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Abstract—Automatic modulation classification (AMC) is an important technology for the monitoring, management, and control of
communication systems. In recent years, machine learning approaches are becoming popular to improve the effectiveness of AMC for
radio signals. However, the automatic modulation open-set recognition (AMOSR) scheme that aims to identify the known modulation
types and recognize the unknown modulation signals is not well studied.
Therefore, in this paper, we propose a novel multi-modal marginal prototype framework for radio frequency (RF) signals (MMPRF) to
improve AMOSR performance. First, MMPRF addresses the problem of simultaneous recognition of closed and open sets by
partitioning the feature space in the way of one vs. other and marginal restrictions. Secondly, we exploit the wireless signal domain
knowledge to extract a series of signal-related features to enhance the AMOSR capability. In addition, we propose a GAN-based
unknown sample generation strategy to allow the model to understand the unknown world.
Finally, we conduct extensive experiments on several publicly available radio modulation data, and experimental results show that our
proposed MMPRF outperforms the state-of-the-art AMOSR methods.

Index Terms—Automatic modulation classification, machine learning, open-set recognition, radio signals, marginal prototype
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1 INTRODUCTION

AUTOMATIC modulation classification (AMC) is widely
applied in civilian and public security fields, such

as cognitive radio [1], radio reconnaissance [2], electronic
countermeasures [3], threat evaluation [4], and spectrum
monitoring [5], etc. AMC is considered one of the key
technologies for adaptive communication systems and has
important application prospects [1].

Most AMC methods focus on the closed-set setting
which assumes that all testing modulation types are known
in the training phase [6], [11], [12], [13], [14], [15], [16].
However, rejecting unknown radio frequency (RF) signals
is essential for many real-world applications. For instance,
RF fingerprint technology [17], [18] has been used for de-
vice authentication in IoT networks. To this end, the RF
authentication system needs to have the OSR capability to
reject unknown devices that are not in the database. An-
other example is that AMOSR is important for low-altitude
small flying object detection tasks (e.g., drone) in which
the computer-vision based solutions are easily limited by
the performance of the equipment and the influence of the
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environment [19]. Spectrum monitoring has the potential
advantage of detecting these objects while avoiding the
influence of the environment [20].

The key of AMOSR is to efficiently reject the unknown
modulation type while identifying the known modulation
type (detailed in §2.2). Classical deep learning usually ap-
pends a fully connected layer at the end of the network to
help with the classification task, and softmax is used to train
the network. As shown in Fig. 1b, softmax assigns proba-
bility distributions, i.e., feature subspaces, to each closed-
set class in the feature embedding space. It means that
each unknown class is also assigned to a uniform existing
feature subspace, which makes the distribution of known
classes and unknown classes in the feature space highly
overlapping [10]. As a result, AMOSR becomes particularly
difficult for traditional deep learning classification models
by using softmax function [21]. Fig. 1c show that AMOSR
needs to make an accurate description of the labeled known
classes, at the same time, to mitigate the overlapping area
between known and unknown classes in the feature space
[22].

In order to reduce the risk of open-set space by using
the softmax function, some prototype-based algorithms are
proposed, such as GCPL [9], RPL [7], ARPL [10]. These
methods generally use prototypes to represent each known
class in the feature embedding space and conduct open-
set recognition (OSR) or closed-set recognition (CSR) tasks
by computing the distance between the sample and the
prototype. However, as shown in Fig. 2b-2d and 2g-2i, it
is obvious that the high-density areas of unknown samples
(red) are highly overlapping with the known classes (pur-
ple) in the RF feature embedding space. It means that the
current advanced OSR algorithms provide poor results for
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(a) Original I-Q signals (b) Traditional AMC problem(c) Current AMOSR problem
Fig. 1. The difference between AMOSR and AMC in dataset Sig-2019 [6], where blue denotes unknown class and other colors denote known
classes: (a) original I-Q features without training; (b) the traditional AMC approach will apply the decision boundary surface of each class to perform
the classification task, which misclassifies unknown samples as known classes; (c) the current AMOSR method (RPL [7]) will restrict the decision
boundary surface for each class and use the open space to identify unknown samples.

(a) Softmax(closed- set) (b) GCPL(closed-set) (c) RPL(closed-set) (d) ARPL(closed-set) (e) MPRF(closed-set)

(f) Softmax(open-set) (g) GCPL(open-set) (h) RPL(open-set) (i) ARPL(open-set) (j) MPRF(open-set)
Fig. 2. The sample density heat map illustrates the RFF feature embedding space for known and unknown modulation types by 1D-CNN, as reported
[7], [8], [9], [10]. In the Sig-2019 radio recognition dataset [6], we designate 10 classes of samples as known and 2 classes as unknown. The first
row showcases the feature distributions within the closed-set sample space (represented by the purple heat map), while the second row illustrates
the feature distributions of unknown samples (depicted by the rainbow heat map). In this heat map, a deeper shade of purple or red signifies a
higher sample density. With a parameter set at 95% scope from the purple center (meaning the area outside the center is an open area eligible for
rejection), the open-set rejection rate of existing methods hovers around 5%-12% (almost identical across all methods). Our technique, on the other
hand, manages to pull a portion of the samples away from the target class centroid (represented by long stripes), achieving an open-set rejection
rate of approximately 62.5%.

the AMOSR scenario.

In this paper, we propose a general algorithmic frame-
work that combines the basic radio signal representations
including amplitude, frequency, and phase of the RF signal
with a marginal prototype-based network for AMOSR. We
first design a marginal prototype algorithm for AMOSR of
RF (MPRF), which can reduce the open-set space risk and
closed-set empirical classification risk by compressing the
known classes that are at the restricted margins according
to their prototype centers in the feature embedding distribu-
tion space. Furthermore, we leverage the expert knowledge
and extract general modal characteristics of the RF signal
(e.g., frequency, amplitude and phase). Finally, to explore
more unknown samples and allow the neural network to
understand the concept of unknown samples we propose a
generation scheme, MMPRF+. MMPRF+ effectively gener-
ates unknown samples which close to the borders of the
known classes to further improve the robustness of our
method. Fig. 2e and 2j demonstrate that our MPRF has a
tighter closed-set space and significantly reduces the over-
lap area between the known classes and unknown classes.
From Fig. 2e, the spatial scope of classes similar to the

unknown class is collapsed to a single point, which means
that it has a smaller overlap area with the open set. From Fig.
2f, our method can pull some of the samples out from the
center point (red) to avoid overlap (long strip distribution).
With the combined effect of a smaller closed-set scope and
pulled-out open-set samples, our MPRF can improve the
open-set recognition performance. Our contributions are
summarized as follows:

• To address the poor performance of the AMOSR task,
we analyze and extract key RF features (i.e., amplitude,
frequency, phase) that can significantly improve perfor-
mance.

• Compared to previous OSR algorithms, a new optimiza-
tion strategy is proposed with a marginal prototype and
has a lower open space risk;

• We develop a multi-modal framework for the extracted
generic RF features, which allows the retention of sepa-
rate features for different modes and thus mitigates the
problem of feature disappearance in OSR tasks;

• To enable the estimation of unknown open spaces, we
propose an online adversarial generation strategy for un-
known radio signals, which motivates the neural network
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to see more unknown samples in the AMOSR task.
2 BACKGROUND AND CHALLENGES

2.1 Background of wireless communication
In wireless communication systems, the message will be
modulated into a radio signal for wireless transmission.
Modulation aims to add information to a set of signals by
varying one or more properties of periodic electromagnetic
waves (carriers) [23]. A transmitted time modulation signal
r(t) can be illustrated as

r(t) = S(t) ∗ h(t) exp[j2π∆ft+ ψ0] + wgn(t), (1)

where ∗ represents the convolution operation, S(t) denotes
the modulated signal, h(t) denotes the impulse response
of the wireless channel, ∆f denotes the frequency offset
of carrier, ψ0 denotes the initial phase which reflects the
time delay, wgn(t) denotes the white Gaussian noise in
environment. For further distance transmission, the mod-
ulated signal is usually carried on a high-frequency carrier
wave of frequency ∆f . In addition, the different modulation
of the signal is achieved by using variations in amplitude,
frequency, and phase.
2.2 Problem Definition for AMOSR
An AMOSR scenario consists of three main phases, i.e.,
RF features (RFF) extractor, AMOSR, and AMC. In the
first phase, a set of RF transmitters (Txs=Tx1,Tx2,...,TxK ) is
capable of transmitting RF signals to the RF receiver (Rx).
A given RF signal sk(t) which is generated by the k-th Tx
is transmitted to the Rx. In order to allow the computer
to process the (rk(t)), we need to transfer the continuous
time series signal to a set of discrete time series signals via
sampling xk(n) = sample(rk(t)), where ∀xk(t) ∈ RN and
N denotes the dimension. Finally, the RFF extractor extracts
the features RFF(i) and feeds them to a deep neural network
(DNN) model to identify the type of modulation.
AMOSR V.S. AMC. As we discussed above, the DNN
model is trained to identify the Txs or a set of categories
of Tx that remain the same during both training and testing
phases. In real world scenarios, there is large number of
unknown Txs that may come from the classes that have
not yet been encountered in the training classes. Thus, the
AMOSR not only identify the differences between training
classes (i.e., AMC), but also inference whether an unknown
Txs comes from the training classes. As shown in Fig. 2,
if a model performs well in AMC, it does not necessarily
perform well in AMOSR.
The problem definition of AMOSR. Given a training RF
dataset Dtr = {(xi(t), yi)|i ∈ M,xi(t) ∈ RN} with M
samples, where yi ∈ {y1, y2, ..., yK} denotes the label of
sample xi. We then define the potential unknown data
as Du = {(xu(t), yu)|yu = {K + 1}}, which shows that
potentially unknown data may come from quite different
categories, and their specific categories are not important to
AMOSR and we uniformly define its label as K +1. During
the testing phase of AMOSR, there exists a large amount of
test data, Dte = {(x(t)′, y′)|y′ ∈ {1, 2, ...,K +1}}, and their
labels belong to {1, 2, ...,K + 1}, i.e., contains both known
and unknown samples. In the AMOSR scenario, we aim to
recognize unknown samples Du in the test set as category
{K + 1} as well as correctly classify the known category
samples Dte −Du.

The key of AMOSR is the necessity to minimize both the
open space risk Ro in M -dimensional full space RM as well
as the closed space empirical risk Re on AMC as illustrated
in Eq. 2.

argmin
fθ

{ξRe(Dte −Du; fθ) + (1− ξ)Ro(Du; fθ)} (2)

where fθ : RM → K denotes the parameters of the multi-
class recognition function, and ξ denotes the weight param-
eter. The function fθ maps the closed-set data Dte − Du to
the label {1, 2, ...,K}. In particular, AMOSR is to measure
the uncertainty of classifying an unknown sample as known
or unknown, which can be formulated as

Ro(Du; fθ) =
∫
Du

fθ(x)dx∫
Dte

fθ(x)dx
. (3)

We can observe that more unknown samples classified as
known will increase the open space risk Ro. Then in a prac-
tical multi-classification task, AMOSR is viewed as multiple
binary classification tasks, i.e., it needs to compare with K
known classes separately. Therefore, the Eq. 2 can be further
rewritten as

argmin
fθ

{ξRe(Dte −Du; fθ) + (1− ξ)
K∑
k=1

Ro(Du; fθ)} (4)

As a result, the goal of AMOSR aims to obtain a feature
embedding function fθ from the training set Dtr, which can
minimize Eq. 4.
2.3 Research Challenges: RFF vs. image

Although existing OSR algorithms [7], [9], [10], [24], [25]
have made tremendous advances in computer vision,
there are significant challenges in implementing them for
AMOSR. Fig. 2 shows that the SOTA (state-of-the-arts) OSR
algorithms do not work significantly in AMOSR scenarios.
Additionally, Fig. 4 shows the proposed framework outper-
forms other SOTA solutions, which proves the importance
of the basic components of the signal. We take 2FSK and
8FSK of the dataset Sig-2019 [6] as unknown classes and
the rest 10 classes as known. It can be obviously noticed
that the false positive rate (FPR) using the original I-Q data
in the AMOSR task is 88.70% and the neural network has
difficulty in rejecting the unknown classes effectively. In
contrast, we extracted the key information of frequency,
phase, and amplitude, which significantly reduce the FPR.
As a result, we summarize the main reasons as follows.
High similarity of modulation methods. Fig. 3 gives the
constellation diagram of 8 different signal modulation meth-
ods. After that, we can obviously observe that there is a
significant difference between the major classes of modula-
tion on the constellation diagram. However, the differences
in the constellation diagrams between subclasses are subtle
and are difficult to distinguish by constellation diagrams
such as 2FSK, 4FSK, and 8FSK. Minor modifications of
homogeneous modulation parameters lead to a high degree
of similarity, which brings significant challenges for the
AMOSR task.
Lack of expert knowledge. Inspired by the field of speech
recognition, mel frequency cepstral coefficient (MFCC) [26]
is widely used to enhance the discriminability of the
speaker’s voice patterns to achieve better performance.
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Fig. 3. Scatter plot of 8 modulated I-Q signals in the Sig-2019 [6] at a signal-to-noise ratio (SNR) of 30 dB.

3 2 1 0 1 2
Distance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
is

tri
bu

tio
n 

of
 D

is
ta

nc
e

Position at 95% TPR in train set 
 TPR:93.89% FPR:88.70%

Test Set
Open Set

(a) Original I-Q amplitude data
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(b) Frequency and amplitude features
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(c) Phase and amplitude features
Fig. 4. AMOSR performance with different RF features in dataset Sig-2019 [6], where 2FSK and 8FSK as the unknown class: (a) original I-Q
amplitude data; (b) frequency and amplitude features; (c) phase and amplitude features. It is obvious that the extracted frequency, phase and
amplitude features have a lower false positive rate (FPR) compared to the original I-Q data when a threshold of 95% true positive rate (TPR) is set
for the train set.

However, in AMOSR tasks, the expert knowledge (e.g., tra-
ditional radio signal processing method) is not well attached
to the deep neural network. One of the key advantages
of expert knowledge is to find a better representation of
the features thereby allowing the neural networks better
to distinguish the known classes and the unknown classes.
Catastrophic feature disappearance. In supervised learning,
the classifier aims to extract specific features that can ac-
curately classify samples in the closed set space, but these
features are not always valid for AMOSR. We believe the
biases of supervised learning lead to the critical features
for unknown classes disappear, i.e., catastrophic feature
disappearance.
Key Design Ideas. Based on the above findings, our key
ideas consist of three main points: (1) extracting more key RF
features that can work for AMOSR; (2) avoiding catastrophic
disappearance of the extracted key features during training;
(3) designing more effective algorithms.
3 MULTI-MODAL BASED MARGINAL PROTOTYPE
FRAMEWORK
3.1 Overview

To combine the advantages of both expert knowledge and
deep learning, we propose a multi-modal based marginal
prototype framework for AMOSR as shown in Fig. 5. First,
the feature extractor extracts the expert knowledge of the
radio signals through signal processing technologies, gen-
erating different modalities of the signal (§3.2). We then
employ a modal fusion operation to combine different
modalities and apply the proposed MPRF algorithm for

training and test of the AMOSR task (§3.3). After that,
to prevent the catastrophic disappearance of features, we
use the modal factoring operation to extract the internal
differences between various modalities and employ a space
learning method for simultaneous training with the pro-
posed MPRF algorithm (§3.4.1). In particular, we introduce
space learning operations to achieve a joint representation
of fusion and factoring features. Finally, a new loss function,
similarity calculation is developed for training MMPRF for
performing AMOSR (see §3.4.2). Table 1 shows the notations
used in the following context.

3.2 Feature Extraction
In this subsection, we first show the significant improve-
ment in performing AMOSR by adding expert knowledge.
Next, we illustrate our multi-modal extraction method that
transforms the original radio signal into different represen-
tations, which improves the ability of feature extraction of a
deep neural network.
The importance of expert knowledge. We perform an
AMOSR task on dataset Sig-2019 [6] and assumed that 10
classes are known and 2 classes are unknown samples.
Fig. 4 shows that the increase of modal characteristics of
the radio signal increases the distribution distance between
the known and unknown classes. The following provides a
deeper discussion of this observation.

As described in section 2.1, modulation signal S(t)
mainly uses the changes in amplitude, frequency, and phase
to carry the information of the binary bit stream sb(t),
i.e., Amplitude-shift keying (ASK), Frequency-shift keying
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Fig. 5. The workflow of MMPRF framework. Firstly, the feature extraction module extracts key representations of the signals. Secondly, the modal
fusion and factoring module uses CNN to learn the signal features by the MPRF algorithm respectively. Finally, the AMOSR and AMC tasks are
performed by similarity calculation.

TABLE 1
Important Symbol Notations

Notation Description
I(t),Q(t) I-Q data
xk(t) The k-th RF discrete signal
Y RF signal label
K Thr number of categories
D Dataset
fθ Neural network parameters
A(t) Amplitude of signal
F (w) Frequency of signal
ψ(t) Phase of signal
Pn Non-adjacent point
P Prototype point
R Limiting radius
zfu Fusion feature
zfa Factoring feature
ζ Threshold
Dθ Discriminator parameters
Gθ Generator parameters

(FSK), and Phase-shift keying (PSK). In general, the S(t)
can be represented in three ways, i.e.,

ASK : S(t) = Acsb(t) exp[j2πfct],

FSK : S(t) = Ac exp[j2πfct+ j2π∆f

∫ t
0 sb(τ)dτ ],

PSK : S(t) = Ac exp[j2πfct+ j2π(∆psb(t) + ψ0)],
(5)

where Ac denotes the carriers amplitude, ∆f denotes the
frequency modulation factor, ∆p is the phase modulation
factor and τ denotes the time delay. From Eq. 5, we can
obvious that the amplitude A(t) in ASK, frequency F (t) in
FSK and phase ψ(t) in PSK of the carriers are dependent
with sb(t), which can be represented by

A(t) = Acsb(t) ∝ sb(t),

F (t) = fct+∆f

∫ t
0 sb(τ)dτ ∝ ∆f

∫ t
0 sb(τ)dτ,

ψ(t) = ∆psb(t) + ψ0 ∝ ∆psb(t).
(6)

Extracting features via expert knowledge. Eq. 5, 6 illus-
trate that the variation of A(t), F (t), ψ(t) carries the main
information of the modulated signal, so we can focus on
extracting these three pieces of information to help the
task of AMOSR. In addition, to facilitate signal information
extraction and signal recovery, in-phase signals and the
quadrature-phase signal are used to jointly characterize the
relevant modulation information, i.e. I-Q data [27]. So we
define the received discrete complex signal as xIQ(n) =
{xI(n), xQ(n)} which is sampled from r(t), denoted as
shown in Eq. 7

{xI(n), xQ(n)} = sample{rI(t), rQ(t)},
{rI(t), rQ(t)} = {Re{r(t)}, Im{r(t)}},

(7)

where xI(n) denotes the in-phase signal, xQ(n) represents
the quadrature-phase signal, Re is the real part and Im in-
dicates the imaginary part. We then can extract the discrete
amplitude Ar(n), discrete frequency spectrum Fr(w) and
discrete phase ψr(n) modal of the signal at the Rx side by
following operations.

Ar(n) =
√
xI(n)

2
+ xQ(n)

2
,

Fr(w) = F [xIQ(t)] =
∑M−1

t=0
xIQ(t) exp(−jwt),

ψr(n) = arctan(xQ(n)/(xI(n) + ε)),

(8)

where F [•] is the fast Fourier transform (FFT), w indicates
the discrete frequency bit and ε denotes the microconstants.
Fig. 5 shows that modal fusion operation (i.e., concat) com-
bines the various representation of signals and then feed
them into a CNN fθ for feature extraction. The obtained
fusion representation zfu is formalized as

zfu = conv(concat{xIQ(n), Ar(n), Fr(w), ψr(n)}; fθ) (9)

where zfu ∈ Rd, d denotes the representation space di-
mension and conv denotes the convolution layer. Finally,
we subject the extracted zfu to the AMOSR task by our
proposed MPRF algorithm.
3.3 Marginal Prototype Framework for AMOSR
As shown in the Fig. 6, the proposed MPRF algorithm
consists of two main steps, including non-adjacent points for
classification (Fig. 6(a)-6(b)) and adversarial marginal prototype
constraint (Fig. 6(c)-6(d)). During the non-adjacent points for
classification phase, our design idea is to make the DNN
model capable of identifying unknown samples. The non-
adjacent points define the sample space that does not belong
to the target class, i.e., ”what is not like it?”. To this end, as
shown in Fig. 6(a)-6(b), the target class samples limited to
a space of radius R will move away from the non-adjacent
point and the non-target class samples will move closer to
the non-adjacent point. Finally, the model learns which sam-
ples do not belong to the target class and thus have the abil-
ity to reject unknown samples, i.e. the way of one vs. other are
formed. However, the target class sample distribution is still
sparse as shown in Fig. 6(b), bringing a significant AMOSR
risk. Therefore, in the adversarial marginal prototype constraint
phase, we propose a marginal prototype constraint that
intends to further compress the spatial distribution of target
class samples to mitigate the AMOSR threat. Our key idea
is to first calculate the prototype points of the target class
and cluster the target class samples towards the prototype
points as shown in Fig. 6(c).
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Fig. 6. The workflow of MPRF algorithm. First, MPRF discriminates the non-target class samples by being defined as non-adjacent points. After
that, the target class samples will be far away from the non-adjacent points and at the edge of the feature embedding space. Finally, the target class
samples will calculate their prototypes and further tighten them.

3.3.1 Non-adjacent Points for Classification
In this section, we introduce non-adjacent points that allow
CNN able to perform AMC tasks while learning the ability
to distinguish the samples from unknown classes. We first
define the non-adjacent points of target category yk as Pkn ,
which is regarded as the latent representation of the data
D ̸=yk
te ∪ Du. Hence, the samples of D ̸=yk

te and Du should be
closer to the non-adjacent points Pkn than the target class
sample Dyk

te , formulated as

max(ℓ(D ̸=yk
tr ∪ Du,Pkn; fθ)) ⩽ l,∀l ∈ ℓ(Dyk

tr ,Pkn; fθ), (10)

where l denotes the distance and ℓ denotes the distance
metric function. Based on Eq. 10, the sample space of the
target class yk creates an opposing form of one vs. other.
Distance metric. After that, in a d-dimensional feature
space, we define the distance metric function ℓ, which
is a foundation for performing AMC and AMOSR tasks.
In this paper, we define the distance metric function
ℓ(fθ(x(n)),Pkn) as illustrated in Eq 11 that is calculated
by the Euclidean distance ℓe(fθ(x(n)),Pkn) subtracting the
dot product distance ℓd(fθ(x(n)),Pkn). The set of sample
features x(n) and the specific distance metric can be repre-
sented as follows

ℓ(fθ(x(n)),Pkn) = ℓe(fθ(x(n)),Pkn)− ℓd(fθ(x(n)),Pkn).
x(n) = {xIQ(n), Ar(n), Fr(w), ψr(n)},

ℓe(fθ(x(n)),Pkn) =
1

d

∥∥∥fθ(x(n))− Pkn
∥∥∥2
2
,

ℓd(fθ(x(n)),Pkn) = fθ(x(n)) · Pkn.
(11)

Eq. 11 indicates the closer distance the higher similarity
between samples and non-adjacent points. Note that the
combination of Euclidean distance and dot product distance
can better reflect the similarity of two samples in terms of
distance and angle [21].
Classification. Then, according to the defined distance met-
ric, we need to determine the representations fθ(x(n)) of
the target sample x(n)k belonging to which class. Therefore,
in the feature space of multi-class classification, we drive
the target class samples x(n)k to have a farther distance
from non-adjacent points Pkn relative to other non-adjacent
points P ̸=k

n as shown in Fig. 6 (a). We define the generated
unknown classes and the other known classes in the sample

as non-target classes and drive them close to non-adjacent
points Pkn . Our final class probabilities are calculated by

p(y = k|x(n), fθ,Pn) =
exp(ℓ(fθ(x(n)),Pkn))∑K
i=1 exp(ℓ(fθ(x(n)),Pin))

. (12)

So we minimize the non-adjacent point-based classification
loss Lc and optimize the neural network parameters fθ .

Lc(x(n); fθ,Pn) = − log p(y = k|x(n), fθ,Pn). (13)

We can observe that when we try to minimize Eq. 13, the Eq.
12 is maximized, i.e., we are able to maximize the distance
of the sample Dyk

tr to the Pkn , which is formulated as

argmax
fθ

ℓ(Dyk
tr ,Pkn; fθ). (14)

Additionally, the above approach enables CNN to have
the ability of discriminate the unknown, while bringing
the following drawbacks. Maximizing Eq. 12 leads to a
continuous enlargement of the open space, and the closed
set space samples are not further reduced. As shown in Fig.
6 (a), the target class continues to move away from its non-
adjacent point with an increase in radius R, which makes
the spatial distribution of the target class samples larger and
makes the distribution sparse. The following elaborates on
how to further de-constraint the feature space.
3.3.2 Adversarial Marginal Prototype Constraint
In this subsection, we aim to restrict the distance of all
sample Dtr ∪Du within the radius Rk, which is formalized
as:

max ℓ(Dtr ∪ Du,Pkn; fθ) < Rk. (15)

The Eq. 15 can be further derived to the following loss
function as:

Lb(x(n); fθ,Pkn,Rk) = max{ℓ(fθ(x(n)),Pkn)−Rk, 0}.
(16)

Minimizing Eq. 16 drives the target class samples x(n)k to
be at the boundary of the feature space with radius Rk as
shown in Fig. 6 (b). However, the distribution of these target
class samples is still sparse, and we believe that further
reduction of the closed set space of x(n)k can reduce the
risk of open space. To achieve this, we use the target class’s
prototype points to tighten the known class distribution
space.
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We use Eq. 17 to compute the prototype points Pk of
n samples of x(n)k which allocates on the boundaries of
space.

Pk =
1

n

∑n

i=0
fθ(x(n)

i
k). (17)

The prototype points Pk is the mean center of a class of
embedded features, and we aim to move the similar samples
closer to the center for the purpose of shrinking the closed
set space. Thus, we define the optimization goal as:

argmin
fθ

ℓ(Dyk
tr ,Pk; fθ). (18)

There are some limitations in calculating the prototype
Pk. As shown in Fig. 6 (c), we must consider the case
that the target class sample is at the boundary of a circle
with distance R from the Pkn . The prototype point Pk is
computed in such a case may be close to the Pkn , i.e., the
center of the circle. However, we expect the samples to be
far from the Pkn and close to the Pk. Once the prototype
points are close to the Pkn , this deviates from our expectation
and makes the CNN optimization harder. We must consider
the relative position of prototype points in relation to non-
adjacent points. Therefore, we make the prototype fixed by
imposing restrictions on the Pk to keep the prototype at the
boundaries, i.e. the furthest point relative to a non-adjacent
point. This operation provides a more precise direction of
aggregation of the target classes as shown in Fig. 6 (c). This
operation is formulated as

min ℓ(fθ(x(n)
k),Pk)

s.t. ℓ(Pk,Pkn)−Rk = 0
. (19)

Then, we define the marginal prototype constraint loss Lp
in Eq 20.

Lp(x(n)k; fθ,Pk,Rk) =
ℓ(fθ(x(n)

k),Pk) + β(ℓ(Pk,Pkn)−Rk),
(20)

where β ∈ (0, 1) is a hyperparameter.
Finally, in the adversarial marginal prototype learning,

we combine the Eq. 13, 16 and 20 to obtain the overall loss
function as

argmin
f∗
θ ,P∗

n,P∗,R∗
L = Lc + Lp + αLb

=− log p(y = k|x(n), fθ,P)

+ℓ(fθ(x(n)),P) + β(ℓ(P,Pn)−R)

+αmax{ℓ(fθ(x(n)),Pn)−R, 0}

(21)

where R∗, P∗
n, P∗ are the learnable parameters, α ∈ (0, 1)

is a hyperparameter.
3.3.3 MPRF Working Procedure

This subsection illustrates the working procedure of MPRF,
which is summarized in Alg. 1. MPRF is the core OSR
algorithm in the overall framework of Fig. 5. Line 1 shows
that MPRF randomly generatesK non-adjacent points in the
feature embedding space and the CNN network parameters
are initialized. Then, the MPRF calculates the loss of non-
adjacent points and prototype points by using Eq. 21 to
drive the movement of the samples in space (Line 4-8).
Finally, the parameters are updated during the training
procedure (Line 9-14).

Algorithm 1: MPRF Algorithm for AMOSR Task

Input: Training data Dtr = {xi(n), yi}Mi=1, initialized
CNN parameters fθ , non-adjacent points Pn,
prototype P , radius R, and hyperparameter
α, β in loss Eq. 21, learning rate lr

Output: The optimal parameters f∗θ , P∗
n, P∗ and R∗

1 Initializing the CNN parameters fθ , Pn and R;
2 for epoch = 1 to Epoch do
3 for batch in Dtr do
4 Calculate classification loss Lc by Eq. 13 ;
5 Calculate boundary loss Lb by Eq. 16 ;
6 Update local prototype P∗ by Eq. 17 ;
7 Calculate prototype loss Lp by Eq. 20 ;
8 Calculate overall loss L = Lc + Lp + βLb;
9 Compute the backpropagation error by

∂L
∂x(n) =

∂Lc

∂x(n) +
∂Lp

∂x(n) + α ∂Lb

∂x(n) ;
10 Update the parameters P∗

n by
P∗
n = Pn − lr · ( ∂Lc

∂x(n) + α ∂Lb

∂x(n) );
11 Update the parameters R∗ by

R∗ = R− lr · α · ∂Lb

∂x(n) ;
12 Update the parameters f∗θ by

f∗θ = fθ − lr · ( ∂Lc

∂x(n) +
∂Lp

∂x(n) + α ∂Lb

∂x(n) );
13 end
14 Update fθ = f∗θ ,R = R∗,Pn = P∗

n,P = P∗;
15 end
16 return the parameters fθ , Pn, P and R

𝑧𝑓𝑢

𝑧𝑓𝑎
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Alignment

Fusion 

Space

Factoring

Space

Factoring Space 
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Fig. 7. Space learning operation: In MMPRF, we want to merge different
signal modal features to serve OSR. Therefore we need to align the
features zfu and zfa in space, i.e., mainly align the respective non-
adjacent and prototype points.

3.4 Multi-Modal Marginal Prototype Framework for
AMOSR

The above MPRF based on modal fusion can extract the
features zfu of the combined representation of modalities.
However, MPRF can not overcome the challenge of feature
disappearance. To this end, we first extract each signal
modality separately to allow the network to understand
each modal while identifying their differences. In order
to combine fusion features and factoring features for the
AMOSR task, we use space learning operations to imple-
ment the alignment of feature space. The space alignment
operation allows features from different modals to be jointly
represented at the same scale. Finally, we define a similarity
calculation to provide key criteria for AMC and AMOSR
tasks.
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3.4.1 Multi-Modal Learning

Multi-CNN modal factoring learning. Fig. 5 shows that we
use a modal factoring operation to make different features
xfa(n) = {Ar(n), Fr(w), ψr(n)} independent in the CNN
channel during the training process so that they do not inter-
act with each other. We believe that learning these features
independently by multiple CNN models and combining
them at the end of the network will effectively alleviate
the challenge of catastrophic feature disappearance. This is
because in this process, different signal modal features are
individually preserved and can be used as key features for
AMOSR tasks.

The extracted factoring features zfa are then concate-
nated for subsequent computation, which can be repre-
sented by

zA, zF , zψ = (convA(Ar), convF (Fr), convψ(ψr); f
′
θ),

zfa = concat({zA, zF , zψ|z ∈ Rd}),
(22)

where zA, zF , zψ denote the features representation of
Ar, Fr, ψr under CNN f ′θ corresponding convolutional layer
channels convA, convF , convψ .
Space learning. Since the AMOSR task in this paper relies
on distance measures for prototype and non-adjacent points
(see in subsection 3.4.2), we need to align the relevant
points in the fusion space zfu and the factoring space zfa.
The above operation provides a uniform spatial reference,
which fairly integrates the distances between samples and
prototype points from different spaces. We therefore define
the prototype and non-adjacent points in the fusion space
as Pfu, Pfun . Similarly, Pfan , Pfa represent the points in
the factoring space. Then, we align the non-adjacent and
prototype points for each category through Eq 23:

min
1

K
(
∥∥∥Pfun − Pfan

∥∥∥2
2
+

∥∥∥Pfu − Pfa
∥∥∥2
2
). (23)

Fig. 7 shows that the prototype points and non-adjacent
points of the factoring space are synchronously aligned
towards their corresponding points in the fusion space.
Finally, we can calculate their relevant distance differences
under a uniform spatial metric.

3.4.2 Similarity Calculation

Once the fusion and factoring spaces are aligned and the
CNN is trained jointly, we need to evaluate the performance
of the AMOSR task. We measure the difference between
the test sample and the known sample by using a sim-
ilarity calculation. Therefore, we calculate the similarity
by computing the distance between the test sample and
the prototype points in the two spaces separately. So the
MMPRF use Eq. 24 to calculate global prototype points for
each class against the training set data.

Pfu =
1

N

N∑
i=1

∥zfu∥22,P
fa =

1

N

N∑
i=1

∥zfa∥22. (24)

Then, for each sample, its distance relative to the prototype
Pfu and Pfa in two feature space is jointly calculated by

ℓ(x(n);Pfu,Pfa) = (λℓ(f ′θ(x(n)),Pfu)
+(1− λ)ℓ(f ′θ(x(n)),Pfa))

, (25)

Algorithm 2: MMPRF Algorithm for AMOSR Task
Input: Training set Dtr, initialized CNN parameters

fθ, f
′
θ , non-adjacent points Pfun ,Pfan ,

prototype Pfu,Pfa, and hyperparameter λ
Output: Prediction results ỹk

1 Initializing the network parameters fθ, f ′θ ;
2 for epoch = 1 to Epoch do
3 for batch in Dtr do
4 Feature extraction

zfu = fθ(xfu(n)), zfa = f ′θ(xfa(n));
5 Calculate local Pfun ,Pfan and Pfu,Pfa for

zfu, zfa by MPRF;
6 Update parameter fθ,Pfun ,Pfu;
7 Frozen Pfun ,Pfu and space learning for

Pfan ,Pfa by Eq. 23;
8 Update parameter f ′θ,Pfan ,Pfa;
9 end

10 Calculate global prototype Pfu,Pfa;
11 Calculate threshold ζ∗ by Eq. 26;
12 end
13 Predicting test set x(n)′ to get ỹk by Eq. 27;
14 return ỹk

where λ denotes the hyperparameter. Similarity is expressed
in terms of distance, and the smaller distances the higher
similarity.

Finally, the test set samples will first be determined
belonging to a class ỹk based on the distance by Eq. 12 and
compared with the corresponding class threshold ζk to de-
termine whether they are unknown samples. To obtain the
the class threshold ζ∗, we consider the distance containing
δ% of the samples, which can be calculated as follows

ζ∗ = argmin
ζk

{p[ℓ(Dyk
tr ;P

fu
k ,Pfak ) < ζk] > δ}Kk=1, (26)

where ζ∗ denotes the optimal threshold. The OSR confirma-
tion calculation is shown below

ỹk = argmax
yk

(p(y = k|x(n)′, fθ,Pfun ))

ỹk =

{
yk, if ℓ(x(n)′;Pfuk ,Pfak ) ⩽ ζ∗k ,

yK+1, else.

(27)

Alg. 2 describes the working procedure of MMPRF. We
first perform feature extraction to obtain the zfu and zfa
(Line 4). Then we calculate the prototype points and non-
adjacent points in the two spaces separately by Eq. 24 (Line
5). The fusion features are optimized to obtain the updated
parameters (Line 6). The space alignment operation will
then update the parameters of the factoring features by Eq.
23 (Line 7-8). Finally, the prediction task is performed by Eq.
26, 27 (Line 10-14).

4 ONLINE ADVERSARIAL ENHANCEMENT OF MM-
PRF
In the real physical world, our proposed MMPRF still has
limited performance due to the presence of a large number
of unknown samples. We need to let the deep learning
model imagine sufficient unknown samples thereby adapt-
ing to the unknown world. In this paper, we further propose
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Fig. 8. The basic framework of MMPRF+.

the MMPRF+ algorithm which mainly uses GAN to gen-
erate unknown RF signal samples. When the distribution
of unknown samples is difficult to predict, the key advan-
tage of GAN is to generate unknown samples of arbitrary
distribution [10], [28], [29]. However, in traditional GAN-
based generation methods, the GAN is directed to generate
samples with a high degree of similarity to the known sam-
ple distribution [30], which is not applicable in our AMOSR
scenario. For the generated unknown samples we expect
that they should be both somewhat similar and distinct from
each other with respect to the known sample distribution
[21]. Once the generated samples are highly similar to the
known samples, it will disrupt the recognition performance
of the neural network. To achieve the above purpose, we
propose a GAN-based online adaptive generation method.
4.1 Online Learning Enhancement

As shown in Fig. 8, the MMPRF+ first utilizes GAN to
generate samples that are similar to known samples but far
from the prototype points. These samples are then added to
the MPRF algorithm for joint training to allow the CNN to
understand unknown classes.
Sample generation. A GAN consists of a generator Gθ
and a discriminator Dθ , where the generator Gθ ran-
domly samples from a priori Gaussian distribution latent
z = sample(N (0, σ2)) to generate false samples, where σ
denotes variance. The discriminator Dθ discriminates the
authenticity of the samples, i.e., True or False. First, the GAN
will train its discriminator Dθ to have superior discrimina-
tory performance. Given a priori latent distribution {zi}Ni=0

and training data Dtr = {xi(n)}Ni=0, the discriminator Dθ is
optimized through Eq. 28.

max
Dθ

1

N

N∑
i=1

[logDθ(xi(n)) + log(1−Dθ(Gθ(zi)))]. (28)

Then, the generator Gθ , in order to be able to generate
more realistic samples, is optimized by generating a sample
to spoof the discriminator Dθ , which can be calculated as

min
Gθ

1

N

N∑
i=1

− logDθ(Gθ(zi)). (29)

Finally, after a continuous game of generator Gθ and dis-
criminator Dθ with GAN, we will generate samples that are
similar to known samples, but not unknown samples.
Generation of unknown samples. To generate unknown
samples, our key idea is to add the generated samples online

to the MPRF training process, which means that we can be
able to control the sample generation direction of the GAN
in real-time. As shown earlier, in MPRF, non-adjacent points
define non-target class regions and prototype points define
target class regions, which suggests that the unknown class
of samples should be close to the non-adjacent points. As
shown in Fig. 8, we aim to generate similar samples of target
class that are close to the non-adjacent points Pn and away
from the prototype points P . Therefore, we use the triplet
loss (see Eq .30) to control the direction of movement of
generating unknown samples in the feature space. Then the
direction of sample generation for the generator Gθ can be
controlled by the following equation:

min
Gθ

1

N

N∑
i=1

max{ℓ(Gθ(zi),Pn)− ℓ(Gθ(zi),P) +R, 0}.

(30)
The Eq. 30 shows that the generated samples Gθ(zi) is close
to the non-adjacent points Pn and always have a margin of
distance R from the prototype point P . We then define the
cost function J (Gθ(zi)) for simplification purposes

J (Gθ(zi)) = max{ℓ(Gθ(zi),Pn)− ℓ(Gθ(zi),P) +R, 0}.
(31)

We sum the Eq. 29 and Eq. 31, and the optimization goal of
generator Gθ is formalized below.

min
Gθ

1

N

N∑
i=1

(− logDθ(Gθ(zi)) + γJ (Gθ(zi))), (32)

γ denotes the hyper-parameter.
Training of unknown samples. Finally, the joint of Eq. 28
and Eq. 32 can generate a large number of unknown samples
online that are far from the prototype point. The generated
samples are fed to MMPRF for training and the parameters
are optimized as follows.

argmin
fθ,Pk

n ,R
k,Pk

L = Lc + Lp + βLb + γJ (33)

Alg. 3 describes the working procedure of MMPRF+. First,
the discriminator Dθ is updated via Eq. 28 (Line 4). Then
the generator generates fake samples and performs network
updates through Eq. 32 (Line 5). Finally, the generated
samples are added to the training process and the classifier
parameters are updated according to Eq. 33 (Line 6).
5 EVALUATION

5.1 Experiment Setup

Experimental Environment. The MMPRF algorithm is im-
plemented by using Pytorch 1.10.0 and execute on a com-
puter running Unbantu 18.04.6 LTS, with Intel(R) Core(TM)
i9-10900K CPU@3.70 GHz and 2 NVIDIA GeForce RTX3090
GPUs. In addition we mainly use Adam [31] optimizer for
optimization of CNN parameters and Table 2 depicts the
relevant parameters for our MMPRF.
Dataset. Our dataset is primarily derived from publicly
available wireless modulation type identification datasets.
• RADIOML 2016.10A [32]: A synthetic signal modula-

tion classification dataset, generated with GNU Radio,
consisting of 11 wireless modulations (8 digital and 3
analog) with varying SNR. The 8 digital modulations are
BPSK, QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK, and
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Algorithm 3: MMPRF+ Algorithm for AMOSR Task
Input: Training set Dtr, initialized CNN parameters

fθ, f
′
θ , generator Gθ , discriminator Dθ ,

non-adjacent points Pn, prototype P , and
hyperparameter α, β, λ, γ

Output: The optimal parameters f∗θ , P∗
n, P∗

1 Initializing the network parameters fθ, f ′θ, Gθ, Dθ ;
2 for epoch = 1 to Epoch do
3 for batch in Dtr do
4 Update discriminator parameters Dθ by its

gradient:

∇D∗
θ

1
N

N∑
i=1

[logDθ(xi) + log(1−Dθ(Gθ(zi)))];

5 Update generator parameters G∗
θ by its

gradient:

∇Gθ

1
N

N∑
i=1

(− logDθ(Gθ(zi)) + λJ(Gθ(zi)));

6 Update the classifier parameters f∗θ , P∗
n, P∗

by its gradient:

∇f∗
θ ,P

∗
n ,P

∗
1
N

N∑
i=1

[L(xi, yi; fθ, Pn, P ) + γJ (Gθ)];

7 end
8 Update the classifier by executing the MMPRF

algorithm 2;
9 end

10 return Parameters fθ , Pn, P

TABLE 2
Network Architecture and Parameter Configurations

Parameters Value Layers Activation
Probability threshold (δ) 0.95 Conv1d(4,2,1) BN+LReLU

Hyper-parameter (α) 0.1 Conv1d(4,2,1) BN+LReLU
Hyper-parameter (β) 0.01 Conv1d(4,2,1) BN+LReLU
Generator weights (γ) 0.01 Conv1d(4,1,0) BN+LReLU

Metric balance weights (λ) 0.5 AdaptiveAvgPool1d
Learning rate (lr) 0.001 FC(d-dimension)

PAM4, and 4 analog modulations are WB-FM, AM-SSB,
and AMDSB. The SNR ranges is from -20dB to 18dB, and
the length of each sample is 128. In our OSR task, 9
classes were set as known and 2 classes as unknown
samples.

• Sig-2019 [6]: This dataset contains longer signals, which
considers several nonideal effects of a real communi-
cation system, including carrier phase, pulse shaping,
frequency offsets and noise. The dataset consists of 12
modulation categories, including BPSK, QPSK, 8PSK,
OQPSK, 2FSK, 4FSK, 8FSK, 16QAM, 32QAM, 64QAM,
4PAM, and 8PAM. The SNR ranges is from -20dB to 30dB,
the length of each sample is 512. In our OSR task, 10
classes were set as known and 2 classes as unknown
samples.

• RADIOML 2018.01A [11]: This real-world dataset, in
addition to simulating a wireless channel, is collected
from a real laboratory environment. The type of modula-
tions are OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK,
32PSK, 16APSK, 32APSK, 64APSK, 128APSK, 16QAM,
32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-

SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMSK, OQPSK.
The SNR ranges from -20dB to 30dB, and the length of
each sample is 1024. In our OSR task, 19 classes were set
as known and 5 classes as unknown samples.

• HisarMod2019.1 [33]: This dataset contains more models
of channel fading in realistic scenarios and provides a
better realistic simulation than the previous datasets. It
contains 26 modulations with different SNR like AM-
DSB, AM-SC, AM-USB, AM-LSB, FM, PM, 2FSK, 4FSK,
8FSK, 16FSK, 4PAM, 8PAM, 16PAM, BPSK, QPSK, 8PSK,
16PSK, 32PSK, 64PSK, 4QAM, 8QAM, 16QAM, 32QAM,
64QAM, 128QAM, 256QAM. In our OSR task, 20 classes
were set as known and 6 classes as unknown samples.

• MIMOsigRef-SD [34]: It records modulated signals
in different mobile environments through an em-
ulation process, such as M-QAM, MIL-STD-188-110
B/C standard-specific QAM, M-PSK, M-APSK, DVB-
S2/S2X/SH standard-specific APSK, and M-PAM with
different modulation orders, each with different multiple-
input multiple-output (MIMO) system configurations in
order to provide an extensive signal reference. In our
OSR task, 20 classes were set as known and 10 classes
as unknown samples.

Models’ setup and comparison baselines. To ensure the
fairness of the comparison, we use a uniform network
architecture for all baseline methods. As shown in Fig. 5,
to facilitate the fusion learning of multi-channel data in the
modal fusion of MMPRF, we use ResNet-18 as the backbone
network both for our algorithms and other baseline algo-
rithms. Then in the modal factoring, due to the necessity
of using multiple models to learn each individual signal
model signal, we reduce the number of parameters, using
3 simple 1DCNNs as the network architecture. Table 2 lists
the structural information of the 1DCNN, where Conv1d
means 1DCNN that contains parameters filters, stride, and
padding respectively. The baseline algorithms are briefly
summarized as follows.

• Openmax [35]: This method mainly uses extreme value
theory (EVT) to calculate the classification probability.

• GCPL [9]: This model uses prototypes to represent each
known class and force each class to be close to its corre-
sponding prototype point.

• CGDL [25]: This method employs a β-variational au-
toencoder (β-VAE) to decouple the features and uses the
reconstruction error of the autoencoder (AE) to perform
the OSR task.

• GCM-CF [24]: This model extended the CGDL by us-
ing counterfactual causal inference to generate unknown
samples to augment the unknown classes.

• SR2CNN [20]: This model combines the method of au-
toencoder and prototype point to achieve the AMOSR.

• Open-GAN [36]: This model mainly uses the discrimina-
tor of GAN to identify unknown samples.

• RPL [7]: This model uses reciprocal points to allow the
neural network to understand unknown samples to im-
prove the performance of OSR.

• ARPL [10]: In this model, the adversarial boundary re-
strictions is added to RPL to reduce open space risk.

• ARPL+CS [10]: This method adopts an GAN to generate
unknown samples to support ARPL to perform OSR
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tasks.
Evaluation Metrics. Following [9], [10], [25], [35], we use
the area under the receiver operating characteristic curve
(AUROC) to evaluate the performance of AMOSR. The
AUROC has the ability to discriminate between unknown
and known by ranking the samples from highest to lowest
prediction probability [10]. In particular, it does not require
the use of probability thresholds for comparison.

However, AUROC can only discriminate between
known and unknown differences in probability distribu-
tions and does not evaluate the accuracy of the model’s
predictions for known classes. Following [21], we introduce
a open-set classification rate (OSCR) metric to count the
rejection rate of unknown classes and the accuracy of known
classes, which consists of correct classification rate (CCR)
and false positive rate (FPR). With the distance thresholds
ζ∗ computed in Section 3.4.2, our CCR represents the pro-
portion of samples whose embedding features in the space
are below the target distance threshold ζ∗k and correctly
classified as yk:

CCR(x(t) ∈ (Dte −Du); ζ∗) =
|{x(t)| argmaxk(p(yk|x(t))) ∩ ℓ(x(t),Pk) ⩽ ζ∗k}|

|Dte −Du|
. (34)

Then the FPR denotes the proportion of samples from an
unknown dataset Du whose embedding feature distance is
higher than the target threshold ζ∗k , which can be calculated
by:

FPR(x(t) ∈ Du; ζ∗) =
|{x(t)| argmaxk(p(yk|x(t))) ∩ ℓ(x(t),Pk) > ζ∗k}|

|Du|
. (35)

Therefore, similar to AUROC, OSCR based on CCR and
FPR is an indicator that evaluates the model by calculating
the area under the corresponding curve [21]. A larger OSCR
indicates that the current model has better OSR performance.
Methodology. To verify the effectiveness of our proposed
method, our experiments are divided into three key sections.
In the baseline method (§5.2), we compare the efficiency of
the key metrics with the OSR baseline approach. In addition
we consider the impact of different SNRs as well as different
number of known classes. Then in micro-benchmarking
(§5.3), we perform ablation experiments mainly by vary-
ing different RF features and hyperparameters. Finally in
visualization analysis (§5.4), we visualize some features to
discuss in more depth of some key results.

5.2 Experimental results for OSR
Comparison of AUROC and OSCR among OSR baselines.
To verify the efficiency of the algorithm, we randomly select
five AMOSR tasks for each modulation type dataset, where
the setting of the AMOSR category is kept consistent in each
baseline. Table 3 shows that MPRF outperforms SOTA meth-
ods and the improvement is between 20% and 30%. This in-
dicates that the imposed marginal prototype constraints and
the extracted RF modal fusion features effectively improves
the performance of AMOSR. In particular, the MMPRF
which incorporates modal factoring features on the basis of
the MPRF is able to significantly improve the performance
of the average 2% on AUROC and OSCR. This illustrates

that the challenge of the catastrophic disappearance of fea-
tures can be partially mitigated by modal factoring. Finally,
to further improve the ability to reject unknown classes, the
MMPRF+ uses GAN to generate unknown RF samples and
incorporates them into the network training, achieving the
best performance on AMOSR.
Comparing to SOTA CSR methods. In addition, as reported
in [6], [37], [38], the accuracy of CSR of the SOTA methods
in RADIOML 2016.1, Sig-2019 and RADIOML 2018.01A are
94.51%, 98.51% and 99.4%. Our proposed algorithm also
achieves similar accuracy at 93.63%, 98.31%, and 99.1%,
which demonstrates that our algorithm can improve OSR
performance while ensuring the accuracy of CSR.
Comparison of CCR and FPR among OSR baselines. In
each dataset, a random set of AMOSR tasks is selected and
Fig. 9 shows their OSCR curves, reflecting the variation
pattern of CCR and FPR. We can obviously see that in differ-
ent datasets, all three methods (MPRF, MMPRF, MMPRF+)
proposed in this paper have a large OSCR area, indicating
the unknown samples have a smaller overlap area with the
known samples. At 95% CCR, we can observe the difference
in FPR values obtained by different methods, where our
method has a smaller FPR value against the other baseline
algorithms. The smaller FPR value means that the model
has a higher discriminatory ability for unknown samples
while ensuring classification accuracy for known classes.
In summary, our approach incorporating modulated signal-
related features can significantly improve the model’s ability
to reject unknown samples, which is the key reason that
SOTA CV-based OSR algorithms can not perform well in
AMOSR tasks.
Comparison at different SNR levels. Since RF signal trans-
mission in the real environment may be affected by noise,
we compare the performance of the average AUROC with
different SNR levels in a randomized 5 AMOSR task. As
shown in the Fig. 10, we can see that at low SNR ([-20,-
12]db in Fig. 10a, [-20,-10]db in Fig. 10b and [-20,-10]db
in Fig. 10c), our method does not differ much from the
baseline methods. This means that noise drowns out all
information. As the SNR level increases, the performance
of our methods are dramatically improved, compared to the
baseline methods. In Fig. 10c, our solution outperforms RPL
by 30% in the 15dB and 25dB SNR. The above results show
that our method is suitable for real-world scenarios that the
SNR is between 10 dB and 30 dB [39].

The baseline algorithms perform poorly is because of
key features about the AMOSR task are not extracted,
such as frequency, phase, under low SNR (i.e, high noise
environment). However, the MMPRF in our proposed can
effectively extract these features.

Moreover, in Fig. 10c, we find an unpredictable down-
ward trend in the performance of AUROC for several base-
line methods as the SNR increases. Tracing the reasons for
this, we believe that there may be several points: (i) The
dataset RADIOML 2018.01A has more categories and higher
recognition difficulty, making the performance poor at high
SNR; (ii) At low SNR, the neural network classification
recognition performance is poor and the task performance
of OSR is at the blind guessing stage (50% uniform perfor-
mance for binary classification). The increase of SNR makes
the classification performance of the network improve, but



IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. X, XX 2022 12

TABLE 3
The AUROC and OSCR results of on detecting known and unknown samples. Results are averaged among five randomized trials.

Methods RADIOML 2016.10A Sig-2019 RADIOML 2018.01A HisarMod2019.1 MIMOSigRef-SD
AUROC OSCR AUROC OSCR AUROC OSCR AUROC OSCR AUROC OSCR

Softmax 53.13 52.26 51.26 51.02 56.35 53.97 81.10 81.10 80.35 80.35
Openmax [35] 60.20 56.99 53.20 46.72 58.24 54.90 77.61 77.42 78.41 78.30

GCPL [9] 67.72 64.02 70.15 69.76 66.09 61.06 86.51 86.51 82.80 82.80
CGDL [25] 52.15 46.99 57.44 52.85 54.28 50.56 63.78 62.15 56.48 56.48

GCM-CF [24] 49.09 45.88 64.42 62.08 41.57 40.64 60.02 56.38 55.46 55.43
SR2CNN [20] 76.74 68.34 58.46 56.73 90.22 79.28 79.90 79.07 84.07 78.94

Open-GAN [36] 69.91 65.87 73.60 71.44 82.62 74.56 66.96 66.55 62.07 58.11
RPL [7] 72.17 67.18 71.55 70.78 66.87 57.45 88.64 88.64 86.59 86.59

ARPL [10] 64.73 59.38 58.69 57.96 37.67 35.41 76.10 76.10 64.86 64.86
ARPL+CS [10] 54.23 50.70 60.72 59.30 45.92 41.69 60.85 60.68 56.21 56.21
MPRF (Ours) 87.93 81.39 87.97 87.10 91.50 86.07 94.28 94.16 92.75 84.07

MMPRF (Ours) 89.54 87.75 90.11 89.27 94.06 88.44 94.53 94.40 95.62 87.47
MMPRF+ (Ours) 92.56 90.04 92.42 92.14 95.49 90.04 96.64 96.63 96.57 90.06
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(c) RADIOML 2018.01A
Fig. 9. Thr curves of OSCR include metrics CCR, FPR: (a) in dataset RADIOML 2016.10A, the WBFM, QPSK as unknown modulation types; (b) in
dataset Sig-2019, the 2FSK, 8FSK as unknown modulation types; (c) in dataset RADIOML 2018.01A, the GMSK, 32APSK, OQPSK, 8ASK, BPSK
as unknown modulation types.
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(c) RADIOML 2018.01A
Fig. 10. AUROC performance for different levels of SNR: (a) for dataset RADIOML 2016.10A, we divided the SNR range [-20,18] dB into five intervals
on average; (b) for dataset Sig-2019, we divided the SNR range [-20,30] dB into five intervals on average; (c) for dataset RADIOML 2018.01A, we
divided the SNR range [-20,30] dB into five intervals on average.

TABLE 4
The OSCR results for different K known classes and (N −K)

unknown classes in Sig-2019.

K=2 (%) K=4 (%) K=6 (%) K=8 (%) K=10 (%)
MPRF 90.43 94.68 97.60 84.66 89.21

MMPRF 91.73 96.60 98.80 86.92 97.81
MMPRF+ 92.63 99.53 99.05 87.01 99.75

it also identifies unknown classes as known classes, which
leads to some algorithm performance degradation under
high SNR instead.
Varying the number of known classes.. We change the
number of known classes and evaluate their critical OSCR
performance. As shown in Table 5, our approach achieves

a stable performance while varying numbers of known
classes, compared to baselines. Also, in the dataset Sig-2019
and RADIOML 2018.01A, the reduction of the number of
known classes leads to a decrease of OSCR performance.
This suggests that more category samples allow neural
network to learn more knowledge to further improve the
performance of AMOSR. Then in Table 4, we show the
results for different K known classes as well as N − K
unknown classes on Sig-2019. It is clear to observe that
our proposed MMPRF+ has better OSCR performance. At
first (K=2, 4, 6) OSCR recognition rate increases when the
number of known classes increases. But when K=8, the
recognition rate shows a decrease. The above results indicate
that when the number of known classes becomes larger, the
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TABLE 5
The OSCR results for different number of known classes.

Methods RADIOML 2016.10A Sig-2019 RADIOML 2018.01A
K=10 (%) K=7 (%) K=6 (%) K=11 (%) K=9 (%) K=7 (%) K=23 (%) K=17 (%) K=12 (%)

Softmax 57.4 77.0 73.9 56.0 41.9 59.4 70.4 49.9 66.2
GCPL 71.0 80.9 80.3 86.2 60.3 62.3 85.6 81.8 74.7
RPL 78.4 80.4 81.7 60.0 66.6 63.1 86.2 64.5 68.6

ARPL 61.0 68.7 84.6 64.1 41.7 66.8 81.0 36.9 54.7
MPRF 85.9 91.0 87.4 91.1 91.1 75.0 89.0 89.1 84.4

MMPRF 88.2 91.6 89.7 95.7 93.5 73.6 92.8 92.3 87.5
MMPRF++ 88.9 93.5 85.4 97.7 93.7 74.5 93.3 92.4 90.3

TABLE 6
The results of AUROC, OSCR and boosting (∆) on detecting known and unknown samples by augmenting feature to baselines. In column ∆, the

left side indicates the boost of AUROC and the right side indicates the boost of OSCR.

Methods RADIOML 2016.10A Sig2019-12 RADIOML 2018.01A
AUROC(%) OSCR(%) ∆(↑ %) AUROC(%) OSCR(%) ∆(↑ %) AUROC(%) OSCR(%) ∆(↑ %)

Softmax+ 64.21 61.42 20.85/17.52 64.21 61.42 55.62/49.73 64.01 61.12 13.59/13.24
GCPL+ 75.34 71.58 11.25/11.80 69.57 68.64 28.92/27.67 71.93 70.71 8.83/15.80
RPL+ 79.79 74.44 10.55/10.81 79.79 74.44 31.01/24.52 78.12 75.93 16.82/32.16

ARPL+ 66.36 63.22 2.51/6.46 66.36 63.22 13.06/9.07 53.59 51.45 42.26/45.29
MPRF 87.93 81.39 –/– 87.97 87.10 -/- 98.82 97.22 –/–

probability that the unknown classes is similar to known
classes increases.

5.3 Micro-Benchmarking

In this section, we discuss the impact of hyperparameters as
well as some key features for ablation.
Efficiency of data augmentation. We first impose the key
RF features (phase, frequency and amplitude) discussed in
this paper, and then evaluate impact of augment features to
various models’ performance gains.

Table 6 shows that our data augmentation method can
improve the performance of all algorithms and our pro-
posed methods can still achieve the best performance, com-
pared the boosted methods (i.e., adding the data augmen-
tation to the baseline solutions). The ∆ column indicates
the average performance increase on AUROC as well as on
OSCR, where the performance can be improved by about
5%-50%, which shows that the RF features used in this
paper can improve the efficiency of AMOSR for different
algorithms.
Ablation analysis of different RF features. In order to
verify the impact of different features (e.g., F (w) and ψ(t)),
we perform an ablation analysis on the MPRF algorithm.

In the Fig. 11 shows four types of settings, i.e., 1) per-
forming MPRF with both F (w) and ψ(t) (noted as MPRF ),
2) without F (w)(noted as MPRF (w/o F (w))), 3) without
ψ(t)(noted as MPRF (w/o ψ(t))), 4) without both F (w)
and ψ(t)(noted as MPRF (w/o F (w), ψ(t))).

For FPR, the MPRF with F (w) and ψ(t) has the low-
est FPR in most AMOSR tasks and the MPRF without
F (w), ψ(t) has the highest FPR value across different data
sets and different openset tasks. Next, the MPRF with F (w)
or with ψ(t) produce different degrees of reduction on FPR,
but this reduction is varying among different openset tasks.
For example, in the openset 2 of Sig-2019, the MPRF without
F (w) does not provide a significant performance gain. The
above results show that it is difficult to guarantee that in-
dividual features will be effective in all tasks. Therefore our
MPRF operates on the fusion of different features, hoping to
maintain superior performance in all AMOSR tasks.

TABLE 7
The OSCR results of AMOSR for different RF features. Results are

averaged among five AMOSR tasks.

RADIOML
2016.10A

RADIOML
2018.01A Sig-2019

MPRF(w/o F (w), ψ(t)) 70.67 83.36 70.38
MPRF(w/o ψ(t)) 77.89 86.65 78.23
MPRF(w/o F (w)) 76.66 86.13 70.50

MPRF 84.87 87.27 87.1

Fig. 11 shows that the same trend is observed in the
OSCR metrics, where the MPRF without F (w) and ψ(t) has
the lowest OSCR performance and our MPRF has the best
performance among different dataset and openset tasks.

Table 7 shows the average OSCR results of five openset
tasks across three datasets. The proposed feature extrac-
tion method can bring considerable performance gain to
the AMOSR. However, in openset 5 of dataset RADIOML
2018.01A, the MPRF has a higher FPR and a smaller OSCR
than the MPRF without F (w). The above results suggest
that the specific RF features are critical to a particular OSR
task. Once the feature is fused with other features for the
recognition task, it may face a situation that the feature is
weakened or disappears, i.e. the other features dominate
the CSR task. Therefore, in this paper, we propose MMPRF
to extract these feature differences individually to prevent
feature weakening.
Ablation analysis of hyperparameters. Next we analyze
impact of the hyperparameters α, β for MPRF, where α de-
notes the restriction of target class samples to non-adjacent
points Pn and β denotes the restriction of prototype points.
Fig. 12 shows the OSCR performance in each dataset under
various values of α and β. The results show that the area of
OSCR is the smallest when α and β are set to 0. Furthermore,
the area of OSCR increases with the increase of α and β.

The above observations illustrate that it is necessary to
fix the position of the prototype points and restrict the
distance of sample to non-adjacent points in radius R.
Once the sample is not restricted in the range of radius
R from the non-adjacent points, i.e. α = 0, which means
that the distribution of the known samples is not compact
enough. This is because the space outside the range of radius
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Fig. 11. The FPR and OSCR results for different features in the MPRF algorithm. We form different combinations of features F (w) and ψ(t) in the
MPRF. Overall, MPRF with F (w) and ψ(t) has a smaller FPR as well as higher OSCR performance in different OSR tasks.
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(c) RADIOML 2018.01A
Fig. 12. OSCR curves under the influence of different hyperparameters α, β, where α denotes the restriction of target class samples to non-adjacent
points and β denotes the restriction of prototype points.

R is infinite, which increases the risk of open space. In
addition, when β = 0, the prototype points may not be at
the boundary, which likely reduce the gap between known
classes thereby reducing the performance of AMOSR.

5.4 Visualization Analysis
t-SNE visualization for different methods. We visualize the
key results on the dataset Sig-2019 obtained from several
methods proposed, where the category 4PAM and 8PAM
are used as the unknown class. As shown in the Fig. 13,
We perform a t-SNE based visual analysis of the feature
embedding space for known and unknown classes. Fig.
13a-13d demonstrate that the distances between unknown
classes and known classes is increasing, and our MMPRF+
has the farthest distance. This indicates that MMPRF+ can

more easily identify the unknown classes, compared to
others. The above results show that it is necessary to equip
MPRF with the ability to identify unknowns by introducing
non-adjacent points as opposed to the PRF.

Additionally, the measurement of extracting different
features about the RF signal (MMPRF) and generating
unknown samples (MMPRF+) are useful for AMOSR. In
Fig. 13e-13h, we plot the distance distribution between the
unknown class and the top-2 classes with the highest clas-
sification probability. The results show that the unknown
class is mostly divided into class 8 (C8) and class 9 (C9),
which indicates that the unknown class is more similar to
C8, C9. In fact, C8 and C9 denote 32QAM and 64QAM,
which have the part of the same amplitude modulation as
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Fig. 13. We performed the visualization of the AMOSR task for the dataset Sig-2019, where we defined the unknown class as 4PAM, 8PAM: figure
(a), (b), (c) and (d) denote t-SNE visualization results for different methods, where black denotes the unknown class, blue denotes the known class;
figure (e), (f), (g) and (h) denote the comparison of the distance distribution between the unknown class and the top two classes of classification
probability. In particular, PRF indicates that the prototype point-based AMOSR classification method targets RF signals (PRF).

(a) K=2 (b) K=3 (c) K=5 (d) K=8 (e) K=10
Fig. 14. The t-SNE visualization results of MPRF on known and unknown classes with different numbers of known classes. In the figure, green
indicates the known classes of dataset RADIOML 2016.10A, and datasets Sig-2019 and RADIOML 2018.01A indicate the unknown classes, where
red indicates dataset Sig-2019 and blue indicates dataset RADIOML 2018.01A.

the unknown class. However, the distance asymptotes from
the method PRF to MMPRF+ indicates that the proposed
methods improves the performance of the AMOSR task.

T-SNE visualisation for AMOSR tasks under cross-
dataset. We visualize the feature space distributions of
different number of known classes using t-SNE and test
the AMOSR performance under cross-datasets. We use RA-
DIOML 2016.10A as the known dataset for training and
then test the model over Sig-2019 and RADIOML 2018.01A
as the unknown dataset. Fig.14 displays the representation
of both training and testing dataset, where the green area
indicates the dataset RADIOML 2016.10A, and the red and
blue area represent dataset Sig-2019 and dataset RADIOML
2018.01A. The above results show that our method has an
excellent performance in rejecting the samples belonging
to unknown classes. However, the performance of AMC
is affected by cross-datasets, where some modulation types
from RADIOML 2016.10A exist in Sig-2019 and RADIOML
2018.01A, but they are recognized as unknown classes. This
may be caused the signals generated from various devices,
make modulation identification difficult. In future work, we
would like to tackle this problem by setting up a real-world
test-bed to obtain a dataset that has the same modulation
across groups of devices.

6 RELATED WORK

6.1 Automatic Modulation Classification

AMC is considered to be one of the key techniques for
communication systems with adaptive modulation capa-
bilities. Initially, traditional AMC research approaches are
mainly based on maximum likelihood estimation (MLE),
which considers modulation classification as a multiple-
hypothesis testing problem. Various algorithms are pro-
posed around the likelihood method, for example, Huan
et al. [40] propose an algorithmic classifier based on the
likelihood function (LF). However, the real-time nature and
exact likelihood values of the ML-AMC algorithm remain
difficult to achieve in complex environments due to the
limitations of the algorithm itself [1]. After that, the re-
searcher proposes the feature-based AMC algorithms [41],
[42], mainly through data pre-processing, feature extraction
and machine learning-based classification decisions. Since
the excellent statistical features of feature-based AMC al-
gorithms can achieve near-optimal performance with low
complexity, a lot of research has been conducted on feature
extraction, such as the use of channel state information
(CSI) [43], [44], statistical learning based on higher-order
moments and products [45], [46], [47], wavelet transform
[48], etc. The above AMC is a combination of different fea-
ture extraction algorithms and ML classifiers, which require
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expert knowledge in signal processing and experience in
manual design.

Recently, deep learning-based modulation classifiers
have gradually become mainstream, as they can automati-
cally extract knowledge. O’Shea et al. [11] employ a VGG ar-
chitecture to design a 1D-CNN model that makes it suitable
for small radio signal classification tasks and achieves great
results. Xu et al. [12] use this 1D convolution and narrow
2D convolution to propose a multi-channel CNN, named
MCLDNN. Unlike the above, Chen et al. [6] propose the
SigNet by accelerating the 1D convolution operator opera-
tion, which achieves more advanced performance compared
to existing baseline methods. On the other hand, for the
time characteristics of RF signals, researchers have used
long short-term memory networks (LSTM) [15] to extract
timing-related feature information, e.g., Rajendran et al. [16]
use an LSTM-based model for modulation classification in a
distributed wireless spectrum-aware network.

The current extensive AMC literature can be summa-
rized as the following approaches: 1) use of signal pro-
cessing tools with machine learning techniques to extract
statistical features, and frequency domain features [1], [41],
[42]; and 2) use of deep learning techniques [6], [11], [14],
[16]. These algorithms are designed for closed-set recogni-
tion and it is difficult to guarantee their effectiveness on
OSR which use SoftMax to compute the probability of each
class. This leads to the fact that the open-set samples are
also considered known samples and thus cannot reject the
unknown classes. Compared with them, our paper not only
draws on the signal processing techniques but more cru-
cially provides an advanced open-set recognition classifier
for wireless signals.

6.2 Open Set Recognition

Walter Scheirer et al. [22] first define the OSR problem
and propose a basic framework to analyze it. Recent work
[49] has proposed Semantic Shift Benchmark (SSB) that can
define easy and hard splits based on the semantic similar-
ity between open-set categories and training classes. The
study confirms the correlation between strong closed-set
and open-set performance for a semantic shift for a family of
scoring rules, such as logit and softmax scores. In AMOSR,
both distances of modulation frequency and SNR are key
factors when considering the class novelty. Semantic shift
pertains to the degree of similarity between the unknown
and known classes, where a higher similarity leads to the
majority of open-set failures. OSR problems are divided
into three main categories, including discriminative models,
generative models [50], and prototype learning [51].

In discriminative models, the detection of unknown
classes in OSR can be regarded as a binary classification.
Based on deep learning models, the most famous OSR
method is designed using Openmax [35], which mainly
uses the extreme value theory (EVT)-based Openmax layer
instead of the Softmax layer in the neural network. Another
study based on the reconstruction error of auto-encoders
(AE) is carried out, where researchers have concluded that
unknown samples have a greater reconstruction error than
known samples, with the algorithms CROSR [52] and C2AE
[53] achieving great performance. Then in generative mod-
els, GAN and variational auto-encoder (VAE) models are

widely used to generate unknown samples in order for
DNNs to understand the unknown world. Many algorithms
have been proposed, e.g. Zong et al. [28] propose a G-
Openmax model combining GAN and Openmax. In [24],
VAE is used to generate counterfactual images as unknown
samples to improve the network’s understanding of the
unknown world and achieve SOTA performance of OSR.
The generative model has now greatly improved OSR per-
formance and has become the dominant model [21], as it
is able to see a lot of samples from an unknown world
compared to the discriminative model.

Another mainstream approach is based on the idea of
prototypes. Yang et al. propose the GCPL model [9], which
uses a prototype to represent each known class in the feature
space and forces the features of the training data to be
close to the corresponding prototype. The advantage of
GCPL is that it not only effectively reduces the empirical
classification risk, but also increases the compactness of each
class in the feature space, which helps to reduce the risk
of open spaces. However, as it does not take into account
the location of the prototypes, Chen et al. further proposed
the RPL/ARPL algorithm [10], which mainly encourages
the training data to move away from each other thereby
reducing the overlap of the unknown sample space.

There exists a few AMOSR studies [20], [54], [55]. In
more detail, these works suffer from the following short-
comings. (1)These works directly use the algorithm from
computer vision tasks and do not extract the significant
features that can be used to classify the known and un-
known signals. (2) The existing work does not efficiently
utilize the unique features extracted signals to increase the
distance between the known and unknown classes. (3) The
generalization of the existing work is limited, these can
achieve good performance on some specific datasets and
OSR tasks, but the performance can not be guaranteed
when the datasets or OSR tasks are changed. Therefore,
our study bridges these gaps. We propose an advanced OSR
algorithm and combine it with signal processing knowledge.
More importantly, the datasets and algorithms used in the
existing research content are relatively homogeneous, and
we have evaluated a large number of different datasets
and algorithms that have verified their robustness of the
algorithms.

7 CONCLUSION

In this paper, we first present the concept of the AMOSR
task and review existing OSR methods. We describe the
key challenges in the AMOSR task and propose a signal-
specific feature extraction method. Based on this, the MPRF
algorithm is proposed to effectively reduce the risk of open
space by integrating the properties of prototype points and
non-adjacent points. The MMPRF algorithm is then further
proposed to improve the efficiency of the AMOSR task by
factoring in multi-modal features. Finally, the GAN-based
MMPRF+ algorithm allows CNN to see and learn as many
unknown samples. Although our approach has achieved
some improvement in results, there are still significant
challenges with AMOSR tasks, i.e. it is difficult for us to
guarantee good performance on all AMOSR tasks. In the
future, we will conduct further in-depth research to improve
the performance of difficult AMOSR tasks.
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