auto-
mated symptom detection) algorithm in the AutoDiagn
system. It is fed by the streaming data provided by the
AutoDiagn Monitoring system during job execution. First,
the performance of each running task is calculated (see
Algorithm [T} Line using Eq [1} Next, the median value
of the performance of all tasks is taken to be used to detect
outliers (see Algorithm [T} Line [16). Then, the tasks whose
performance is 1.5 times less than the performance of the
median task are selected as outliers (see Algorithm (1} Line
[20). As a final step, these tasks detected as outliers are sent to
the Diagnosis Generation component for root-cause analysis

(see Algorithm [T} Line 24).

4.2 Root cause analysis for outliers

When the detected symptoms are passed to the Diagnoser
Manager, the corresponded Diagnosers are executed for
trouble-shooting. The following subsection illustrates the
technology developed for analyzing the causes of outlier in
a Hadoop cluster.

4.2.1 Root cause of outliers

In this paper, we follow the three main reasons that cause
outliers, discussed in [10], i.e., Data locality, Resource het-
erogeneity, and Network failures.
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Fig. 5. Performance evaluation of the tasks

Data locality. Hadoop Distributed File System (HDEFES)
stores the data in a set of machines. If a task is scheduled to
a machine which does not store its input data, moving data
over the network may introduce some overheads to cause
the outliers issue.

Resource heterogeneity. The machines in a Hadoop cluster
may be homogeneous with the same hardware configura-
tion, but the run-time computing resources are very hetero-
geneous due to the multiple talents environment, multiple
concurrent processing task environment, machine failures,
machine overloaded etc. If a task is scheduled to a bad
machine (e.g., has less computing resource) it may cause
an outlier issue. Moreover, resource management systems
for a large-scale cluster like YARN split the tasks over the
nodes equally without considering the resource capacities of
the nodes in the cluster, but only takes into account sharing
the node’s resources among the tasks running on the node
equally by default[13]. That is more likely to raise an outlier
problem in the cluster.

Network failure. In Hadoop cluster, the network disconnec-
tion can cause the running tasks allocated on a disconnected
node to be restarted on other nodes, which may lead to the
task becoming an outlier and, increase the completion time.

The following illustrates the three algorithms that we de-
veloped to identify the outliers caused by the three reasons.

4.2.2 Detecting data locality issues

We assume that a non-local task (D) (e.g., mapper) is ex-
ecuted on a node where its input data is not stored (In the
following, we use Sd to represent non-local outliers). To detect
these tasks, we develop Algorithm [2[to check whether a set
of outliers is caused by a data locality issue. The input of
our algorithm is a list of detected outliers during the time
interval from ¢ to ¢ + 1 and one of its outputs is a list of
outliers which also belongs to the non-local tasks. First, we
query our time series database to obtain all non-local tasks
within the given time interval (see Algorithm [2} Line [2).
Here, QueryNonLocal (), a root-cause analysis AP, is
used to find the non-local ones among the running tasks
in that period of time. It compares the location where the
task is running (host node of the task) with the nodes
where the data block is replicated for fault tolerance via
information collection APIs shown in Table[l] taskHost ()



and blockHost (). If the task is not running on any of
these nodes (nodes hosting a copy of the block), this task
is marked as a non-local task. In the second step (Algorithm
Line ), we obtain the common elements of list D; and S;.
These elements symbolize the non-local outliers stemming
from a data locality issue.

4.2.3 Detecting resource heterogeneity issues

Algorithm [2| is designed to identify the outliers caused by
the resource heterogeneity. The tasks running on the nodes
which have less computing resource (R) tend to be outliers
[14] (in the following, we use Sr to represent outliers running
on the nodes which have less computing resource). In Algorithm
the list of detected outliers during the time interval from
t tot 4+ 1 is used as input and one of the outputs of the
algorithm is a list of outliers which also belongs to the tasks
running on the node with less computing resource. The time
series database is queried to obtain all the tasks running on
the node with less computing resource within the given time
interval (see Algorithm 2] Line 6).

Here, QueryLessResource (), a root-cause analysis
API, is used to check the heterogeneity of the nodes that host
only the running tasks based on the resource specifications
of them in that period of time. It detects the nodes with less
resource capacity in terms of CPU core numbers and the to-
tal amount of memory among the nodes hosting the running
tasks. The resource specifications of the nodes (i.e., CPU
core numbers, total amount of memory) are obtained from
each node via information collection APIs shown in Table
nodeTotalCoreNum () and nodeTotalMem () APIs. As a
second step (Algorithm [2} Line [8), we obtain the common
elements of list ; and 5;. These elements symbolize the
outliers stemming from a cluster heterogeneity issue.

4.2.4 Detecting network failure issues

Since 5; is obtained from Algorithm [I} a Diagnoser is exe-
cuted via QueryNodeHealth () to find all restarted tasks
due to the nodes disconnected by network failure within the
given time interval (see Algorithm 2} Line[10). The low-level
API restartedTasks () is called which distinguishes the
restarted tasks due to network failure from the speculation
of straggler tasks by analyzing the information of the tasks
that is provided by monitoring agent. Thereafter, we com-
pute the list Sw; that contains the outlier tasks caused by
the network failure (see Algorithm 2} Line [12).

4.2.5 Decision making

In this case study, we use a simple decision make method
that compares the lists Sd;, Sr; and Sw; and the probability
of the reasons of causing the outliers by using the number
of the elements of a list divides the total number of out-
lier tasks. For instance, the probabili'?l of the performance
reduction caused by data locality is ‘Ssdll‘l. More advanced
methods such as deep learning models can be used for pro-
cessing more complicated decision making tasks in future
work.

5 EVALUATION

In this section, we present a comprehensive evaluation
showing the capacity and the accuracy rate of AutoDiagn,

Algorithm 2: Root-cause analysis of outliers

Input: S; - list of outliers in time interval from ¢ to ¢ + 1

Output: Sd; - list of non-local outliers Sd,
Sr; - list of outliers stemming from resource variation Sr,
Swy - list of outliers stemming from disconnected nodes Sw.

// Find all D within the given time interval

D; < QueryNonLocal (t, t+1)

/ /Find the common elements in the D; and S;, and add them

into the Sd;

Sd; + RetainAll (D, S;)

// Find all R within the given time interval

Ry + QueryLessResource (t, t+1l)

/ /Find the common elements in the R; and S;, and add them

into the SI;

Sr; < RetainAll (Ry, Sp)

// Find all W within the given time interval

10 Wi < QueryNodeHealth(t, t+1)

11 //Find the common elements in the W; and S;, and add them

into the Swy;
12 Sw; < RetainAll (W, S;)
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as well as a analysis of its resource consumption and over-
heads.

5.1 Experimental setup

Environments. We set up the Hadoop YARN clusters over
31 AWS nodes with 1 master and 30 slaves with the Oper-
ating system of each node being Ubuntu Server 18.04 LTS
(HVM). The Hadoop version is 3.2.1 and the Hive version
is 3.1.1. To meet our experimental requirements, we built
two types of clusters. In Type I each node has the same
configuration (i.e., 4 cores and 16 GB memory). In Type 1II,
25 nodes have 4 cores and 16 GB memory and 6 nodes have
2 cores and 4 GB memory.

Benchmarks and workload. We used six well-known
Hadoop benchmarks in our evaluations namely: Word-
Coun Gre%TPC—I—E TPC—Dﬂ K-means clusterinﬂ
and PageRank™| The input of each benchmark application
is 30GB.

Methodology. Our experiments aim to evaluate the effec-
tiveness of AutoDiagn. To this end, we manually inject the
above-mentioned three main reasons to cause the outliers,
which can be summarized as three types of execution en-
vironment. Env A: we perform all benchmark experiments
in the cluster Type I. Env B: we perform all benchmark
experiments in the cluster Type I, but skew the input size
stored on different nodes. Env C: we perform all benchmark
experiments in the cluster Type II (a heterogeneous cluster).
Env H: we perform all benchmark experiments in the cluster
Type I, and disconnect some nodes’ network during execu-
tion. Each benchmarking is repeated 5 times and results are
reported as the average and standard deviation. In total,
there are 90 experiments, conducted in our evaluation.

5.2 Diagnosis detection evaluation

In this section, we evaluate the accuracy of our symptom
detection method. To this end, we execute our benchmarks

9. http:/ /wiki.apache.org/hadoop/WordCount

10. http:/ /wiki.apache.org/hadoop /Grep

11. http:/ /www.tpc.org/tpch/

12. http:/ /www.tpc.org/tpcds/

13. https:/ /en.wikipedia.org /wiki/K-means_clustering
14. https:/ /en.wikipedia.org/wiki/PageRank
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TABLE 3
The accuracy of symptom detection for non-local outliers in a
homogeneous cluster

Benchmark | Total | D Outliers Accuracy | Error
tasks (detected as Sd) (%) (o)
WordCount 234 32 29 90.63 3.9
Grep 236 37 33 89.19 4.8
TPC-H 102 13 12 92.31 6.72
TPC-DS 126 13 12 92.31 6.1
K-means 234 34 29 85.29 1.25
PageRank 235 28 25 89.29 6.2
TABLE 4

The accuracy of symptom detection for the outliers stemming from the
resource variation in a heterogeneous cluster

Benchmark | Total | R Outliers Accuracy | Error

tasks (detected as Sr) (%) (o)

WordCount | 234 | 37 33 89.19 2.77

Grep 236 | 26 24 92.31 4.77

TPC-H 102 9 8 88.89 5.47
TPC-DS 126 | 13 12 92.31 6.9

K-means 234 | 36 33 91.67 2.88
PageRank 235 30 28 93.33 5.35

in Env B to increase number of Sd tasks (see §4.2.2). Next,
to increase the issue of resource heterogeneity (Sr referring
to §42.3), we run the benchmarks in Env C. Thereafter,
we run the benchmarks in Env H to emulate the network
failure (Sw referring to §4.2.4). Finally, we compare the
detected Outlier tasks with the ground truths that are the
data locality, resource heterogeneity, and network failure
issues observed by the AutoDiagn diagnosing system.

Table[3] Table[d] and Table[f]summarize all the results. All
benchmarks achieve high accuracy by using our proposal
symptom detection method. The highest accuracy for both
Sd and Sr are 92.3%, and for Sw is 94.7% and the overall
accuracy for outlier detection is 91.3%, where the Error
represents the variation of the accuracy depending on the
repeated experiments.

We compute the accuracy of our symptom detection
method by using the number of detected outlier tasks di-
viding the actual number of the tasks that can cause the
outlier issue. Table [3} for example, D is the total number
of non-local tasks and Outliers (Sd) is number of detected
outlier tasks that belong to non-local task. Therefore, the
accuracy is %. Table@and Tablefollow the same approach
to compute the accuracy.

Outlier verification. To further verify the Sd, Sr, and Sw
are the main reasons causing the outliers, we conduct the
following comparison experiments: 1) comparing the exe-
cution time of local tasks and non-local tasks; 2) comparing
the execution time of the tasks running in Env A and Env
C; and 3) comparing the execution time of normal tasks and
restarted tasks due to network failure. Fig. proves that
non-local tasks consume more time than local tasks due to
the overload introduced by data shuffling. Additionally, we
compare the throughput of the local tasks and non-local
tasks in terms of how much data can be processed in each
second. Fig.[7]reveals that the throughput of non-local tasks

TABLE 5
The accuracy of symptom detection for the outliers stemming from the
network failures

Benchmark | Total | W Outliers Accuracy | Error
tasks (detected as Sw) (%) (o)

WordCount | 234 11 10 90.91 1.83
Grep 236 13 12 92.31 6.73
TPC-H 102 13 12 92.31 6.54
TPC-DS 126 15 14 93.33 543
K-means 234 17 16 94.12 4.33
PageRank 235 19 18 94.74 423

is only 70% that of local tasks.

Moreover, Fig. shows that the execution time of
the tasks running on Env A is less than that on Env C.
This is because the tasks are equally distributed to all
computing nodes and the less powerful nodes are saturated.
Furthermore, Fig. shows that the CPU usage of less
powerful hosts reaches 100%, thereby building a task queue
in these hosts, increasing the overall execution time. How-
ever, Fig.[9(b)|reveals that the powerful hosts have sufficient
computing resources for processing the allocated tasks.

Furthermore, Fig. shows that the execution time of
the restarted tasks are longer than the normal tasks. As
Fig. 8| illustrates that we compute the execution time of the
restarted task by adding the execution time of the task in
the disconnected node and that in the rescheduled node.

5.3 Performance and overheads

Performance evaluation. We evaluate the performance of
AutoDiagn by measuring the end-to-end response time of
symptom detection and root cause analysis. Since they are
not affected by the types of benchmark, we report the
average of the response time. Fig. shows that the
real-time symptom detection can achieve a low response
time, which only has 96 milliseconds and 1059 milliseconds
with 100 tasks and 1000 tasks, respectively. Although the re-
sponse time increases linearly, the parallel execution method
discussed in can be applied to reduce the latency. The
response time for root cause analysis is higher than that
of symptom detection. For 100 tasks and 1000 tasks, their
response times are 0.354 seconds and 5.974 seconds, respec-
tively. Unlike the symptom detection which is very sensitive
to latency because of the follow-up processes, triggering the
further root cause analysis or alerting the system managers.
Root cause analysis aims to provide a holistic diagnosing of
a big system and the analysis results may help to improve
the system performance in future. As a result, the real-time
root cause analysis is not compulsory.

System overheads. To evaluate the system overhead intro-
duced by AutoDiagn, we measure the CPU and memory
usage of AutoDiagn Monitoring (agent) and AutoDiagn
Diagnosing. Table [ shows that -AutoDiagn Monitoring only
consumes approximately 2.52% memory and 4.69% CPU;
while -AutoDiagn Diagnosis uses 2.08% memory and 3.49%
CpPU.

Fig shows the network overhead of AutoDiagn.
The extra communication cost introduced by our tool is
small but it increases when the number of parallel tasks
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increases. For example, when the number of parallel task is
100, there are about 45 messages per second sent from agents
to RabbitMQ cluster and the total size of these messages is
13.5 KB/s. The message rate and network overhead increase
to 615 per second and 223 KB/s, respectively, when the
number parallel tasks is 1000.

Storage overheads. AutoDiagn needs to dump the system
information to a database which may consume extra storage
resource. In our evaluation experiments, it only cost 3.75
MB disk space in total. Obviously, increasing the types
of symptom detection and root cause analysis will also
consume more storage resources. We discuss the potential
future work in §6

(b) Homogeneous cluster vs Heterogeneous (c) Normal tasks vs Restarted tasks caused by

network failure

TABLE 6
Resource overhead caused by AutoDiagn components

Components | Mem (%) | CPU (%)
AutoDiagn Monitoring 2.52 4.69
AutoDiagn Diagnosing 2.08 3.49

6 DiscussiON AND FUTURE WORK

Populating applications. In this paper, we propose a gen-
eral and flexible framework to uncover the performance
reduction issues in a big data system. In particular, we
developed and evaluated big data applications for outliers.
New applications (including symptom detection and root
cause analysis) are required to populate our system for
future work.

Overhead cost reduction. Our system is designed in a
loosely-coupled manner, the processing components can
be easily scaled. However, the storage overhead increases
with the number of applications increasing. [15] proposed a
caching method to aggregate the information before sending
to destination nodes. We will explore this direction in future
work to reduce the storage overhead and network overhead.

Performance improvement. Mantri [10] utilized the outputs
of the root cause analysis to improve the resource allocation
in Hadoop clusters. Thus, one open research direction is to
build a system which can react to analysis results, thereby
improving the performance of the big data system.

7 RELATED WORK

Much recent work in big data system focuses on improving
workflows [16], [17], [18], programming framework [19],
[20], [21]], task scheduling [22], [23], [24].

Root causes analysis. There is a large volume of published
studies describing the role of root-cause analysis. The au-
thors of [10], [25], [26] take the next step of understanding
the reasons for performance reduction. Mantri [10] charac-
terizes the prevalence of stragglers in Hadoop systems as
well as troubleshooting the cause of stragglers. Dean and
Barroso [25] analyze the issues causing tail latency in big
data systems. Garraghan et al. [11], [27] proposed a new
method to identify long tail behavior in big data systems
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and evaluated in google data trace. The authors in [28] use
offline log analysis methods to identify the root cause of
outliers in a large-scale cluster consisting of thousands of
nodes by tracking the resource utilization. Similarly, Zhou
et al. [29] use a simple but efficient rule based method to
identify the root cause of stragglers.

Along with these similar works, there are some re-
searchers using statistical and machine learning methods for
root-cause analysis. The authors of [30] introduce a Regres-
sion Neural Network (RNN) based algorithm to trouble-
shoot the causes of stragglers by processing spark logs.
More algorithms such as the associated tree and fuzzy data
envelopment analysis [31] and Reinforcement Learning [32]
are applied for finding the reasons of stragglers in Hadoop
and Spark.

In [33], a Pearson coefficient of correlation is used for
root cause analysis to measure linear correlation between
system metrics, workload and latency. However, these
works lack a systematic solution for root cause analysis for
big data processing systems and the proposed methods are
not applicable for real-time systems.

Different to other work, the authors of [34] propose a
new algorithm that aims to reduce the proportion of strag-
gler tasks in machine learning systems that use gradient-
descent-like algorithms. This work offers an idea to develop
new Diagnosers for machine learning system by using our
framework.

Anomaly detection and debugging. The authors in [35]
propose a rule-based approach to identify anomalous be-
haviors in Hadoop ecosystems by analyzing the task logs.
This work only analyzes the task logs, which fails to cap-
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ture the performance reduction issues caused by inefficient
utilization of the underlying resources. Next, Khoussainova
et al. [36] build a historical log analysis system to study
and track the MapReduce jobs which cause performance
reduction based on their relevance, precision and generality
principles. However, this cannot be performed for real-time
anomaly detection. Du ef al. [37] train a machine learning
model from the normal condition data by using Long Short-
Term Memory (LSTM) and this trained model is used for
detecting in Hadoop and OpenStack environments. Our
AutoDiagn provides infrastructure into which the trained
models can be plugged to enrich the applications.

Real-time operational data analytic system. Agelastos et al.
[38] propose a monitoring system for HPC systems, which
can capture the cases of applications competing for shared
resources. However, this system does not consider root
cause analysis of the performance reduction. The authors
of [5], [39] do not only provide the feature of real-time
monitoring, but are also able to identify the performance
issues and trouble-shoot the cause of the issues. In addition
to them, [40] uses a type of artificial neural network called
autoencoder for anomaly detection. They first monitor the
system in real-time and collect the normal data for training
the model used to discern between normal and abnormal
conditions in an online fashion. However, these systems are
developed for HPC clusters and are not suitable for big data
systems.

Table [7] presents a brief overview of various monitoring
tools for big data frameworks.



TABLE 7
The features supported by existing tools and AutoDiagn
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Feature DataDog| Sequence| Sematextf TACC| Mantrii DCDB| Nagios| Ganglia | Chukwal DMon AutoDiagn
[21 1Q [3] 141 (51 [10] 1391 [41] [42] [43] [44]
Real-time  monitor- | Yes Yes Yes Yes Yes Yes Yes Near Yes Near real- | Yes
ing real-time time
Root-cause analysis No No No No Yes Yes No No No Yes Yes
BigData frameworks | Good Poor Good No Poor No Poor Poor Poor Good and | Good and
support Extensible | Extensible
Underlying resource | Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
monitoring
Real-time  monitor- | Yes Yes Yes No Yes No No No Yes Yes Yes
ing for big data tasks
Auto-scaling Yes Yes Yes Yes Yes Yes No No Yes Yes Yes
Alerts Yes No Yes No No No Yes No No No Yes
Visualization of big | Yes No Yes No No No No Yes No No Yes
data tasks
User customized | No No No No No No No No No No Yes
root-cause analysis
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